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Abstract
The identification of the goal that an agent is going to achieve is an important task with several applica-

tions in robotics and security. Despite several approaches on Goal Recognition (GR) relied on automated

planning techniques, recently this task has been addressed by GRNet, which exploits deep learning

techniques and has reached a new state-of-the-art that solves GR instances more accurately and more

quickly. The information required by GRNet is a trace of actions, indicating the names of the observed

actions. However, we intend to study this approach in the case of having as input a state trace instead

of an action trace. In this situation, two problems arise immediately: how to encode a state in a form

that can be processed by a neural network? Is it possible to analyse a sequence of states with the same

techniques used for the actions? In this work, we propose a modification of GRNet in order to make

it effective also for observations made by traces of states. In particular, we add an autoencoder which

has the capability of deriving a numerical representation of a state. We then perform an experimental

analysis over two well known benchmark domains.

1. Introduction

Goal Recognition is defined as the task of recognising the goal that an agent is trying to achieve

from observations about the agent’s behaviour in the environment [2, 3]. Such observations

are usually made by a trace of actions executed by the agent for achieving its goal, or a trace

of world states progressively generated by the agent’s actions. Goal recognition has been

studied in AI for many years, and it is an important research field with many applications

including human-computer interactions [4], computer games [5], network security [6], financial

applications [7], and others.

In the literature, several systems to solve goal recognition problems have been proposed

[8]. While most of these approaches are based on classical planning algorithms [9, 10, 11],

more recently an entirely different line of work has been introduced. In fact, in more recent

studies [7, 12] this problem has been tackled with deep learning algorithms into which a neural

network is trained (using a dataset made by observations of the agent and their relative goal)

to solve goal recognition problems structured as a classification task. In particular, the deep
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learning architecture GRNet [13] has reached a new state-of-the-art on goal recognition in

several planning benchmarks, improving both accuracy and runtime. Given a planning domain

specified by a set of propositions and a set of actions names, each one denoting an agent’s action

whose execution can be observed, GRNet is a model based on Recurrent Neural Networks which

processes traces of observed actions to compute how likely it is that each domain proposition

is part of the agent’s goal. A fundamental aspect of GRNet is that it is trained only once for a

given domain, i.e., the same trained network can be used to solve a large set of goal recognition

instances in the domain. Moreover, even better results are achieved combining GRNet with

LGR [14], which is based on reasoning.

In this work, we extend GRNet allowing it to process also traces of observed states. In order

to do that, we introduce a completely new autoencoder for computing a vectorial representation

of states. The autoencoder is a feed-forward neural network which is trained to “copy” the

input (i.e. a state) to the output. In particular, we exploit an undercomplete autoencoder, into

which the hidden layers are smaller than the input. With this kind of architecture, the neural

network has the goal to compress the information contained in the input in a smaller, meaningful

vector that it is used to reconstruct the output [15]. In our context, these vectors are used for

representing states. Therefore, a trace of observed states can be seen as a sequence of vectors

that can be processed by a Recurrent Neural Network such as the one used by GRNet.

We perform an experimental analysis on two well known benchmark domains, depots and

zenotravel, which confirms the effectiveness of our approach and the applicability or deep

learning techniques for goal recognition also with traces of states.

2. Preliminaries and Related Work

Goal recognition (GR) can be defined as the task of identifying the intention (goal) of an agent

from observations about the agent’s behaviour in an environment. These observations can be

represented as an ordered sequence of actions or states generated by those actions. The agent’s

goal can be expressed either as a set of propositions or a probability distribution over alternative

sets of propositions (each even forming a distinct candidate goal).

In the “goal recognition over a domain theory” approach [2, 16], an underlying model

of the behavior of the agent and of the environment is available. This model represents the

agent/environment states, called 𝑆, and the set of actions 𝐴 that the agent can take; typically this

is specified by a planning language such as pddl [17]. Given the set of all possible propositions

𝐹 , also called fluents or facts, each possible state of the agent and of the environment 𝑆𝑖 ∈ 𝑆
is formalised as subsets of 𝐹 (i.e. 𝑆𝑖 ⊆ 𝐹 ). Each domain action in 𝐴 is modelled by a set of

preconditions and a set of effects, both over 𝐹 .

An instance of a GR problem 𝑇 = ⟨Π, 𝐼, 𝑂,𝒢⟩ is specified by:

1. a given domain Π = ⟨𝐹,𝐴⟩, which specifies the set 𝐹 of possible fluents and the set of

available actions 𝐴;

2. an initial state of the agent and the environment 𝐼 ∈ 𝑆

3. a sequence of observations 𝑂 = ⟨obs1, .., obs𝑛⟩, with 𝑛 ≥ 1. In this work, each 𝑜𝑏𝑠𝑖 ∈ 𝑆
is an state reached by the agent;

4. a set of possible goals 𝒢 = {𝐺1, .., 𝐺𝑚}, with 𝑚 ≥ 1, where each 𝐺𝑖 ⊆ 𝐹 .



We define the full sequence of actions 𝑎𝑖 ∈ 𝐴 performed by the agent to achieve the goal

as 𝜋. The observation trace 𝜎 is a subsequence of states generated by the actions in 𝜋. These

states might be non-consecutive but they have the same order as in 𝜎. Solving a GR instance

consists in identifying 𝐺* ∈ 𝒢 that corresponds to the (unknown) goal of the agent.

There are two typical approaches for GR: the model-based goal recognition (MBGR), in which

GR is defined as a reasoning task addressable by automated planning techniques [8, 18], and

model-free goal recognition (MFGR) [3, 7, 13], in which GR is formulated as a classification task

addressed through machine learning. MFGR requires minimal information about the domain

actions and states (each observation is specified by just a label) and it can operate without the

specification of an initial state, which can be completely unknown. Moreover, since running

a learned classification model is usually fast, an MFGR system is expected to run much faster

than an MBGR system based on planning algorithms. On the other hand, MFGR needs a data

set of solved GR instances from which to learn a classification model for the new GR instances

of the domain.

Concerning GR systems using neural networks, some works use them for specific applications,

such as game playing [5]. As for goal recognition from traces of states, Amado et al. [19] used a

pre-trained encoder and a LSTM network for representing and analysing a sequence of observed

images representing states. In our approach, our states are instead encoded in pddl. Amado

et al. [20] trained a LSTM-based system to identify missing observations about states in order

to derive a more complete sequence of states by which a MBGR system can obtain better

performance. Instead, our approach solves directly the goal recognition without any planners

involved.

Although the approaches in [7, 12] use similar techniques, with Recurrent Neural Networks

trained for goal recognition, one major difference between our work and theirs is that they train

a specific machine learning model for each goal recognition instance. Instead, in our approach,

we train a general-purpose neural network that can be used to solve a large number of different

goal recognition instances, without the need of designing or training a new model. Moreover,

these approaches work only with traces of actions while we focus on states.

3. Processing State Traces for Goal Recognition

Our approach to goal recognition is depicted in Figure 1. It consists of three main components:

the Embedding Component, the Sequential Component and the Instance Component.

The main idea of the first component is to calculate a meaningful representation of a state

expressed in pddl. This component, called Embedding Component is shown on the left of

Figure 1 and it is made by an undercomplete autoencoder [15] which has to build a shorter

representation of each state trying to capture the information necessary to copy its input in the

output. Thanks to this component, we can represent a trace of observed states as a sequence

of vectors. The analysis of this sequence is made by the Sequential Component (middle part

of Figure 1), which produces as output a score (between 0 and 1) for each proposition in the

domain proposition set 𝐹 . The third component, called Instance Component, can be seen on

the right of Figure 1 and it takes as input the proposition ranks generated by the environment

component for a GR instance, and uses them to select a goal from the candidate goal set 𝒢.



Figure 1: Neural network architecture for performing goal recognition from observed state traces. On

the left, the Embedding Component calculates a vectorial representation of each state in the trace

through an undercomplete autoencoder. In the middle, the Sequential Component (made by a LSTM

layer and an Attention Mechanism) analyse the trace. On the right the Instance Component processes

the results of the Sequential Component for selecting the most probable goal among a set of hypotheses.

Please note that the first two components are trained only once for each domain, therefore they

can be used for every GR instance over 𝐹 . The third component does not require any sort of

training.

3.1. Embedding Component

The input of the Embedding Component is a sequence of states. Initially, each state 𝑠 is

represented as a binary vector 𝑜𝑠 with length |𝐹 |, into which each component represents a

different proposition 𝑓 ∈ 𝐹 , where 𝐹 is lexically ordered. This vector is built as follows:

𝑜𝑠 =

{︃
0 𝑓 /∈ 𝑠

1 𝑓 ∈ 𝑠
(1)

i.e. the vector assumes value 1 in the positions related to a proposition belonging to 𝑠, 0
otherwise.

Each state in the observed trace is then passed to the undercomplete autoencoder, as we show

on the left of Figure 1. The autoencoder is composed of two main parts: the Encoder, which

reduces the binary vector into a smaller representation (the Embedded representation) made

by real numbers, and the Decoder, which processes the embedded representation in order to

provide in output a copy of the input.



Given that the Decoder has to reconstruct the binary vector provided as input starting

from the Embedded Representation, the main idea behind this architecture is that the Encoder

should capture the most important aspects of the inputs and compress them into the Embedded

Representation. Therefore, if the Decoder has very good results in the task of reproducing the

input, we can assume that the Embedded Representation contains some meaningful information

about the state and therefore the representation can be used for goal recognition.

Both the Encoder and the Decoder are made by two feed-forward neural network layers

with ReLu activation function. The autoencoder is trained using binary cross-entropy as loss

function.

3.2. Sequential Component

The Sequential Component is depicted in the middle of Figure 1. After representing each state as

an informative vector of real numbers through the embedding component, the overall observed

trace can be seen as a sequence of vectors and it can be processed through a Long Short-Term

Memory network (LSTM), which is a kind of neural network specifically designed for processing

sequential data like digital signals or free text [21]. In our case, the dataset is made by sequences

of observed states.

A LSTM layer is composed of cells, which process each element of the input sequence (each

observed state) considering also the previous inputs (states in the sequence). As in GRNet [13],

the output of each cell is processed by an Attention Mechanism [22]; in particular, we implement

the variant proposed by [23], which computes the weights representing the contribution of

each element of the sequence, and generates a unique representation (also called the context
vector) of the entire plan trace. The context vector is then passed to a feed-forward layer, which

has 𝑁 output neurons with sigmoid activation function. 𝑁 is the number of the domain fluents

(propositions) that can appear in any goal of 𝒢 for any GR instance in the domain; for our

experiments 𝑁 was set to the size of the domain fluent set 𝐹 , i.e., 𝑁 = |𝐹 |. The neurons should

have value 1 if its corresponding fact is part of the agent’s goal. In other words, we have trained

our neural network to perform a multi-label classification task, into which each domain fluent

can be considered as a different binary class. As loss function, we used binary cross-entropy.

3.3. Instance Component

After the training and optimisation phases of the previous two components, the resulting model

can be used for solving many different goal recognition instances.

This is done by the Instance Component (right part of Figure 1), which simply performs an

evaluation of the candidate goals in 𝒢 of the GR instance, using the output of the environment

component fed by the observations of the GR instance. As in the original GRNet, to choose the

most probable goal in 𝒢 (solving the multi-class classification task corresponding to the GR

instance), we use a simple score function that indicates how likely it is that 𝐺 is the correct

goal, according to the output provided by the neural network. This score is defined as:

𝑆𝑐𝑜𝑟𝑒(𝐺) =
∑︁
𝑓∈𝐺

𝑜𝑓



where 𝑜𝑓 is the network output for fact 𝑓 of the current GR instance. For each candidate goal

𝐺 ∈ 𝒢, we consider only the output neurons that have associated facts in 𝐺. By summing only

these predicted values, we derive an overall score for 𝐺 being the correct goal. The element

with the highest score is the most probable goal in 𝒢.

3.4. Training and Configurations

In order to provide a meaningful representation and to solve goal recognition instances, the

Embedding and the Sequential components have to be trained and optimised.

A core part of the optimisation procedure is the hyperparameter tuning. In our work, the

number and the dimensions of the feed-forward layers in the Embedding Component, the

dimension of the LSTM layer and all the other hyperaparameters of the network were selected

using the Bayesian-optimisation approach provided by the Optuna framework [24].

However, considering both the Embedding and the Sequential components of our architecture,

we have designed two different training and optimisation configurations:

• The Independent Training configuration (IT), into which the Embedding Component

is trained separately from the Sequential Component. The main idea behind this con-

figuration is that the autoencoder should obtain a meaningful representation of the

states by itself and this representation could be exploited in several different applications

(such as goal recognition, in our case) without the need to change it. Therefore, in this

case the Sequential Component is trained after and independently from the Embedding

Component.

• The Combined Training configuration (CT), into which after a preliminary training

of the Embedding Component (in the same way we described for IT), the training of

the Sequential Component has an impact on the Embedding Component too. More in

detail, the weights of the latter are specifically fine-tuned for goal recognition. Therefore,

the embedded representation produced by the autoencoder becomes more application-

oriented and less general.

All the implementation details regarding these configurations are reported in Section 4.1.

4. Experimental Analysis

4.1. Benchmark Suite and Data Sets

We consider two well-known benchmark domains: depots and zenotravel [25, 26]. Of course

GRNet can be trained and tested also using other domains.

Training sets In order to create the (solved) GR instances for the training and test sets in

the considered domains, we used automated planning techniques. Concerning the training

set, for each domain, we randomly generated a large collection of (solvable) plan generation

problems of different size. We considered the same ranges of the numbers of involved objects

as in the experiments of Pereira et al. [10]. For each of these problems, we computed up to four



Domain |𝑆| |𝐹 | |𝑆𝑖| |𝐺𝑖| |𝒢|

depots 1384373 150 340 [2,8] [7,10]

zenotravel 5632466 66 111 [5,9] [6,11]

Table 1
Number of considered states (𝑆) and facts (𝐹 ), length of the states (𝑆𝑖 ∈ 𝑆), size of the goals (𝐺𝑖 ∈ 𝒢)

and length of the goalsets (𝒢) in the considered GR instances for each considered domain. Interval

[𝑥, 𝑦] indicates a range of integer values from 𝑥 to 𝑦.

(sub-optimal) plans solving them. As planner we used lpg [27, 28, 29], which allows to specify

the number of requested different solutions for the planning problem it solves.

To generate the training set for the Embedding Component, we collected all the different

states from the generated plans. This trainset consists of tuples ⟨𝑆𝑖, 𝑆𝑖⟩. Please note that, as a

common practice in all autoencoders, in this dataset the input state is the same as the output

state in order for the network to first be able to create a hidden representation and then to

reconstruct the input. The number of states used to build this dataset is reported in Table 1

(column |𝑆|).
To generate the training set for the Sequential Component, we derived the observation

sequences from the generated plans by randomly selecting states (preserving their relative

order). The selected states are between 30% and 70% of the plan states. The generated training

set consists of pairs (𝑂,𝐺*) where 𝑂 is a sequence of observed states obtained by sampling a

state sequence 𝜎, and 𝐺*
is the hidden goal corresponding to the goal of the planning problem

reached by 𝜎. For each considered domain, we created a training set with 55000.

For all the experiments, we used 80% of each dataset as actual training set, 10% as validation

set and the last 10% as test set.

Test set For evaluating the architecture, we generated a test sets formed by GR instances

not seen at training time. Such test instances were generated as for the train instances, except

that the observation sequences were derived from plans computed by lama [30], while for the

training instances we used plans computed by lpg; this change is to make the testing more

robust. This test set is a generalisation and extension of the test set used in [10] for the same

domains that we consider. In particular, for depots and zenotravel, the test set contains 7000
instances.

For each plan generated for being sampled, we removed the last five states as we considered

them too informative and we randomly derived three different state traces formed by 30%, 50%

and 70% of the plan states, respectively. This gives three groups of test instances, for each

considered domain, allowing to evaluate the performance of the presented architectures also in

terms of different amounts of available observations.

Table 1 gives information about the size of the GR instances in our test and training sets for

each domain, in terms of number of considered states (|𝑆|), facts (|𝐹 |), the maximum number

of facts for a given state (|𝑆𝑖|), min/max size of a goal (|𝐺𝑖|) in a goal set 𝒢, and min/max size of

a goal set (|𝒢|).



model
depots zenotravel

30% 50% 70% 30% 50% 70%

GRNet 60.9 75.8 86.3 77.0 89.7 96.0

IT 86.8 93.6 96.2 85.4 89.4 91.5

CT 90.3 95.0 97.7 95.2 97.7 98.7

Table 2
Goal recognition accuracy (% of GR instances correctly predicted) by GRNet, and by our architecture

in IT and CT configurations on our test set.

Evaluation measures We use the GR accuracy for a set of test instances as the main evalua-

tion criteria, which is defined as the percentage of instances whose goals are correctly identified

(predicted) over the total number of instances in the test set. If for an instance the evaluated

system provides 𝑘 different goals with the same highest score, then, in the overall count of the

solved instances, this instance has value 1/𝑘 if the true goal is one of these 𝑘 goals, 0 otherwise.

4.2. Experimental Results

We experimentally evaluate IT and CT configurations, and we use the state-of-the-art system

GRNet as a benchmark. In order to have a fair comparison with GRNet, which takes as input

actions instead of states, we provided the actions that generate the states used to evaluate our

model. For the Embedding Component of both IT and CT, we set the embedded representation

dimension to 70.

Table 2 summarizes the performance results for GRNet, IT and CT in terms of accuracy on

the test set. As we can see all the tested models perform generally well and they improve their

performances with the increase of the percentage of the observed states. In particular, we can

see that CT is the model with the highest performance, achieving more than 90 of accuracy in

all test configurations. The fact that it performs better than the IT configuration proves that the

embedded representation obtained from the autoencoder is not optimal for obtaining the best

performance in goal recognition tasks. On the other hand, the good performance of IT proves

that the representation provided by the autoencoder of the state is still quite informative.

We can notice that, with 30% of the states, both IT and CT perform significantly better than

GRNet; in our opinion this is due to the higher information content of a state with respect to an

action which makes goal recognition with few observation easier. In fact we can see that while

in zenotravel with 30% of the states IT reaches 85.4 of accuracy against the 77.0 of GRNet,
with 70% of the states GRNet outperforms IT obtaining 96.0 of accuracy against 91.5 of the

latter.

5. Conclusions

We have proposed an extension of GRNet [13], the state-of-the-art technique for goal recognition,

for dealing with traces made by observed states. Our systems, through the autoencoder which



composes the Embedding Component, learns a meaningful vectorial representation of a state

expressed in pddl, which is later exploited by the Sequential Component. This part of the

architecture is made by a LSTM layer and an Attention Mechanism and it analyses the sequence

of states for predicting the goal of the agent. As in GRNet, the learning process is done once

for each considered domain, allowing to solve (through the Instance Component) many GR

instances.

An experimental analysis shows that our model performs generally well, for the zenotravel

and depots benchmark domains, in terms of accuracy. In fact, our model obtains a higher

accuracy with respect to the original version of GRNet, which works with traces made by

observed actions.

As future work, we intend to investigate the use of other deep learning architectures such as

Transformer-based models [31]. Moreover, we aim to study different applications of autoen-

coders and neural networks in the planning context, such as predicting trajectory constraints

[32] or the overall cost of solving a planning problem [33].
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