
Tabular Model Learning in Monte Carlo Tree Search
Alberto Castellini1,∗, Davide Bragantini1,†, Davide Rossignolo1,†, Federico Segala1,†

and Alessandro Farinelli1

1University of Verona, Department of Computer Science, Strada Le Grazie 15, 37134, Verona, Italy

Abstract
We present Monte Carlo Tree Search with Tabular Model Learning (MCTS-TML), an extension of MCTS
that does not require to know the transition model of the environment, since it learns/adapts the model
while interacting with the environment. MCTS-TML assumes discrete states and actions, hence it
uses a tabular representation of the transition model. The model update strategy is inspired by that
of Dyna-Q but the sample efficiency of MCTS-TML is higher, therefore it requires less interactions
with the environment to learn a good policy. Furthermore, MCTS-TML can scale to much larger state
spaces (i.e., environments) since it computes the policy online, focusing only on the current state of
the system, instead of on all possible states. We also show that MCTS-TML outperforms Q-learning, a
popular model-free RL algorithm equivalent to Dyna-Q with no planning steps. Empirical evaluation of
MCTS-TML is performed on both deterministic and stochastic environments showing that its sample
efficiency is higher than that of Dyna-Q and Q-learning.

Keywords
Monte Carlo Tree Search, Model Learning, Model-based reinforcement learning, Dyna-Q

1. Introduction

Monte Carlo Tree Search (MCTS) [2, 3] is an online probabilistic planning method that has
attracted a lot of interest in the last decade because of the impressive results it has contributed
to achieve in board games, such as, Go and Chess [4, 5]. A major effort is underway to develop
techniques that exploit the potential of MCTS in real-world domains. Interesting research
problems in this direction are, for instance, the extension of MCTS to continuous state and
action domains [6, 7, 8, 9], the introduction of safety constraints in MCTS-based policies [10, 11]
and the safe improvement of policies via MCTS [12].

A key issue for the use of MCTS in real-world applications such as robot navigation [13,
14, 15, 16] and autonomous driving, is the definition of the environment model [17] that the
algorithm uses to perform simulations. This model is in fact very complex in real-world domains
and usually it is impossible to know it precisely in advance. In this perspective an interesting

IPS-RCRA-SPIRIT 2023: Italian Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation of
algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction,
and Reasoning in Italy. November 7-9th, 2023, Rome, Italy [1]
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open alberto.castellini@univr.it (A. Castellini); davide.bragantini02@studenti.univr.it (D. Bragantini);
davide.rossignolo@studenti.univr.it (D. Rossignolo); federico.segala@studenti.univr.it (F. Segala);
alessandro.farinelli@univr.it (A. Farinelli)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alberto.castellini@univr.it
mailto:davide.bragantini02@studenti.univr.it
mailto:davide.rossignolo@studenti.univr.it
mailto:federico.segala@studenti.univr.it
mailto:alessandro.farinelli@univr.it
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

trend aims at estimating the environment model used by MCTS [18, 19]. In this paper we
tackle this problem. Namely, we assume the model of the environment to be unknown and we
propose a methodology to learn it from data acquired online by the agent. We assume discrete
state and action spaces, in which the model can be represented in a tabular way. We collect
counts of observed transactions between states, and we use these counts to update transaction
probabilities. Then we use these probabilities, together with minimal prior knowledge about
the environment, as an estimated transition model to perform MCTS simulations.

We compare the performance of the proposed MCTS algorithm with learned model (in the
following called MCTS-TML, for brevity) with that of two popular state-of-the-art tabular
reinforcement learning (RL) algorithms, namely, the model-free Q-learning [20] and the model-
based Dyna-Q [21, 20]. As expected, MCTS-TML outperforms Q-learning in terms of sample
efficiency on a standard benchmark domain. More interestingly, the sample efficiency of
MCTS-TML results higher than that of Dyna-Q, hence MCTS-TML reaches optimality earlier
than Dyna-Q. In our empirical test we first analyze the behaviour of the two algorithms on
deterministic environments, then we investigate the performance on stochastic environments,
and finally we identify and explain the reasons of this difference in sample efficiency.

Although preliminary, this work provides new insight on model learning in MCTS, a topic
which has so far only been addressed from a Bayesian RL perspective. In Bayesian Adaptive
Monte Carlo Planning (BAMCP) [18] and Bayesian Adaptive Partially Observable Monte Carlo
Planning (BAPOMCP) [19], model learning is seen as a part of planning under uncertainty,
since model parameters are inserted in the state of the system and actions are performed to
decrease model parameter uncertainty, until an increasingly certain dynamical model is found.
In contrast, our algorithm follows a different perspective building on the basic idea proposed by
Dyna-Q. Essentially, the approach stores in a tabular model the knowledge about the dynamics
of the environment. This knowledge is collected using a policy which is initially random and
then becomes more and more efficient using the dynamics model for planning (i.e., generating
rollouts and computing Q-values from them). The main contributions of this work are therefore
threefold:

• we propose a model-based RL and Dyna-inspired algorithm called MCTS-TML that
introduces model learning in MCTS;

• we compare the performance of MCTS-TML with that of Dyna-Q and Q-learning in
deterministic and stochastic environments;

• we investigate the motivations of the improvement achieved by MCTS-TML with respect
to Dyna-Q highlighting the key elements for the superior performance of our approach
and paving the way for future research directions in this are.

2. Background

2.1. Markov Decision Processes

A Markov Decision Process (MDP) [22] is a tuple 𝑀 = ⟨𝑆, 𝐴, 𝑇 , 𝑅, 𝛾 ⟩, where 𝑆 is a finite set of
states, 𝐴 is a finite set of actions (we represent each action with its index, i.e., 𝐴 = {1, … , |𝐴|}),
𝑇 ∶ 𝑆×𝐴 → 𝒫 (𝑆) is a stochastic transition function, where𝒫 (𝐸) denotes the space of probability

distributions over the finite set 𝐸, therefore 𝑇 (𝑠, 𝑎, 𝑠′) indicates the probability of reaching the
state 𝑠′ ∈ 𝑆 after executing 𝑎 ∈ 𝐴 in 𝑠 ∈ 𝑆, 𝑅 ∶ 𝑆 × 𝐴 → [−𝑅𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥] is a bounded stochastic
reward function, and 𝛾 ∈ [0, 1) is a discount factor. The set of stochastic policies for 𝑀 is
Π = {𝜋 ∶ 𝑆 → 𝒫 (𝐴)}.

Given anMDP𝑀 and a policy 𝜋we can compute state values 𝑉 𝜋
𝑀(𝑠), 𝑠 ∈ 𝑆, namely, the expected

value acquired by 𝜋 from 𝑠; and action values 𝑄𝑀(𝑠, 𝑎), 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, namely, the expected value
acquired by 𝜋 when action 𝑎 is performed from state 𝑠. To evaluate the performance of a policy
𝜋 in an MDP𝑀, i.e., 𝜌(𝜋,𝑀), we compute its expected return (i.e., its value) in the initial state 𝑠0,
namely, 𝜌(𝜋,𝑀) = 𝑉 𝜋

𝑀(𝑠0). The goal of MDP solvers, such as value iteration and policy iteration
[20], is to compute optimal policies, namely, policies having maximal values (i.e., expected
return) in all their states. We use 𝑉𝑚𝑎𝑥 to denote the known upper bound of the return’s absolute
value, i.e., 𝑉𝑚𝑎𝑥 ≤

𝑅𝑚𝑎𝑥
1−𝛾

.

2.2. Monte Carlo Tree Search

MCTS [23, 3] is an online solver, namely, it computes the optimal policy only for the current
state of the agent, instead of computing it for all possible states as value iteration, policy iteration
and other offline solvers do. This feature of MCTS allows it to scale to large state spaces, which
are typical of real-world domains. Given the current state of the agent, MCTS first generates
a Monte Carlo tree rooted in the state to estimate in a sample-efficient way the Q-values for
that state. Then, it uses these estimates to select the best action. A certain number 𝑚 ∈ ℕ of
simulations is performed using, at each step, Upper Confidence Bound applied to Trees [24, 25]
(inside the tree) or a rollout policy (from a leaf to the end of the simulation) to select the action,
and the known transition model (or an equivalent simulator) to perform the step from one state
to the next. Simulations allow to update two node statistics, namely, the average discounted
return 𝑄(𝑠, 𝑎) obtained selecting action 𝑎 and the number of times 𝑁(𝑠, 𝑎) action 𝑎 was selected
from node (state) 𝑠. UCT extends UCB1 [24] to sequential decisions and allows to balance
exploration and exploitation in the simulation steps performed inside the tree, and to find the
optimal action as 𝑚 tends to infinity. Given the average return ̄𝑋𝑎,𝑇𝑎(𝑡) of each action 𝑎 ∈ 𝐴 of a
node, where 𝑇𝑎(𝑡) is the number of times action 𝑎 has been selected up to simulation 𝑡 from that
node, UCT selects the action with the best upper confidence bound. In other words, the index of

the action selected at the 𝑡-th visit of a node is 𝐼𝑡 = argmax𝑎∈1,…,|𝐴| ̄𝑋𝑎,𝑇𝑎(𝑡) + 2𝐶𝑝√
ln(𝑡−1)
𝑇𝑎(𝑡−1)

, with

appropriate constant 𝐶𝑝 > 0. When all 𝑚 simulations are performed the action 𝑎 with maximum
average return ̄𝑋𝑎,𝑇𝑎(𝑡) in the root is executed in the real environment.

2.3. Problem definition, goal and research questions

We assume the transition model (or equivalent simulator) used by MCTS (to perform the steps
of the Monte Carlo simulations) to be unknown. Our goal is to provide a method for learning
this transition model from data acquired from the environment as the agent acts. We want to
learn the model as quickly as possible and to use it efficiently to provide a high-performance
policy. Sample efficiency is key in this context. Consolidated planning methods are available to
solve the planning problem when the transition model is known but the model learning and

adaptation problem in sampling-based (i.e., scalable) planning methods, such as MCTS, is still
not completely explored. The research questions we want to answer are the following: Q1 -
“How efficient is, in terms of policy performance, to learn the transition model in the context of
MCTS compared to learning it in the context of Q-learning, as in Dyna-Q?”; Q2 - “How efficient
is, in terms of policy performance, to learn the policy by explicitly learning the transition model
and using it in the context of MCTS compared to learning directly the policy as in model-free
RL methods, e.g., Q-learning?”.

3. Method

We propose a method to learn the transition model inspired by that used in Dyna-Q. The
technique assumes both the state space and the action space to be discrete. The environment
dynamics can be deterministic or stochastic. The transition model, called 𝑀 in the following, is
tabular and it is implemented as a dictionary.

For each transition performed in the environment from a state 𝑠 ∈ 𝑆 to a state 𝑠′ ∈ 𝑆
applying an action 𝑎 ∈ 𝐴 we collect a triplet ⟨𝑠, 𝑎, 𝑠′⟩ (dictionary key) and update a related set of
information about the transition ⟨𝑐(𝑠, 𝑎, 𝑠′), 𝑝(𝑠, 𝑎, 𝑠′), 𝑑(𝑠′), 𝑟(𝑠, 𝑎, 𝑠′)⟩ (dictionary value), namely,
a count 𝑐(𝑠, 𝑎, 𝑠′) of the number of times the transition has been observed until the current step

(considering also previous episodes), the estimated probability 𝑝(𝑠, 𝑎, 𝑠′) = 𝑐(𝑠,𝑎,𝑠′)
∑𝑠″∈𝑆 𝑐(𝑠,𝑎,𝑠″)

to reach

state 𝑠′ performing action 𝑎 from state 𝑠 according to the current counts 𝑐(𝑠, 𝑎, ⋅), a boolean
𝑑(𝑠′) ∈ {0, 1} which is 1 if the transition ends the episode (i.e., 𝑠′ is a terminal state), 0 otherwise,
and the reward 𝑟(𝑠, 𝑎, 𝑠′) ∈ ℝ achieved performing the transition. For instance, if we perform in
the real environment a transition from state 𝑠 = 𝑠2 to state 𝑠′ = 𝑠5 by action 𝑎3, and if this is the
first time the transition was performed, than we set 𝑐(𝑠2, 𝑎3, 𝑠5) = 1. If applying action 𝑎3 from
state 𝑠2 we previously also reached state 𝑠0 two times, then we set 𝑝(𝑠2, 𝑎3, 𝑠5) = 1/3 (and update
𝑝(𝑠2, 𝑎3, 𝑠0) to 2/3). If 𝑠5 is not terminal, then we set 𝑑(𝑠5) = 0. Finally, if the reward achieved in
the transition from state 𝑠2 to state 𝑠5 by action 𝑎3 is -1, we set 𝑟(𝑠2, 𝑎3, 𝑠5) = −1. The model of
the environment is then updated by adding the key-value element ⟨𝑠2, 𝑎3, 𝑠5⟩ → ⟨1, 1/3, 0, −1⟩
since the transition from 𝑠2 to 𝑠5 with action 𝑎3 was performed for the first time.

The integration between theMCTS action-selection strategy and the proposed model-learning
strategy is formalized in Algorithm 1. At the beginning the model does not contain any
information hence 𝑀 is an empty dictionary (line 2 of Algorithm 1). For each episode the
algorithm initializes the state to 𝑠0 (line 4), then for each step of the episode it: i) performs
MCTS to select the action (line 6), ii) performs the selected action in the real environment
(line 7), iii) updates the model (lines 9-16) by adding a new key-value entry (lines 9-13) if the
transition has been observed for the first time, iv) updates the current state (line 17), v) starts a
new episode if the new state is terminal (lines 18-20).

Notice that the action selection function 𝑆𝐸𝐿𝐸𝐶𝑇_𝐴𝐶𝑇 𝐼𝑂𝑁_𝑀𝐶𝑇𝑆(𝑀𝑝𝑟𝑖𝑜𝑟, 𝑀, 𝑠) performs
MCTS using the current estimation of the transition model (i.e., model 𝑀) and also the prior
knowledge about the environment (model𝑀𝑝𝑟𝑖𝑜𝑟). 𝑀𝑝𝑟𝑖𝑜𝑟 is used to perform random but realistic
steps of simulations in states never observed before (for which no entry is present in 𝑀). For
instance, in a GridWorld environment 𝑀𝑝𝑟𝑖𝑜𝑟 says that if the agent is in a cell (i.e., state 𝑠) and
performs an action 𝑎 (e.g., move right), it can reach randomly one of the four neighbour cells

(i.e., 𝑠′), get a random reward (i.e., 𝑟) among those compatible with the transition, and randomly
reach/not reach a final state (i.e., 𝑑) compatibly with the transition and reward previously
selected. This prior knowledge is available in all domains and it does not provide any unfair
advantage to MCTS-TML since it only describes realistic transitions in the specific domain. In
the worst (i.e., less informative) case 𝑀𝑝𝑟𝑖𝑜𝑟 is completely random, namely, it allows transitions
to any possible next state, with completely random reward and random terminal states. 𝑀𝑝𝑟𝑖𝑜𝑟
is used only if no entry is available in 𝑀 for the current state 𝑠. When at least 𝑘1 entries are
available the model 𝑀 is used to perform simulation steps from that state.

Algorithm 1 MCTS-TML
Require: 𝐸𝑃: total number of episodes; 𝑆𝑇: maximum number of steps per episode; 𝑠0: initial

state; 𝑀𝑝𝑟𝑖𝑜𝑟: prior knowledge about the environment
1: // Model initialization
2: 𝑀 = ∅
3: for 𝑒𝑝 = 1,⋯ , 𝐸𝑃 do
4: 𝑠 = 𝑠0
5: for 𝑠𝑡 = 1, ⋯ , 𝑆𝑇 do
6: 𝑎 = 𝑆𝐸𝐿𝐸𝐶𝑇_𝐴𝐶𝑇 𝐼𝑂𝑁_𝑀𝐶𝑇𝑆(𝑀𝑝𝑟𝑖𝑜𝑟, 𝑀, 𝑠)
7: ⟨𝑠′, 𝑟 , 𝑑⟩ = 𝑃𝐸𝑅𝐹𝑂𝑅𝑀_𝐴𝐶𝑇 𝐼𝑂𝑁 (𝑠, 𝑎)
8: // Model update
9: if ⟨𝑠, 𝑎,𝑠′⟩ ∉ 𝑀 then

10: 𝑀(𝑠, 𝑎, 𝑠′).𝑐(𝑠, 𝑎, 𝑠′) = 0
11: 𝑀(𝑠, 𝑎, 𝑠′).𝑝(𝑠, 𝑎, 𝑠′) = 0
12: 𝑀(𝑠, 𝑎, 𝑠′).𝑑(𝑠, 𝑎, 𝑠′) = 𝑑
13: end if
14: 𝑀(𝑠, 𝑎, 𝑠′).𝑐(𝑠, 𝑎, 𝑠′) = 𝑀(𝑠, 𝑎, 𝑠′).𝑐(𝑠, 𝑎, 𝑠′) + 1
15: 𝑀(𝑠, 𝑎, 𝑠′).𝑝(𝑠, 𝑎, 𝑠′) = 𝑐(𝑠,𝑎,𝑠′)

∑𝑠″∈𝑆 𝑐(𝑠,𝑎,𝑠″)
16: 𝑀(𝑠, 𝑎, 𝑠′).𝑟(𝑠, 𝑎, 𝑠′) = 𝑟
17: 𝑠 = 𝑠′
18: if d=1 then
19: Break
20: end if
21: end for
22: end for

4. Empirical evaluation

The performance of the proposed approach is here evaluated and compared with that of state-
of-the-art methodologies.

1In this work we use 𝑘 = 1 but future work will be dedicated to develop methods that best tune this parameter since
this parameter is important for guaranteeing model precision (see Section 5).

4.1. Baseline algorithms

We compare our MCTS-TML with three other algorithms:

• MCTS_ORACLE [3]: it is the standard MCTS algorithm using the true transition model.
This algorithm is used only as an oracle to estimate the best performance reachable using
an exact model;

• Dyna-Q [21]: it is a model-based tabular RL algorithm from which we took inspiration
to implement the model learning strategy. Basically, Dyna-Q and MCTS-TML use the
same tabular representation of the transition model and they update it in the same way
as new observations are collected. Therefore, the only difference between Dyna-Q and
MCTS-TML is the way in which the two algorithms use the learned transition model
to update the policy. MCTS-TML uses this model to performs Monte Carlo simulations
(according to the UCT action selection strategy) and estimates the Q-values of all actions
in the current state according to the MCTS strategy. Dyna-Q uses the model to generate
single virtual steps from several observed states and updates the Q-values of all considered
state-action pairs according to the Q-learning (i.e., temporal difference) strategy.

• Q-learning [20]: is a model-free tabular RL algorithm that corresponds to Dyna-Q with
no planning steps. Namely, it updates the Q-values of only the state-action pairs that the
agent actually visits using the Q-learning (i.e., temporal difference) strategy. We use this
algorithm to analyze the performance of an approach that does not explicitly learn the
transition model.

4.2. Domain

The domain used in our tests is the Gymnasium implementation of Frozen Lake2. We selected
this domain because it has discrete state and action spaces, hence its model can be represented
by a table. This is a requirement to use MCTS-TML. Furthermore, the domain has a deterministic
and a stochastic version. Both versions can be solved by MCTS-TML. An agent moves in a 4x4
grid starting from the top-left corner and aiming to reach the goal in the bottom-right corner.
Four holes in the grid must be avoided by the agent since they end the episode (without reaching
the goal). The states are the 16 possible positions of the agent in the grid. Terminal states are
those in which the agent reaches a hole or the goal. The actions are the four movements (left,
down, right, up) the agent can do. The transition model can be set as deterministic (each action
always moves the agent in the selected direction) or stochastic (each action moves the agent in
the selected direction with probability 0.9 and in directions perpendicular to the chosen one
with probability 0.05 for each perpendicular direction). If the agent tries to move out of the
board it stays in the cell where it is. The reward function returns +1 when the agent reaches
the goal state, 0 when the agent reaches any other cell (standard or hole).

4.3. Experimental setting

We first perform our tests on the deterministic environment, in which the transition model is
simpler to learn because each transition must be observed only once to learn its probability.

2https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Then, we switch to the stochastic environment, in which transition probabilities require several
observations to be estimated precisely. We run each algorithm 50 times. Each time it performs
200 episodes and in each episode it performs at most 100 steps (less steps are performed if the
agent reaches the goal or a hole in advance). MCTS-TML and MCTS-ORACLE perform at each
step 𝑚 = 1000 simulations starting from the current state to evaluate the action Q-values. This
parameter has been tuned in advance on MCTS-ORACLE to be sure the number of simulations
are enough to reach almost optimal performance in the Frozen Lake environment. Constant 𝐶𝑝
in MCTS (see UCT algorithm) is set to 11. In Dyna-Q we used 𝛼 = 0.7, 𝜖 = 1, 𝜖-decay-rate= 0.7
and 25 planning steps (see [20] page 164 for details). All parameters were tuned manually to
get the best performance. The discount factor is 𝛾 = 1 in all tests. Experiments are performed
with a laptop with processor Intel Core i7 - 6500 CPU 2.50 GHz x 4, RAM 16 GB and operating
system Ubuntu 20.04.5 LTS. The code is implemented in Python.

4.4. Performance measures

Performance is computed by averaging at each episode the return of the episode across the
50 repeats. For instance, at the end of episode 1 we compute the average return across the 50
repeats of that episode. After episode 2 the model is improved because it contains observations
of both episode 1 and 2, hence we expect the average return after episode 2 is higher than that
after episode 1, and so on until episode 200. We call this measure return per episode.

To deepen our analysis we also investigate the reason why the performance of an algorithm
are higher than that of another algorithm. To this end we compute the distance of the estimated
model from the true model (which is known in our synthetic domain). This distance is computed
as the sum of the absolute values of the differences between the transition probabilities of the
true model and those of the estimated model. In other words, the probability of each transition
of the real model is subtracted to the probability of the same transition in the estimated model.
We compute the absolute values of all these differences and we sum up all these absolute values.
In this way, if the estimated model is equal to the real model the distance is zero and we expect
that the distance decrease as the episodes go on, since the model should become more precise.

4.5. Results

The results of our experiments on the deterministic environment are reported in Figures 1.a and
1.b. In Figure 1.a MCTS-TML (blue line) reaches the performance of MCTS-ORACLE3 in about

3The performance of MCTS-TML is slightly higher than that of MCTS-ORACLE because of the (small) number of
simulations used in our experiments. With this number of simulations MCTS-ORACLE cannot completely converge
to the optimal policy, hence it happens that it selects suboptimal actions by (wrongly) estimating their Q-values.
On the other hand, MCTS-TML with partial models (i.e., considering only some transitions, because others still
have to be learned) can be more simulation-efficient by focusing on fewer actions while computing Q-values. In
particular, this happens when in MCTS-TML the transition associated to the best action has been learned but
several transitions associated to suboptimal actions are still unknown. In these cases, the Q-value of the optimal
action, computed by MCTS, tends to be higher than that of other actions related to unknown transitions (because
of the lack of knowledge about those actions). This reduces the error-rate made by MCTS-TML while selecting the
optimal action. In the deterministic Frozen Lake environment this situation occurs quite often, bringing MCTS-TML
to show slightly better performance than MCTS-ORACLE with small number of simulations, however it is not a
general property.

15 episodes, while the performance of Dyna-Q (orange line) grow more slowly and after 200
episodes it still has sub-optimal performance. Q-learning (green line) which does not learn
any model has a still slower increase of performance but after episode 140 it surpasses Dyna-Q.
The difference in performance between MCTS-TML and Dyna-Q can be explained by the chart
in Figure 1.b. It shows that the distance between the model estimated by MCTS-TML and the
true model (blue line) decreases much faster than the distance between the model estimated by
Dyna-Q and the true model (orange line). Furthermore, the model estimated by Dyna-Q after
about 125 episodes tends to stabilize to a value close to 0.15. This means that Dyna-Q almost
stops to learn after episode 125 and this is the reason why also the performance of Dyna-Q
tends to stabilize at a sub-optimal value.

Figure 1: Experimental results. a. Evolution of the performance of the four algorithms during episodes
in the deterministic environment. b. Evolution of the distance between true and estimated transition
model of MCTS-TML and Dyna-Q during episodes in the deterministic environment. c. As a but in the
stochastic environment. d. As b but in the stochastic environment.

The results for the stochastic environment are reported in Figures 1.c (algorithm performance)
and 1.d (distance from the true model). In this case the performance variability increases because
the learning strategy needs several observations to precisely estimate transition probabilities.
The performance improvement also of MCTS-TML is a bit slower than that of the deterministic

case but we mainly observe that it tends to stabilize to a value which is lower than the optimal
one reached by MCTS-ORACLE. Interestingly, Dyna-Q performance increase even more slowly
and they stabilize to a much lower value than that of MCTS-TML. Q-learning has an even slower
increase of performance but its performance surpasses that of Dyna-Q at epoch 75 and it almost
reaches that of MCTS-TML at epoch 200. The reason why performance of MCTS-TML and
Dyna-Q stabilize at a sub-optimal value seem to depend on the fact that both of them tend to
reduce their distance to the true model slowly from a certain episode. However, the distance of
the model learned by MCTS-TML is much lower than that achieved by Dyna-Q.

The reason of these differences could be found in different factors. One is that MCTS-TML
performs long simulations to estimate the Q-values, and in this simulations it uses information
from the estimated model 𝑀 where it is available and information from the model containing
prior knowledge 𝑀𝑝𝑟𝑖𝑜𝑟 in transitions that have never been seen before. To investigate this
possibility we tried to modify Dyna-Q [26] allowing it to perform several steps (instead of a
single one) starting from an already observed transition and continuing in known or unknown
transitions, also using model 𝑀 in the first case and model 𝑀𝑝𝑟𝑖𝑜𝑟 in the second, but also in
that case MCTS-TML outperforms Dyna-Q. We are still investigating the theoretical reason
why MCTS-TML outperforms Dyna-Q, but our most accredited hypothesis is that this reason is
related to the use of UCT made by MCTS-TML which is more efficient in estimating Q-values
than the strategy used by Dyna-Q.

5. Conclusions and future work

We presented MCTS-TML, a model-based RL algorithm based on MCTS. The algorithm learns
the model of the environment used to performMonte Carlo simulations from data acquired while
interacting with the environment. The first results achieved by MCTS-TML in the FrozenLake
domain are encouraging since it shows better performance and mainly higher sample efficiency
than Dyna-Q and Q-learning. Our future work will focus on evaluating the algorithm on
other domains and comparing its performance with other model-based and model-free RL
algorithms, such as Bayesian Adaptive Monte Carlo Planning (BAMCP) [18], Model Based
Policy Optimization (MBPO) [27] and PPO [28]. Moreover, we want to better understand the
theoretical reason behind the better performance achieved by MCTS-TML compared to Dyna-Q,
and the reason why the distance between the model estimated byMCTS-TML and the true model
tends to stabilize to a value different to zero in cases of stochastic environments. Furthermore,
we want to implement strategies based on the confidence interval of the transition probabilities
to guarantee the safety of the transitions in the simulation process (since imprecise transition
probabilities estimated using only few observations can bias the policy towards suboptimal
behaviours). Finally, we would like to consider non-tabular representations of the model to
allow for greater scaling capabilities.

References

[1] R. De Benedictis, M. Castiglioni, D. Ferraioli, V. Malvone, M. Maratea, E. Scala, L. Serafini,
I. Serina, E. Tosello, A. Umbrico, M. Vallati, Preface to the Italian Workshop on Planning
and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving
problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction,
Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023), in: Proceedings of the Italian
Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation
of algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop
on Strategies, Prediction, Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023)
co-located with 22th International Conference of the Italian Association for Artificial
Intelligence (AI* IA 2023), 2023.

[2] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo Tree Search, in:
Computers and Games, Springer Berlin Heidelberg, 2007, pp. 72–83.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo Tree Search
methods, IEEE Transactions on Computational Intelligence and AI in Games 4 (2012) 1–43.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis,
Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016)
484–489.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play, Science 362 (2018)
1140–1144.

[6] A. Couetoux, Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision
Making Problems, Theses, Université Paris Sud - Paris XI, 2013.

[7] Z. N. Sunberg, M. J. Kochenderfer, Online algorithms for pomdps with continuous state,
action, and observation spaces, in: Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 2018, pp. 1–13.

[8] M. H. Lim, C. J. Tomlin, Z. N. Sunberg, Voronoi progressive widening: Efficient on-
line solvers for continuous state, action, and observation POMDPs, in: 2021 60th IEEE
Conference on Decision and Control (CDC), IEEE Press, 2021, p. 4493–4500.

[9] F. Bianchi, L. Bonanni, A. Castellini, A. Farinelli, Monte Carlo Tree Search planning
for continuous action and state spaces, in: Proceedings of the 9th Italian Workshop on
Artificial Intelligence and Robotics (AIRO 2023), AI*IA 2022, Udine, Italy, November 30,
2022, volume 3417 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 38–47.

[10] G. Mazzi, A. Castellini, A. Farinelli, Risk-aware shielding of Partially Observable Monte
Carlo Planning policies, Artificial Intelligence 324 (2023) 103987.

[11] G. Mazzi, D. Meli, A. Castellini, A. Farinelli, Learning logic specifications for soft policy
guidance in POMCP, in: Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’23, IFAAMAS, 2023, p. 373–381.

[12] A. Castellini, F. Bianchi, E. Zorzi, T. D. Simão, A. Farinelli, M. T. J. Spaan, Scalable safe

policy improvement via Monte Carlo tree search, in: Proceedings of the 40th International
Conference on Machine Learning (ICML 2023), PMLR, 2023, pp. 3732–3756.

[13] M. Zuccotto, M. Piccinelli, A. Castellini, E. Marchesini, A. Farinelli, Learning state-variable
relationships in POMCP: A framework for mobile robots, Frontiers in Robotics and AI 9
(2022).

[14] A. Castellini, E. Marchesini, A. Farinelli, Partially Observable Monte Carlo Planning
with state variable constraints for mobile robot navigation, Engineering Applications of
Artificial Intelligence 104 (2021) 104382.

[15] Y. Wang, F. Giuliari, R. Berra, A. Castellini, A. D. Bue, A. Farinelli, M. Cristani, F. Setti,
POMP: pomcp-based online motion planning for active visual search in indoor environ-
ments, in: 31st British Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK,
September 7-10, 2020, BMVA Press, 2020.

[16] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of state-variable constraints on
partially observable monte carlo planning, in: Proc. 28th International Joint Conference
on Artificial Intelligence, IJCAI-19, ijcai.org, 2019, pp. 5540–5546.

[17] M. Zuccotto, A. Castellini, A. Farinelli, Learning state-variable relationships for improving
POMCP performance, in: Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, SAC ’22, Association for Computing Machinery, 2022, p. 739–747.

[18] A. Guez, D. Silver, P. Dayan, Scalable and efficient bayes-adaptive reinforcement learning
based on Monte-Carlo Tree Search, Journal of Artificial Intelligence Research 48 (2013)
841–883.

[19] S. Katt, F. A. Oliehoek, C. Amato, Learning in POMDPs with Monte Carlo tree search, in:
Proceedings of the 34th International Conference on Machine Learning, PMLR, 2017, pp.
1819–1827.

[20] R. Sutton, A. Barto, Reinforcement Learning, An Introduction, 2nd ed., MIT Press, 2018.
[21] R. S. Sutton, Dyna, an integrated architecture for learning, planning, and reacting, SIGART

Bull. 2 (1991) 160–163.
[22] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming,

John Wiley & Sons, 2014.
[23] G. Chaslot, S. Bakkes, I. Szita, P. Spronck, Monte-Carlo Tree Search: A new framework for

game AI, in: Proceedings of the Fourth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’08, AAAI Press, 2008, p. 216–217.

[24] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem,
Machine Learning 47 (2002) 235–256.

[25] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in: Machine Learning:
ECML 2006. 17th European Conference on Machine Learning, volume 4212 of LNCS,
Springer-Verlag, 2006, pp. 282–293.

[26] G. Z. Holland, E. Talvitie, M. H. Bowling, The effect of planning shape on dyna-style
planning in high-dimensional state spaces, ArXiv abs/1806.01825 (2018).

[27] M. Janner, J. Fu, M. Zhang, S. Levine, When to trust your model: Model-based policy
optimization, in: Advances in Neural Information Processing Systems, volume 32, Curran
Associates, Inc., 2019, p. 12519–12530.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization
algorithms., CoRR abs/1707.06347 (2017).

	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Monte Carlo Tree Search
	2.3 Problem definition, goal and research questions

	3 Method
	4 Empirical evaluation
	4.1 Baseline algorithms
	4.2 Domain
	4.3 Experimental setting
	4.4 Performance measures
	4.5 Results

	5 Conclusions and future work

