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Abstract
Automated planning involves devising a sequence of actions or decisions to attain specific goals within
defined constraints. Within the realm of automated planning, optimization techniques are employed to
enhance plan quality. These techniques target the minimization or maximization of various parameters,
such as time, cost, resource utilization, and other relevant criteria, all while ensuring plan feasibility and
adherence to problem constraints.

Timeline-based planning has emerged as an effective alternative to classical planning, offering robust
mechanisms for constraint handling and facilitating adaptive plan adjustments during execution. Despite
its growing adoption, especially due to the complexity of reasoning caused by highly expressive languages,
the exploration of optimization within the context of timeline-based planning remains underrepresented
in the scientific community.

This paper delves into the uncharted territory of leveraging optimization techniques within timeline-
based planning. Importantly, this investigation is conducted slightly modifying the planner itself; instead,
it mostly involves the introduction of suitable operators into the planning problem domains. Through
this investigation, we aim to shed light on the potential of optimizing timeline-based planning processes
for enhanced plan efficiency and effectiveness.
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1. Introduction

Preference-based planning is a branch of automated planning and scheduling that emphasizes
the generation of plans while considering and attempting to fulfill a maximum number of
user-specified preferences. In numerous problem domains, achieving a task can involve multiple
sequences of actions, which are commonly referred to as plans. The quality of these plans can
vary significantly, with some being more desirable due to factors such as cost-effectiveness,
speed, and safety. When generating a plan for a particular problem, preference-based planners
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take these user-defined preferences into consideration. Examples of software for preference-
based planning include PPLAN [2] and HTNPlan-P [3], which specialize in preference-based
hierarchical task network (HTN) planning. The Planning Domain Definition Language (PDDL)
introduces preferences and plan quality metrics in its third version [4] and, since then, different
approaches have emerged for their management in classical planning [5, 6].
In this context, timeline-based planning [7] has emerged as a promising departure from

conventional planning paradigms. By embracing the principles of partial-order planning [8],
timeline-based planning yields plans that exhibit heightened adaptability during execution, in
stark contrast to the rigidly ordered plans generated by solvers employing the aforementioned
heuristics. While offering distinct advantages, timeline-based planners grapple with chal-
lenges attributed to the rich expressiveness of their formalisms, often resulting in performance
bottlenecks.
This paper embarks on an exploration of a relatively uncharted territory: the realm of opti-

mization within the domain of timeline-based planning. The essence of this endeavor lies in our
commitment to achieve plan quality optimization without the need for substantial modifications
to the underlying planner. Instead, we adopt and adapt existing heuristics, leveraging their
strengths to enhance the planning process. Our approach involves the introduction of specific
operators into the planning problem domains, strategically guiding the decision-making process
towards more effective solutions.

2. Timeline-based planning

Timeline-based planning constitutes a form of deliberative reasoning which, in an integrated
way, allows to carry out different forms of semantic and causal reasoning. This form of planning
was first introduced in [9] and, since then, many solvers, relying on this approach, have been
proposed like, for example, IxTeT [10], Europa [11], Aspen [12], the Trf [13, 14] on which the
APSI framework [15] relies and, more recently, PLATINUm [16, 17].

Theoretical work on timeline-based planning, such as [18, 11], focused on identifying con-
nections with classical planning in PDDL [19]. IxTeT and Trf emphasized time and resource
reasoning [20, 21]. CHIMP adopted a Meta-CSP approach with meta-constraints resembling
timelines [22], while FAPE tightly integrated timeline-like structures with acting [23]. ANML
combined HTN decomposition methods with the expressiveness of the timeline representa-
tion [24]. Timeline-based approaches often incorporate resource management capabilities,
leveraging constraint-based methods [25, 26, 27, 28] for planning and scheduling integration.
Despite these approaches share similarities, the lack of a common formalization hindered

effective comparison and combination of their features. This limitation made it challenging to
identify strengths, weaknesses, and develop comprehensive solutions. To provide a reference
point, we mainly refer to the formalization proposed in [29], which covers a significant portion
of problems solvable by existing approaches.
Understanding timeline-based planning requires introducing fundamental concepts of con-

straint networks [30], consisting in a set of variables and a set of constraints. Variables have
names and can take different values from their domain. The domain is initially defined and
can evolve over time. Variables can be continuous (with infinite initial domains) or discrete



(with a finite number of values). Constraints restrict combinations of values for a set of vari-
ables. Assigning values to variables is called an evaluation, which is consistent if it satisfies all
constraints. An evaluation is complete when it includes all variables.
In timeline-based planning, constraint networks provide the foundation for modeling and

reasoning about the problem. The central concept in this paradigm, however, is the timeline,
which represents a function of time over a specific domain. The timeline can be either discrete
or continuous, and its domain can be symbolic or numeric. Numeric domains can further be
categorized as discrete or continuous.

To standardize the representation of timelines and make the reasoning process independent
of their nature, the concept of tokens is introduced. Tokens are expressions that derive values
on timelines through a timeline extraction procedure. They provide a unifying element for
consistent representation and reasoning. A token 𝑛 (𝑥0, … , 𝑥𝑖)𝜒 consists of a predicate name 𝑛,
𝑥0, … , 𝑥𝑖 parameters (temporal, symbolic, and numerical constants or variables), and a 𝜒 class
(fact or goal). The parameters, in particular, can be variables within a constraint network and,
as such, can be constrained, thereby narrowing down the range of acceptable values to the
desired ones. Constraints can be imposed among the token parameters, as well as between
parameters and other variables, encompassing temporal, symbolic, and numerical relationships.
Tokens provide a higher-level semantics by grouping variables into structured data, enabling
reasoning for planners. A timeline, in these context, is a global constraint [30]) over the tokens,
preventing undesired temporal overlaps.

The combination of tokens and constraints forms the primary data structure for representing
plans in timeline-based planning: the token network. The token network serves as the primary
representation of plans in timeline-based planning. It is manipulated throughout the reasoning
process by adding constraints among token variables for consistency and applying rules to
establish causality. Tokens are categorized as facts (inherently true) or goals (to be achieved),
with causality defined by rules that outline the necessary conditions for goal achievement. Rules
consist of a head (goal) and a body (requirements), which can include slave tokens, constraints,
conjunctions, and priced disjunctions. The selection of disjuncts during the resolution process
plays a critical role in determining the cost associated with the resulting plan. Essentially, these
costs establish preferences among potential admissible solutions. Consequently, this paper
places its primary emphasis on these costs, recognizing them as the key factor within our
investigation.

Finally, a timeline-based planning problem consists of a set of typed objects, a set of rules, and
a requirement. The typed objects are used to instantiate the initial domains of variables in the
constraint network and token parameters. A solution to the problem is a token network that is
consistent with the rules and satisfies the requirement. This means that the token network’s
variable evaluation is consistent with the constraints, and for each goal in the token network,
the corresponding rule’s body is present.
Consider, as an example, the travel planning scenario presented in Figure 1. In this sce-

nario, the agent’s starting point is location 𝐴, and its objective is to reach location 𝐷, which
is not directly connected to 𝐴. To achieve this, the agent must pass through location 𝐵, ac-
cessible by either metro, with a cost of 7, or bus, with a cost of 10. Once at location 𝐵, it
faces two alternatives: taking a direct train to destination 𝐷, with a cost of 5, or embarking
on a two-step journey involving a train ride to the airport in 𝐶, with a cost of 5, followed



Figure 1: A planning problem for devising a travel itinerary from location 𝐴 to location 𝐷. Since these
locations are not directly linked, it becomes necessary to traverse through location 𝐵 which can be
reached by either metro or bus. From there, the options are to either board a train directly to destination
𝐷 or opt for a two-step journey involving a train to the airport in 𝐶 and then a plane to reach destination
𝐷.

by a flight to reach destination 𝐷, with a cost of 20. These costs, importantly, do not merely
reflect travel times; instead, they represent preferences regarding the user’s choice of trans-
portation modes. In essence, timing constraints might compel the agent to utilize modes of
transportation that may not align with their preferences. In this particular problem, we have
a defined set of locations (𝐴, 𝐵, 𝐶, and 𝐷) along with corresponding facts that denote the
connections between these locations using different modes of transportation, including the
associated travel times. Additionally, there is a fact such as 𝐴𝑡 (𝑙 ∶ 𝐴, 𝑠 ∶ 𝑜𝑟 𝑖𝑔𝑖𝑛)1 indicating
the agent’s initial position, a goal 𝐴𝑡 (𝑙 ∶ 𝐷) representing the desired destination, and a set of
rules outlining various routes to reach a specific location. These rules are accompanied by
constraints pertaining to the use of vehicles and limitations on travel duration. The rule for
reaching a location is 𝐴𝑡 (𝑙, 𝑠, 𝑒) ← {𝑇𝑎𝑘𝑒𝐵𝑢𝑠 (𝑡𝑜 ∶ 𝑙, 𝑒 ∶ 𝑠)𝑔}10 ∨ {𝑇 𝑎𝑘𝑒𝑆𝑢𝑏𝑤𝑎𝑦 (𝑡𝑜 ∶ 𝑙, 𝑒 ∶ 𝑠)𝑔}7 ∨
{𝑇 𝑎𝑘𝑒𝑇 𝑟𝑎𝑖𝑛 (𝑡𝑜 ∶ 𝑙, 𝑒 ∶ 𝑠)𝑔}5 ∨ {𝑇 𝑎𝑘𝑒𝑃𝑙𝑎𝑛𝑒 (𝑡𝑜 ∶ 𝑙, 𝑒 ∶ 𝑠)𝑔}20, indicating a cost of 10, 7, 5 and 20, re-
spectively, for each taken bus, subway, train and plane. The rule for taking, for example, a bus,
instead, is 𝑇𝑎𝑘𝑒𝐵𝑢𝑠 (𝑓 𝑟𝑜𝑚, 𝑡𝑜, 𝑠, 𝑒) ← 𝐵𝑢𝑠𝐿𝑖𝑛𝑘 (𝑓 𝑟𝑜𝑚 ∶ 𝑓 𝑟𝑜𝑚, 𝑡𝑜 ∶ 𝑡𝑜, 𝑑𝑢𝑟)𝑔 ∧ [𝑒 − 𝑠 ≥ 𝑑𝑢𝑟]. Finally,
there is a single state-variable timeline, preventing the agent to be in different positions or in
different means of transport at the same time. As you can see from the rules, these activities
have a duration. In the event of a deadline, regardless of preferences, not all plans may be
acceptable.

3. Optimization Techniques

Timeline-based solvers heavily rely on partial-order planning techniques [8], extending the
definition of threats to include potential inconsistencies arising from timeline constraints.
These solvers aim to identify flaws in the token network and utilize resolvers to address them.
Flaws can be unachieved goals, threats, disjunctions, or unassigned variables. Resolvers are

1We use the notation “var: expr” to indicate the direct assignment of an expression to a variable. In this case, the 𝑙
variable indicates the location.



mechanisms designed to resolve specific types of flaws. They can involve applying rules,
unifying semantically equivalent tokens, introducing ordering constraints, selecting options
from disjunctions, or assigning values to unassigned variables. The main resolution principle
involves systematically improving the token network by applying appropriate resolvers while
maintaining the consistency of constraints until the token network is flaw-free. A solution to a
timeline-based planning problem is a token network without flaws and consistent constraints.

Solving timeline-based planning problems involves non-deterministic resolver selection and
deterministic flaw processing. To manage computational complexity, deterministic implementa-
tions can use algorithms like A* or IDA* for efficient solution generation. The main challenge lies
in accurately defining the current state and measuring the distance to the desired state, which
hampers the use of traditional planning heuristics. To address this, [29] propose a separation of
temporal and causal elements, allowing adaptation of classical planning heuristics to the causal
aspects. The proposed approach employs an AND/OR graph to represent causal relationships
between flaws and resolvers, enabling efficient exploration of a disjunctive token network. By
analyzing the topology of the generated graph, heuristics like ℎ𝑎𝑑𝑑 and ℎ𝑚𝑎𝑥 [31] can estimate
resolver and flaw costs, guiding the resolution process. Specifically, we have that:

𝐺 (𝜑) = 𝑚𝑖𝑛𝜌∈𝑟𝑒𝑠(𝜑)𝐺 (𝜌)

𝐺𝑎𝑑𝑑 (𝜌) = 𝑐 (𝜌) + ∑
𝜑∈𝑝𝑟𝑒𝑐𝑠(𝜌)

𝐺 (𝜑)

𝐺𝑚𝑎𝑥 (𝜌) = 𝑐 (𝜌) + 𝑚𝑎𝑥𝜑∈𝑝𝑟𝑒𝑐𝑠(𝜌)𝐺 (𝜑)

where 𝐺 (𝜑) represents the estimated cost for a flaw 𝜑, 𝐺𝑎𝑑𝑑 (𝜌) represents the estimated cost for
a resolver 𝜌 computed through the ℎ𝑎𝑑𝑑 heuristic, 𝐺𝑚𝑎𝑥 (𝜌) represents the estimated cost for a
resolver 𝜌 computed through the ℎ𝑚𝑎𝑥 heuristic, and 𝑐 (𝜌) is the intrinsic cost of the 𝜌 resolver,
i.e., a positive number representing the cost of disjuncts, in case of priced disjunctions, or the
value 1, in other cases.

During the resolution process, the solver employs a strategy that prioritizes addressing the
most costly flaw with the least expensive resolver. This approach serves the dual purpose
of early inconsistency detection and efficient solution attainment. However, it’s crucial to
acknowledge that constructing the causal graph has inherent limitations, and in many cases, it
cannot be fully realized.

Specifically, the process commences by assigning a zero cost to the problem’s facts, as these
facts are considered inherently true. Conversely, both flaws and resolvers are initially assigned
an infinite estimated cost. The process then unfolds in a breadth-first manner, moving backward
through the graph. It continues in this manner until it encounters facts or other goals that can
be associated with a finite estimated cost.

Upon such an encounter, the process proceeds to propagate the estimated costs, taking into
account the strategy employed to estimate the goals (i.e., either using the ℎ𝑎𝑑𝑑 or ℎ𝑚𝑎𝑥 heuristic).
This iterative process perseveres until the high-level flaws are ultimately attributed a finite
estimated cost, marking significant progress in the resolution process.
When pursuing optimal plans, a significant challenge arises during the graph construction

process, where the procedure may terminate before incorporating the optimal plan into the



Figure 2: An example of causal graph for the planning of a physical rehabilitation session. Tokens’
parameters are omitted to avoid burdening the notation.

graph. An illustrative scenario is exemplified by the concept of “favorite goals”, which represent
objectives that one would ideally like to achieve but are not strictly mandatory. Failure to
attain a favorite goal incurs a penalty for the planner. For instance, let’s consider the problem
illustrated in Figure 2. On the right-hand side, there is a requirement represented as the
disjunction 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑊 𝑜𝑟𝑘𝑜𝑢𝑡 ()𝑔 ∨ {}50. This disjunction is designed to generate a plan that
includes a physical workout, provided that the constraints permit it. The workout should
encompass exercises targeting both the upper and lower parts of the body.

The complexity arises when, during the graph construction phase, the cost associated with an
empty option (i.e., no plan for the goal) seems preferable compared to the initially infinite cost
assigned to the preferred goal. This situation can prematurely conclude the graph construction
procedure, suggesting to the planner that an empty plan is the best choice. In the example
represented in Figure 2, in particular, the graph building procedure would not introduce the
𝜌3 resolver, it would keep an infinite estimated cost for the 𝜑1 flaw since there already is a
possible better (compared to the current infinite one) solution thoward the 𝜌2 resolver. In
essence, concerning preferable goals, this strategy can result in plans that, while technically
valid, exhibit very poor quality. Such plans may not align with the planner’s actual preferences
and objectives, emphasizing the importance of refining the resolution process for optimizing
the quality of the generated plans.

The solution we propose involves the incorporation of “jamming operations” when necessary,
aiming to prevent the premature termination of the graph construction procedure. Specifically,
we introduce a type of goal denoted as 𝑁𝑜𝑂𝑝, equipped with an ID parameter, ensuring that
different “jamming goals” do not interfere with each other, and a positive integer parame-
ter known as “look-ahead”. The corresponding rule for these goals is structured as follows:
𝑁𝑜𝑂𝑝 (𝑖𝑑, 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑) ← 𝑁𝑜𝑂𝑝 (𝑖𝑑 ∶ 𝑖𝑑, 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 ∶ 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 − 1)𝑔 ∨ [𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 = 0].
As an example, consider the prior disjunction, which could be modified to

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑊 𝑜𝑟𝑘𝑜𝑢𝑡 ()𝑔 ∨ {𝑁 𝑜𝑂𝑝 (𝑖𝑑 ∶ 1, 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 ∶ 42)𝑔}50. This modification ensures that
a depth of 42 is guaranteed for the empty (and more costly) branch. The estimated cost for
this branch remains infinite until the lookahead parameter reaches zero. In the meantime, this



(a) A comparison of plan costs without and with
the utilization of jamming actions.

(b) A comparison of execution times without and
with the utilization of jamming actions.

approach encourages exploration of the branch containing the physical activity, thus mitigating
the issues related to prematurely favoring empty plans.

4. Experimental Setup

We have conducted some experiments to demonstrate the effectiveness of the proposed approach.
Since we are working on a Active Assisted Living project, we focused on planning problems
similar to those described in the previous section, in which the user has to carry out some
physical and cognitive rehabilitation exercises to keep active and prolong his/her health well-
being. In particular, series of physical exercises chosen from 14 different types (e.g., Chest press,
Biceps curl, etc.) are planned in order to guarantee the training of all parts of the body. The
exercises are repeated several times and with different characteristics depending on the profile
of the user. Some constraints, however (e.g., lack of time on some days), might prevent the
user from carrying out all the activities, so the planner must optimize by putting in as many
workout sessions as possible.

In our experimental study, we performed a comparative analysis by introducing the proposed
jamming actions in scenarios with an escalating number of physical training activities. We
carefully assessed the time needed to find a solution for each case. Our expectation was that,
despite the additional computational load imposed by the jamming actions, their incorporation
would lead to the creation of notably superior plans. We remained hopeful that the introduction
of these actions would not unduly compromise the efficiency of the resolution process.

As depicted in Figure 3b, the execution times remain comparable to those observed in scenarios
without the presence of jamming actions. However, a noteworthy improvement is observed in
the quality of solutions, as illustrated in Figure 3a. These improvements entail a shift from plans
that accumulate penalties to plans in which costs align with the intrinsic costs of the activities,
effectively reflecting optimal2 plans.
Nevertheless, a crucial caveat must be considered. The heuristic guiding the resolution

algorithm encourages the pursuit of optimal solutions. In the tested cases, optimal solutions
are readily attainable. With the incorporation of jamming actions, the planner introduces all
the necessary activities into the graph to discover the optimal plan. The heuristic then guides

2We know the solutions are optimal because the generated plans contain all the preferred goals.



the resolution towards this solution. Attempts were made to introduce constraints preventing
the planner from reaching the optimal solution, such as imposing a makespan shorter than
the total number of activities. This was intended to compel the planner to add tasks following
the heuristic but subsequently trigger backtracking. Regrettably, the performance in such
cases proved unsatisfactory. We attribute this issue to the limitations of scheduling algorithms,
which could benefit from optimization. For instance, there’s no need to exhaustively explore all
possible orderings of ten tasks of unit duration to determine that they cannot be sequenced in a
way that achieves a duration of less than ten. In summary, while jamming actions significantly
enhance solution quality, there is room for improving the scheduling algorithms to handle more
complex scenarios efficiently.

5. Conclusion

This paper has delved into the realm of timeline-based planning, which offers a departure from
traditional planning paradigms by providing adaptable and dynamic plans. It has explored, to the
best of our knowledge, for the first time, the optimization of timeline-based planning, without
requiring extensive modifications to the underlying planner. Instead, the paper introduces
specific operators strategically into the planning domains, leveraging existing heuristics to
guide decision-making effectively.
Timeline-based planning relies on the foundation of constraint networks and tokens, allow-

ing for modeling and reasoning about complex problems. These tokens and constraints are
manipulated to construct plans through a resolution process. In particular, this paper places a
significant emphasis on the selection of disjuncts during resolution, which determines the cost
and, thus, preferences among potential solutions.
The introduction of jamming actions, aimed at preventing premature termination of the

graph construction process, has been proposed as a solution to the generation of optimized
plans. These actions have been demonstrated through experiments focusing on physical and
cognitive rehabilitation exercises, showcasing their ability to improve plan quality without
significantly impacting execution times.
While the incorporation of jamming actions has shown promise in generating high-quality

plans, there remains room for further improvement in scheduling algorithms to handle more
complex scenarios efficiently. This paper marks a step towards enhancing the capabilities of
timeline-based planners and paves the way for future research in this field.
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