
Heuristic Planning for Hybrid Dynamical Systems
with Constraint Logic Programming
Shaun Mathew1, Mikhail Soutchanski1

1 Toronto Metropolitan University, 245 Church St, ENG281, Toronto, ON, M5B 2K3, Canada,
https://www.cs.torontomu.ca/mes

Abstract
We explore how planning for near optimal behaviors of mixed discrete-continuous systems can be done
by deductive reasoning. For reasoning to be efficient, it must be properly controlled. It is surprising
and mathematically non-trivial fact that this control can be achieved in a domain-independent way for
a large class of planning domains with non-linear continuous processes. Moreover, in contrast to other
planners for hybrid dynamical systems that use the single-model approaches and have to instantiate all
actions and fluents before search starts, our planner is lifted, namely it works directly with action schemas.
Following Constraint Logic Programming framework, it delegates solution of the optimization problem
with respect to numerical and temporal constraints to an external numerical optimization solver. We discuss
that our theorem-proving based planner for hybrid systems achieves performance competitive with the
state-of-the-art approaches to temporal numerical planning on several well-known benchmarks. We argue
that our deductive approach may have potential to compete with existing operation research techniques
when solving large-scale optimization problems for relational hybrid systems.

1. Introduction

Hybrid systems, sometimes referred to as hybrid dynamical systems, are heterogeneous systems
that consist of components with discrete and continuous behavior. The discrete component
transitions between states depending on instantaneous control actions or exogenous events,
while the continuous variables within a state change over time according to ordinary differential
equations (ODE). Each discrete state can be provided with its own system of ODEs. In a general
case, transitions between states can switch between different continuous flows and can reset some
of the parameters. In the literature, hybrid automata are the most popular method of modelling
hybrid systems [1, 32, 59]. Hybrid automata generalize ordinary finite-state automata, since the
states of the former include numeric variables whose evolution is modeled by ODEs.

There are examples of practical hybrid systems where the transitions between the states are
parameterized, and the states themselves are no longer atomic, but have relational structure, as in
data bases. A prominent example of parameterized hybrid systems is articulated complex robots
with autonomous motions where one has to solve the problem of integration of task and motion
planning (TAMP), e.g., see [79, 63, 94, 74, 41, 30]. Other practical examples of the control
problems for relational hybrid systems include the Unit Commitment problem in the large-scale
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electric power grids where power generators have to be properly scheduled when they turn on/off
to fulfill daily electricity demands with minimal cost while respecting non-linear constraints on
electricity flows [20, 76, 23, 60], and the control of streetlights to compute a new timing sequence
that eliminates unexpected traffic jams in a region of a large city [96].

The most common and popular approach to the analysis of hybrid automata is based on
model checking [26, 32]. Given a hybrid automaton and a safety property, reachability analysis
determines if the system can ever enter unsafe states at any point of its run-time. It is well-known
that in the general case the reachability problem for hybrid systems is undecidable [2, 48, 32].
Despite this fundamental conceptual obstacle, there is a lot of effort in developing sound (but
incomplete) specialized tools for reachability analysis [1, 26], as well as research on approximate
algorithms [40], and work into exploring robust classes of hybrid systems [81].

As an alternative to model-checking, there are theorem-proving techniques [87]. Cordell Green
proposed to consider problem solving and the planning problem as fundamentally a reasoning
problem that can be solved using a theorem-proving approach in Situation Calculus (SC) [44].
However, because he did not anticipate any control over unrestricted resolution, his program did
not work well [47, 55, 54]. Subsequent planning research moved away from theorem proving to
specialized representations such as STRIPS and ADL. Almost all modern research in automated
(common-sense level) AI planning focuses on search with domain-independent heuristics in a
single model of a discrete transition system [16, 42]. There were occasional proposals to revive
Green’s planning as a deductive reasoning approach and implement the automated planners in
PROLOG, e.g., see a detailed discussion in [92], but they were not supported with competitive
implementations using domain independent heuristics.

Despite this history, there are advantages to theorem-proving based planning over the single-
model approach. The latter requires both the Closed World Assumption (CWA) and the Domain
Closure Assumption (DCA). The main reason for relying on the (unrealistic) DCA in the single-
model approach is the need for instantiating the action schemas and fluents before search for a
plan can start. As a consequence, the single-model approach to planning sometimes has issues
with scalability as the number of objects in the domain increases, e.g., see [65, 67, 56, 29]. It
turns out, even if an implementation relies on DCA, there is no need to instantiate action schemas
in advance, if one employs PROLOG to solve planning problems described in the Situation
Calculus [91]. This deductive approach is lifted in the sense that it works directly with action
schemas and determines at run time what are the next possible (ground) actions.

Our research vision is that efficient search for a near optimal plan for relational hybrid systems
can be accomplished within the deductive approach using a domain independent heuristic. This
paper describes a preliminary version of a lifted Non-linEAr Temporal (NEAT) planner that
makes a step towards this long-term vision. To simplify implementation this version relies on
both CWA and DCA, and a more general version is left to future work. We keep our presentation
rather informal to make it more accessible to a larger audience. In the next section, we provide a
short review of temporal SC and introduce a simple example. Also, we mention the previous work
on Constraint Logic Programming (CLP). Then, we describe our methodology and summarize
the experimental results collected from running NEAT and the state-of-the-art planners for hybrid
systems on a few standard benchmarks. In conclusion, we propose our hypothesis why our
approach can potentially become competitive with the Mixed Integer Non-Linear Programming
(MINLP) approach to control of hybrid systems that is popular in Operation Research (OR) [62].



2. Background

Situation Calculus (SC) was introduced in [68, 69], and later refined by Reiter [82, 84] who
introduced the Basic Action Theory (BAT) as a solution to the frame problem in first-order
logic (FOL). Unlike the notion of state that has a complicated meaning, SC has situation, i.e., a
sequence of actions, which provides a concise symbolic representation that is a convenient proxy
for the state [78]. A BAT consists of the following axioms.

1. The foundational axioms for situations characterizing situations as a tree with the initial
situation 𝑆0 as the root [84].

2. The successor state axioms (SSA) for fluents [82]. For each (atemporal) fluent they
characterize what actions make it true, and what actions make it false. Informally speaking,
SC representation is fluent centered, in contrast to PDDL that is action-centered [46].

3. The action precondition axioms (PA) are formulated using the special predicate 𝑝𝑜𝑠𝑠(𝐴,𝑆):
when action 𝐴 is possible in situation 𝑆. There is one PA for each domain specific action
𝐴. Usually, the preconditions are conjunctions of fluent literals and numerical constraints.

4. The unique name axioms (UNA) for actions and objects.
5. A FOL theory that describes what holds in the initial situation, but in most benchmark

planning instances this is simply the conjunction of the fluents wrt the initial situation 𝑆0.

Notice a BAT does not include state constraints that characterize the invariants of the system.
Syntactically, state constraints are ∀𝑠-quantified sentences with 𝑠 as the only situation variable.
They are assumed to be (manually) compiled offline into the initial theory [58, 78, 70, 84], since
in a general case the presence of state constraints leads to the conceptual problems [58, 19].

We implement BATs in PROLOG, see [84, 57] for details and examples. PROLOG facilitates a
natural implementation of situation terms and BATs thanks to its semantics [97, 61]. In particular,
the initial situation 𝑆0 is represented as the empty list [ ], and the situation 𝑑𝑜(𝐴,𝑆) that results
from executing action 𝐴 in a previous situation 𝑆 is represented as the list [𝐴 | 𝑆], with the most
recent action 𝐴 in the head of the list. In the sequel, we provide examples of the axioms both
in PROLOG and in FOL to facilitate understanding for the readers who are not familiar with
PROLOG. In FOL formulas, all free (lower case) variables are implicitly ∀-quantified at front,
while in PROLOG the variables start with an upper-case letter.

Reiter’s book [84] includes his sequential temporal SC [83] that represents durative actions
(and processes extended in time) with two instantaneous initiating and terminating actions and
with a fluent that defines a durative action (a process, respectively). For example, to represent
the motion process from a location 𝑋 to another location 𝑌 during a time interval occupied by
situation 𝑆, one can introduce predicate fluent 𝑚𝑜𝑣𝑖𝑛𝑔(𝑋,𝑌, 𝑆) and consider a SSA for this
fluent assuming that an instantaneous action 𝑏𝑒𝑔𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔(𝑋,𝑌, 𝑇 ) makes this fluent true, if it
is executed at time 𝑇 , and another instantaneous action 𝑒𝑛𝑑𝑀𝑜𝑣𝑖𝑛𝑔(𝑋,𝑌, 𝑇 ) makes this fluent
false, in the case if in 𝑆 there is ongoing process of moving from 𝑋 to 𝑌 .

moving(X,Y, [A | S]) :- A=beginMoving(X,Y,T).
moving(X,Y,[A|S]) :- moving(X,Y,S), not A=endMoving(X,Y,T).

∀𝑥, 𝑦, 𝑎, 𝑠. 𝑚𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦, 𝑑𝑜(𝑎, 𝑠)) ↔ ∃𝑡(𝑎=𝑏𝑒𝑔𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦, 𝑡))∨
𝑚𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦, 𝑠)∧¬∃𝑡(𝑎=𝑒𝑛𝑑𝑀𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦, 𝑡)).



�
��
�
��

�
��
�
�� �
��

�
��

�
��

�
�
�>

HH
HHHj

-
XXXXXXz

����������⁓

XXXXXXXXXXXXXz

-

..............................................

..............................................................

................................

.......................................................

...........

....................................................................

...............................................

𝑑𝑜(𝐴2, 𝑑𝑜(𝐴1, 𝑆0))
𝑑𝑜(𝐴1, 𝑆0)

𝑑𝑜(𝐴3,𝑆0)

timeline

𝑆0

Figure 1: Let the left most circle represent the initial situation 𝑆0. Suppose that actions 𝐴1, 𝐴3

are possible in 𝑆0, and they result in situations 𝑑𝑜(𝐴1, 𝑆0) and 𝑑𝑜(𝐴3, 𝑆0). Also, shown is situation
𝑑𝑜(𝐴2, 𝑑𝑜(𝐴1, 𝑆0)) that results from doing 𝐴2 in 𝑑𝑜(𝐴1, 𝑆0). To avoid clutter other actions and the
resulting situations are not named, and branching rightwards is omitted. Note each circle maps
to a point on the timeline representing the unique moment when situation starts. Each situation 𝑠
may last for an interval from the moment it starts until an action 𝑎 occurs and produces 𝑑𝑜(𝑎, 𝑠).

Reiter requires all action functions to have the last argument time, but he considers only the
usual atemporal fluents that do not mention time as an argument.

To illustrate his representation informally imagine the single horizontal time-line under the
situation tree (with the root as the left-most node) that is branching rightwards. The moment
of time 𝑇 when situation 𝑆 starts is characterized using the special predicate 𝑠𝑡𝑎𝑟𝑡(𝑆, 𝑇 ). This
predicate maps 𝑆 to the unique moment of time 𝑇 when an instantaneous action resulted in 𝑆.
Each situation can last over an interval of time or just an instant, depending on when the next
action is executed. For each domain specific instantaneous action 𝑎𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑇 ), there is an
atomic statement 𝑡𝑖𝑚𝑒(𝑎𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑇 ), 𝑇 ) relating the variable 𝑇 with the moment of time
when 𝑎𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑇 ) occurs. There are two domain independent temporal axioms:

start([], 0). /*Let the initial situation start at 0 */
start([A|S],T) :- time(A,T). /*Start time of situation [A|S] */

The last axiom is saying that if action 𝐴 is executed at moment 𝑇 in situation 𝑆, then this results
in a new situation [𝐴 | 𝑆] that starts at the same moment of time 𝑇 . In FOL, Reiter uses the
function symbols 𝑠𝑡𝑎𝑟𝑡(𝑑𝑜(𝑎, 𝑠)) that represents the moment of time when situation 𝑑𝑜(𝑎, 𝑠)
starts, and 𝑡𝑖𝑚𝑒(𝑎) that represents the moment when an instantaneous action 𝑎 is executed. These
two functions are related using the following simple axioms:

𝑡𝑖𝑚𝑒(𝐴(�̄�, 𝑡)) = 𝑡. /* for arbitrary action function 𝐴(�̄�, 𝑡)*/
∀𝑎, 𝑠, 𝑡. 𝑠𝑡𝑎𝑟𝑡(𝑑𝑜(𝑎, 𝑠)) = 𝑡𝑖𝑚𝑒(𝑎).

Reiter’s temporal BAT is limited, because he does not allow fluents to change over time
within situation, in between actions. But as we know, both in science and engineering, physical
quantities depend on time explicitly. The recently developed Hybrid Temporal Situation Calculus
(HTSC) considers temporal fluents in addition to atemporal fluents [9, 10]. In HTSC, there are
both atemporal fluents (as in [84])), and also temporal fluents that have time argument in addition



to situation argument. To simplify our presentation we consider next the example formulated in
PROLOG. Also, to keep our presentation coherent we collected all FOL axioms for the following
example in a separate Appendix at the end of this paper. The readers who are not familiar with
PROLOG can consult those FOL axioms. In this example, we use the special symbols $= and
$=< to implement the equality or inequality constraints on the variables. These constraints are
simply collected in a separate data structure at run time while the program is executed. They are
taken into account only when the related (linear or non-linear) optimization problem has to be
solved for the given numerical objective.

Example. Consider a finite number of balls that can be dropped and that can elastically bounce
from the floor. There are the actions 𝑑𝑟𝑜𝑝(𝐵, 𝑇 𝑖𝑚𝑒) and 𝑐𝑎𝑡𝑐ℎ(𝐵, 𝑇 𝑖𝑚𝑒) that can be executed
by the agent. When a ball 𝐵 hits the floor, a natural event 𝑏𝑜𝑢𝑛𝑐𝑒(𝐵, 𝑇 𝑖𝑚𝑒) occurs. When
the ball 𝐵 rises to the top-most point of its trajectory, another natural event 𝑎𝑡𝑃𝑒𝑎𝑘(𝐵, 𝑇 𝑖𝑚𝑒)
occurs, and then the ball starts falling down. The atemporal fluent 𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝐵,𝑆) means the ball
𝐵 is falling down and accelerating under the Earth gravity. The atemporal fluent 𝑓𝑙𝑦𝑖𝑛𝑔(𝐵,𝑆)
means the ball 𝐵 bounced, it is flying up in situation 𝑆 and decelerating due to gravity. We
assume the vertical axis is oriented downwards, i.e., if a ball is falling down, then its speed
is positive and increases. But when the ball bounces, its speed is negative and decreases. For
simplicity we assume all balls are perfectly elastic, i.e., there is no damping. In addition, we
consider temporal fluent 𝑑𝑖𝑠𝑡(𝐵,𝐷, 𝑇, 𝑆) that characterizes the ball’s height 𝐷 at the moment of
time 𝑇 within 𝑆, and temporal fluent 𝑣𝑒𝑙(𝐵, 𝑉, 𝑇, 𝑆) that characterizes instantaneous velocity
𝑉 at the moment 𝑇 within the time interval when 𝑆 lasts. These temporal fluents describe time
dependent change within situation 𝑆, in between two occurrences of the agent actions and/or the
natural events. (Subsequently, we do not distinguish between actions and events; both of them are
represented with action terms.) The following are the precondition axioms (PAs) and an instance
specific atomic statements.

ball(b1). ball(b2). epsilon(E) :- E is (1/100). /* approximation*/
time( drop(Ball,T), T). time( catch(Ball,T), T).
time( bounce(Ball, T), T). time( atPeak(Ball, T), T).
natural(bounce(B,T)). natural(atPeak(B,T)). /* Two Nature actions */
agent(drop(B,T)). agent(catch(B, T)). /* Two Agent actions */

poss(drop(B,Time), S) :- ball(B), not falling(B,S),
not flying(B,S),start(S, T), T $=< Time.

poss(catch(B,Time), S) :- ball(B), start(S,T), T $=< Time,
( falling(B,S); flying(B,S) ). /*can catch if flying or falling*/

poss(bounce(B,Time), S) :- ball(B), falling(B, S), epsilon(E),
dist(B,Distance,Time,S), Distance $= 0,
vel(B,Velocity,Time,S), Velocity $>= E, start(S,T), T $=< Time.

poss(atPeak(B,Time), S) :- ball(B), flying(B, S), epsilon(E),
dist(B,Distance,Time, S), Distance $>= E,
vel(B,Velocity,Time, S), Velocity $=0, start(S,T), T $=< Time.

The first axiom is saying the agent action 𝑑𝑟𝑜𝑝(𝐵, 𝑇 𝑖𝑚𝑒) is possible in 𝑆 at the moment of
time 𝑇𝑖𝑚𝑒, if a ball 𝐵 is neither falling, nor flying in 𝑆, and the moment of time 𝑇 when situation



𝑆 started is less than or equal to 𝑇𝑖𝑚𝑒. We add the temporal constraint 𝑇$=<𝑇𝑖𝑚𝑒 to a special
data structure that represents a constraint store to be evaluated later at run time when the planner
checks whether the goal logical conditions are satisfied. (In particular, this means that scheduling,
i.e., assignment of time moments to actions, happens once the plan skeleton has been already
computed.) The last axiom is saying that a natural event 𝑎𝑡𝑃𝑒𝑎𝑘(𝐵, 𝑇 ) can occur in 𝑆 at the
moment 𝑇𝑖𝑚𝑒 if 𝐵 is flying in 𝑆 so that it reached its highest point at which its velocity is 0,
but its hight is positive, and time 𝑇 when 𝑆 started is less than or equal to 𝑇𝑖𝑚𝑒. This PA adds
several more numerical constraints on the variables to the constraint store. Our planner makes
sure that natural events must be executed as soon as they are possible: nature cannot wait. This
is simply implemented by making sure that the planner chooses first a natural action, if there
is one possible, else it can choose a possible agent action. In other words, the planner cannot
do any agent actions, as long as there are possible natural actions. Implicitly, this imposes a
limit on the hybrid domains where this planner can work, since it is easy to fabricate an artificial
counter-example with repeatedly possible natural actions such that the planner can never do a
required agent action that would solve a problem. Thus, this version is an incomplete planner.

Since we are dealing with hybrid systems, we have to use a language that can capture their
semantics, and it was argued that HTSC serves this purpose well [9, 10]. In addition to all the
usual axioms in BAT, HTSC introduces State Evolution Axioms (SEA) for temporal fluents.
These SEA describe how numerical values of temporal fluents evolve across time, inside situation,
similar to the idea of continuous state evolution from hybrid automata. Recall that in HTSC one
can model temporal change in between actions/events using domain specific temporal fluents.

In our example, we have three possible contexts, one where the ball is at rest, one where it is
falling down, and one where the ball is flying up after it bounced from the floor. An agent may
drop the ball, initiating the falling process, where the temporal fluents, velocity and distance,
evolve according to the standard equations of motion. Upon contact with the floor, i.e. when
distance is zero, the ball bounces and enters a different flying context with its own set of the
motion equations for velocity and distance. The following SSA characterize how the actions can
switch between different contexts.

falling(B, [A|S]):- A=drop(B,T). /* Action drop makes falling true */
falling(B, [A|S]):-A=atPeak(B,T). /*Action atPeak makes falling true*/
falling(B, [A|S]):- not A=catch(B,T), not A=bounce(B,T), falling(B,S).

flying(B, [A|S]):- A=bounce(B,T). /*Action bounce makes flying true*/
flying(B, [A|S]):- not A catch(B,T), not A=atPeak(B,T), flying(B,S).

In the third, persistence (default) rule, if the ball is falling in situation 𝑆, it will be also falling
in the situation [𝐴 | 𝑆] that results from executing any action 𝐴 in situation 𝑆, unless 𝐴 is either
bouncing or catching action for this ball 𝐵. The last persistence (inertia) rule has similar purpose.

Note that when actions occur, the temporal change can be either continuous, or there might
be jumps or resets in the values of temporal fluents. To describe these smooth transitions or
jumps at the moments when new situation starts, we use auxiliary fluents 𝑖𝑛𝑖𝑡_𝑑𝑖𝑠𝑡(𝐵,𝐷, 𝑆)
and 𝑖𝑛𝑖𝑡_𝑣𝑒𝑙(𝐵, 𝑉, 𝑆). The SSA for the former is saying that the height of the ball changes
continuously, no matter what actions or events happen. However, the velocity of the ball resets
to 0, when the agent catches the ball. When the ball bounces, its velocity jumps to the quantity



with the opposite sign. All other actions with any other balls have no effect on these physical
quantities at the moment when new situation starts.

init_dist(B,Dist,[Act | S]) :- time(Act,T), dist(B,Dist,T,S).

init_vel(b1,0,[ ]). init_vel(b2,0,[ ]).
init_vel(B,Vel, [Act | S]) :- Act=catch(B,T), Vel $= 0.

init_vel(B,NewVel, [Act | S]) :- Act=bounce(B,T), time(Act,T),
vel(B, OldVel, T, S), NewVel $= -1 * OldVel.

init_vel(B,Vel,[Act | S]) :- time(Act,T), vel(B,Vel,T,S),
not Act = catch(B, _), not Act = bounce(B, _).

In a general case, it is assumed there are finitely many mutually exclusive context conditions.If
all of them are false, then the temporal fluent does not change, as for the ball that is at rest.

The evolutions of temporal fluents across time are described with the State Evolution Axioms
(SEA), see details and other examples in [9, 10]. Each SEA characterizes how temporal fluent
changes with time within a context determined by atemporal fluents. Each temporal fluent evolves
from its initial value, determined by the corresponding 𝑖𝑛𝑖𝑡 atemporal fluent, at the moment
when situation starts. To simplify our example let us assume that the balls move along straight
lines instead of physically correct quadratic trajectories. Then, the equation for both height and
velocity are linear wrt time. (Recall that the acceleration due to gravity is 9.81)

vel(b1, 0, 0, []). vel(b2, 0, 0, []).
vel(B, V,T, S) :- not falling(B, S), not flying(B, S), V $= 0.
vel(B, V,T, S) :- falling(B, S), /* 2nd context: ball is falling */

init_vel(B, OldVel, S), start(S, T1), T $>= T1,
V $= OldVel + 9.81*(T - T1). /* OldVel >0, ball B accelerates */

vel(B, V,T, S) :- flying(B, S), /* 3rd context: ball is flying */
init_vel(B, OldVel, S), start(S, T1), T $>= T1,
V $= OldVel + 9.81*(T - T1). /* OldVel < 0, ball B decelerates */

dist(b1,100,0,[]). dist(b2,150,0,[]). /*NB: different initial heights*/
dist(B, D,T, S) :- not falling(B, S), not flying(B, S),

init_dist(B,D,S). /*the ball at rest remains where it was before*/
dist(B, D,T, S) :- falling(B, S), /* 2nd context: ball is falling */

init_dist(B, OldDist, S), start(S,T1), T $>= T1,
D $= OldDist - 0.5*9.81*(T-T1). /*D decreases if B falls down*/

dist(B, D,T, S) :- flying(B, S), /* 3rd context: ball is flying */
init_dist(B, OldDist, S), start(S,T1), T $>= T1,

D $= OldDist + 0.5*9.81*(T-T1). /*D increases if B moves up*/

Notice that SEA introduce new equality constraints on the physical quantities represented as
the arguments of temporal fluents. These constraints are collected in our constraint store. They
can be evaluated when the planner checks whether a goal state was reached or not. Thanks to our
modeling simplification, all the constraints on the variables are linear. Therefore, if the planning
instance has an associated metric that is also a linear function of its arguments, then optimization
reduces to solving the linear programming problem.



As an illustration, we solved the following planning problem for the two balls: find the earliest
moment of time such that each ball reached its peak at least once, both balls are falling, the veloci-
ties of the two balls are equal, and their heights are also equal. Checking these goal conditions
reduces to the linear programming problem that can be solved using the external solver interfaced
with our PROLOG program. We solved this planning instance with an uninformed iterative
deepening depth-first search (DFS) planner [57] using a computer with an Intel(R) Core(TM)
i7-11700K CPU running at 3.60GHz. The planner and a problem instance have been loaded,
compiled and run within ECLiPSe Constraint Logic Programming System, Version 7.0 #63
(x86_64_linux), released on April 24, 2022. This system is equipped with the EPLEX library
[88] that supports external Linear Programming solvers from within ECLiPSe. Specifically, we
used a CLP/CBC solver from the COIN-OR open-source project (eplex_osi). The program found
a correct 8 step plan in 0.18 seconds: [drop(b2, 0), bounce(b2, 30.581039755351682), drop(b1,
50.9683995922528), atPeak(b2, 61.162079510703364), catch(b2, 71.35575942915392), bounce(b1,
71.35575942915392), drop(b2, 91.743119266055047), atPeak(b1, 91.743119266055047)]. Notice that
this plan must be clever since the two balls had different initial heights.1 The EPLEX library
is designed to interface with linear programming solvers only. For this reason, the trajectory
of the bouncing ball was approximated as a linear function of time, since otherwise a different
non-linear programming external solver would be required, and EPLEX could not be used.

Note that a simple DFS planner from [57] can be adapted to solve this planning problem for
bouncing balls because the goal state is encoded with the rule that calls (through EPLEX) an
external linear programming solver to minimize the total time taken by the plan actions, but
everything else in search is the same as in the case of solving planning problems for a BAT.
However, it is clear that for solving more complex planning problems, uninformed depth-first
search would not work. In the next section, we present a greedy best-first search (GBFS) planner
guided with a domain independent numerical heuristic that is more suitable for hybrid systems,
and that can work in the cases if temporal fluents change according to arbitrary non-linear
functions of time.

In a general case, each context in HTSC corresponds to its own system of ODEs, and therefore,
each context determines its own initial value problem (IVP) for the temporal fluents [93].

The constraints of a planning problem written in the language of HTSC can be formulated
using the Constraint Logic Programming (CLP) framework [27, 28, 51]. They are implemented
as a PROLOG program, where constraints are usually included into the precondition axioms for
actions, the state evolution axioms for temporal fluents and the problem objective function.

We would like to emphasize that we are aware of previous research that employed CLP in the
analysis of hybrid systems, e.g., see the papers [95, 45, 49] and the references there. That earlier
research focused on timed automata, or timed push-down automata that take as input infinite
stream of signals, or worked only with hybrid automata where continuous change is linear over
time, but the previous papers did not consider near-optimal planning over relational non-linear
hybrid systems, as we do here.

1The source code of this example is available at https://www.cs.torontomu.ca/~mes/publications/

https://www.cs.torontomu.ca/~mes/publications/


3. Methodology

The NEAT planner is a deductive planner that does heuristic search over situations in a situation
tree, rather than over state space. It is a planner somewhat similar to the planner that is described
in [92], but the planner described there is based on progression, and it can do 𝐴* search, while
NEAT solves the projection problem using regression, and it does GBFS rather than 𝐴* search.
Our NEAT planner implemented in PROLOG builds on an implementation [91], and it reasons
only about the (logical) atemporal fluents. In order to reason about numerical constraints on
temporal fluents, we use an external efficient Non-Linear Programming (NLP) solver, and hence
we rely on the semantics of CLP [51, 64].

Since EPLEX library provides an interface to only linear programming solvers, but we explored
the benchmarks with non-linear functions, the NEAT planner required a different library AMPLEX
that is described in [66]. The AMPLEX interface has been developed similarly to EPLEX [88].
More specifically, AMPLEX collects inequality and equality constraints as strings and passes
them to the well-known AMPL software [35, 3]. AMPL software does preprocessing of the input
and produces a request for solving a non-linear programming problem (NLP) to a specialized
mathematical programming solver. In our experiments, AMPLEX together with AMPL delegate
the NLP problems from the planner to the state-of-the-art proprietary NLP solver Knitro developed
by Artelys [18, 4]. Note that the NEAT planner has to solve a NLP problem on every step of
its planning process. Namely, whenever the NEAT planner selects the next action to execute, it
has to check whether the goal state is reached, and this involves sending the corresponding NLP
problem to the external solver.

Note that when NEAT produces a tentative sequence of actions, all their object arguments are
instantiated, but (continuous) time arguments are not. Similarly, the values of domain specific
temporal fluents and other continuous change related variables participating in the constraints
remain to be determined. Given a tentative plan skeleton with uninstantiated values for the action
timestamps, the external NLP solver finds a near-optimal solution (if it exists) that satisfies all
constraints. Thanks to this approach, we do not need to discretize time or any other physical
quantities. Their values are computed by an external NLP solver as a result of solving an
optimization problem. In the current version of NEAT, we use only one metric related to finding
the shortest total time for reaching a goal state, but other objectives can be easily accommodated
as well. Since our planner utilizes PROLOG’s built-in resolution and substitution algorithms to
instantiate possible actions at run time, it can work without producing first a (potentially large)
instantiated transition system before searching for a reachable sequence of actions. Thus, we can
do lifted planning that works at the level of action schemas. Notice that our approach significantly
differs from the Answer Set Planning [6, 90], because we do not need to perform grounding of
fluents and actions in advance. (However, we can do conformant planning without CWA similarly
to [34, 8]. Exploring this in the context of hybrid systems is future work.)

Our NEAT planner is based on the assumption that there is proper alignment between the
numerical goal conditions and the logical goal conditions. Namely, we assume that if the
numerical goal conditions are true, then the system reached the goal state and the logical goal
conditions are satisfied. This assumption holds for the most of the benchmark domains. Therefore,
in the practical domains where the numerical and logical conditions are well aligned, solving an
optimization problem is sufficient for solving the planning problem.



To guide search we employ a novel NLP heuristic that computes an approximation of the
objective function for the original planning problem. This heuristic is non-trivial, and it builds on
advanced mathematical research in the area of optimal control. More specifically, our heuristic
function follows the approach proposed by Revaz Gamkrelidze to establish existence of solutions
to an extended class of optimal control problems [39]. Gamkrelidze called his approach to control
as “sliding modes" or “sliding regimes". This approach is also known as convexification, or as
relaxed controls, generalized controls, or as extended controls because all individual changes
slide together as a bundle. Gamkrelidze described his approach in the textbook [38] that is based
on his lectures at the Tbilisi State University (in Georgia). Later, it was understood that his
approach is essentially equivalent to an approach independently developed by L.C. Young and E.J.
McShane, e.g., see L.Cesari’s notes to the first chapter in [24]. It turned out, that Gamkrelidze’s
approach has strong kinship with intuition that motivated [14].2 The interested readers can find a
related detailed discussion in [5]. Informally, our heuristic evaluates each action in terms of its
contribution to the task of reaching the goal state as soon as possible. If the tentatively chosen
action is the right thing to do, then the system can reach the goal sooner, rather than later. The
heuristic imagines that all processes can slide altogether and assigns weights to their effects.
Then, the heuristic computes the values of all temporal fluents in several discrete moments of
time, and thereby it produces a NLP that is delegated to an external NLP solver. It returns an
approximation to the minimal time (required to reach the goal state) that determines priority
of a chosen action in the priority queue. Since we assume that the numerical and logical goal
conditions are properly aligned, by evaluating the minimal time required to reach the numerical
goal conditions, our heuristic estimates how well each of the next possible actions contributes to
reaching the goal state sooner.

In contrast to the previous hybrid system planners, our domain independent heuristic does not
impose any limitations on the type of non-linear functions that can be considered. Therefore,
NEAT can do informed best-first greedy search even if temporal fluents change according to non-
polynomial functions such as 𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠(𝑥), 𝑙𝑜𝑔(𝑥), 𝑒𝑥,

√
𝑥, etc. Our preliminary experiments

with PDDL+ benchmarks show that our approach is comparable with existing model-based and
SAT-based approaches to temporal numeric planning. This is discussed in the next section. Recall
that the PDDL [46], the Planning Domain Description Language, was created to standardize input
to the automated AI planners, PDDL 2.1 enhanced PDDL with numerical fluents and durative
actions [36], and PDDL+ is an extension to deal with mixed discrete-continuous domains such as
hybrid systems [37, 10].

Initially, we had developed an automated translator in Python from PDDL+ benchmarks [52]
to HTSC following the semantics in [10]. Later, we have changed our implementation of HTSC
and realized that there are less than 10 popular PDDL+ benchmarks that are somewhat weak
and limited. Therefore, we decided to abandon automatic translation. Nevertheless, our HTSC
implementations of the PDDL+ domains and planning instances are faithful and direct translations
of the original PDDL+ benchmarks with a few exceptions that we explain below. No additional

2Nikolay Bogolyubov (also transliterated as Bogoliubov or Bogoliouboff) published [14] when he was 20, soon after
completing his PhD in Kyiv University in 1928. His paper impressed Leonida Tonelli, an Italian mathematician who
contributed to the calculus of variations, so that Bogolyubov was awarded the Bologna Academy of Sciences Prize
and the degree of doctor of mathematics in 1930. See the details in the Wikipedia article https://en.wikipedia.org/
wiki/Nikolay_Bogolyubov

https://en.wikipedia.org/wiki/Nikolay_Bogolyubov
https://en.wikipedia.org/wiki/Nikolay_Bogolyubov


information was encoded in the process of manual translation of the domain into HTSC, and
hence there is no performance advantage gained over an automatic translation of the domain.
Moreover, it is well-known that PROLOG has a built-in order of executing clauses from the top
to the bottom, and this applies to the precondition axioms in the aforementioned DFS planner.
However, in the case of NEAT, this order has no effect on the performance of our planner, since
when a situation is removed from the priority queue, we compute all actions that are possible in
that situation, compute heuristic values for all successors, and insert them into the priority queue.
Therefore, only heuristic priorities of situations determine which situation will be expanded next,
not the order of clauses in our program, and not the order of inserting situations into the priority
queue. Similar remarks apply to computing the values of temporal fluents inside the heuristic
function: rearranging the SEAs in the program differently would have no effect on run time.

There are the following limitation of the current version of NEAT. First, the PDDL+ benchmarks
use the construct #𝑡 [10, 46] to formulate ODEs, and the implementations of PDDL+ planners
do pre-processing of a few built-in simple ODEs to match their syntactic expressions with the
corresponding functions of time. Instead, we opted to solve each benchmark ODE manually and
encode the resulting function directly in our SEAs for temporal fluents. We leave the task of
solving a few classes of ODEs (that can be symbolically solved using algebraic techniques as
in [80]) to future work. Second, the current version of NEAT does not implement the PDDL+
“overall" construct that imposes global numerical constraints that must hold over an interval
of time while a durative action is being executed. This is not a significant limitation for the
benchmarks that we considered, since we encoded the required constraints in the PAs of the agent
actions. A domain independent implementation of global numerical constraints is left to future.

4. Experimental Results

We perform direct comparisons between our planner, NEAT [66], and the existing state-of-the-art
non-linear temporal numeric planners for which open source implementations are readily avail-
able, namely, DiNo [77], ENHSP [86, 85] and SMTPlan+ [21, 22]. These planners demonstrate
markedly better performance than their counterparts on a number of benchmarks [52]. We also
discuss an indirect comparison between NEAT and two other planners, dReach [53, 17] and CASP
[6]. Both DiNo and ENHSP are model-based planners that discretize time and reduce the temporal
numeric planning problem to a numeric planning problem (without time). Both use different
heuristics to efficiently search the grounded transition graph. We run default configurations and
used the 2018 release of ENHSP. SMTPlan+ reduces the temporal numeric planning problem to
a Satisfiability Modulo Theories (SMT) problem [7] and does not discretize time. No domain-
independent heuristic is used apart from computational tricks already built into the underlying
SMT solver Z3. dReach transforms the hybrid automaton representation of the planning problem
into an SMT. CASP is a planner that reduces the temporal numeric planning problem into an
answer set programming problem (ASP). The authors did not develop an automated translator
from PDDL+ to ASP, and hence we were unable to perform a direct computational comparison.
There are a few other well-known PDDL+ planners, e.g., [75, 15, 33, 31], that were not included
into this experimental work because they were previously discussed and compared with one of
DiNo, ENHSP, SMTPlan+, or because their source code was not readily available.



In each domain, the planners are given 30min to solve the instance and 1 GB of memory. The
tests were run on a Intel(R) Core(TM) i7-3770 CPU with 3.40GHz clock speed. In terms of
metrics, we focused on (1) execution time (in seconds) which describes how long the planner
takes to find a plan, (2) coverage which describes how many instances were successfully solved
before timing out or running out of memory, (3) plan duration (in time units) which is a measure
of plan optimality, namely, how long the produced plan takes to execute from start to finish, and
sometimes, (4) plan length which is the number of steps in the plan.

For direct comparisons between DiNo, ENHSP and SMTPlan+, we ran our tests on the
standard set of PDDL+ benchmarks [52]: Linear Generator, Car, and Nonlinear Solar Rover.
These benchmark domains are extensively discussed in [52, 77, 22].

The Linear Generator domain consists of a single generator with an initial fuel level and several
refueling tanks of fixed volume that can be used only once. A satisfying plan must ensure that
the generator has sufficient fuel to run for 1000 time units at a rate of 1 liter per time unit by
scheduling refueling actions. We generate 50 instances of the domain with decreasing initial
levels of fuel by units of 20 in the generator and an increasing number of tanks by units of 1,
starting from 980 units of fuel and a single tank, respectively.

Figure 2: Graph of planner execution times on the linear generator domain

On the Linear Generator domain, our planner achieves better performance than SMTPlan+
solving 37/50 benchmark instances, while SMTPlan+ solved only 13 out of 50 instances. NEAT
is outcompeted by DiNo (𝜖 = 0.1, 𝑇 = 10000) and ENHSP (𝜖 = 1) that solved 50/50 of the
planning instances, albeit with a coarse time discretization. Looking at the data collected in



Instance 1 5 10 15 20 25 30 35 40 45 50
DiNo 19.60 25.76 37.81 54.01 71.83 90.76 109.81 126.80 140.82 152.64 159.90
ENHSP 3.60 6.89 12.33 22.13 36.30 57.12 84.80 123.48 178.02 237.27 300.50
SMTPlan+ 0.03 0.07 1.82 - - - - - - - -
NEAT 0.57 2.96 13.91 44.27 119.63 285.67 630.29 1312.26 - - -

Table 1
Linear Generator Results - Instance to Execution Time (sec)

[6], CASP is only able to solve 8/50 benchmark instances. According to [21], dReach performs
poorly and it is outcompeted by SMTPlan+ in every benchmark. Analyzing Figure 2, we see that
DiNo and ENHSP scale linearly as the number of tanks increases. It should be noted that manual
intervention with the discretization factor was required for ENHSP to produce a plan. The linear
performance can be attributed to DiNo’s symmetry-breaking techniques in the model-checker.
In symmetry-breaking, an order upon the actions is imposed - greatly reducing the number of
possible actions in a state and hence this significantly reduces the search space. SMTPlan+ also
uses symmetry-breaking techniques in the SMT solver, but it solves few instances. Likely, due to
grounding, the planner is unable to scale up. By contrast, the performance of NEAT is somewhere
in the middle between the non-discretizing and discretizing planners in terms of coverage, but it
exhibits exponential growth, unlike DiNo, when the number of refueling tanks increases. The
reason for this is twofold. First of all, the current implementation of NEAT does not employ any
symmetry-breaking techniques, and therefore it has to reason about the growing sequence of
actions in each situation as the number of tanks increases. Secondly, the current implementation
of the Poss predicate is simple, and it does not scale up as the sequence of actions gets longer.

We use Cashmore’s variant of the Car domain found in [21], where a car must travel a specified
distance of at least 30 units in as short a time as possible without overheating the engine that
happens if the car exceeds a velocity threshold. This is done by accelerating or decelerating the
car in a timely manner. We generate 50 instances of the domain with varying upper and lower
bounds for integer acceleration and deceleration, starting at 1 and -1, respectively. While this
domain can be trivially solved with a single accelerate action followed by a single decelerate
action, solving the problem optimally requires scheduling multiple accelerate actions, and then
gradually decelerating to arrive at a goal distance of 30 units with zero velocity at the shortest
possible time. We note that there is another non-linear version of this domain with an additional
wind resistance process that has a non-linear effect on the velocity of the car. We report here the
results collected from a simplified version found in [21], without the wind resistance process.

The HTSC axioms for the Car domain are provided in [10]. Since the SEAs require there are
only finitely many temporal change axioms, but potentially there are infinitely many accelerations,
we take advantage of the upper and lower limits on acceleration that are present in each PDDL+
instance. Namely, we encode in each instance that there are finitely many integer acceleration
values available and enforce that there might be only one moving process at a time with a specific
acceleration. Whenever the planner does an accelerate or a decelerate action, a natural action
must occur next that ends the moving process with the previous acceleration, and then another
natural action must occur that starts a new moving process with the new acceleration value. The
precondition axioms make sure that only this sequence of natural actions is possible. This is
similar to the distinction between the agent and natural actions in the bouncing ball example.



Figure 3: Graph of planner execution times on the car domain

Instance 1 5 10 15 20 25 30 35 40 45 50
DiNo (𝜖=0.1) - - - - - - - - - - -
ENHSP (𝜖=0.1) - - - - - - - - - - -
ENHSP (𝜖=1) 0.71 0.84 0.75 0.75 0.79 0.72 0.88 0.72 0.82 0.73 0.74
SMTPlan+ 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
NEAT 2.78 3.13 3.38 3.72 3.95 4.48 5.44 5.36 150.86 - -

Table 2
The results for the Car domain - Instance to Execution Time (sec)

In this second benchmarking domain, Car, the discretizing planners, DiNo (𝜖 = 0.1, 𝑇 =
10000) and ENHSP, do not perform well and aren’t able to solve any of the benchmark instances
with a discretization factor of 0.1. ENHSP (𝜖 = 1) solved all 50 instances but with a coarse
discretization 1. SMTPlan+ performs very well and is able to solve all instances of the benchmark.
However, SMTPlan+ produces the same short plan to trivially satisfy all instances, while longer
plans could be used to reach the goal in a shorter amount of time. More specifically, SMTPlan+
finds a plan that accelerates the car once at the beginning, and then one time unit later decreases
acceleration, so that the car travels with a constant velocity of 1 per time unit before it reaches
the required distance of 30 units, taking in total 32 time units. Both ENHSP and NEAT find plans
of shorter duration, and NEAT finds the fastest plans. Looking at the asymptotic behavior of
CASP on the Car domain, we see that the time to solve remains constant. Therefore, we believe it
would have been able to solve all instances of the Car domain. However, no comments about
the optimality of the plans were made by the authors. Our planner can solve 43/50 instances,
but produces plans of better quality in terms of optimality than all other planners. Namely, it



finds a plan that does several accelerate actions consecutively before it does several decelerate
actions. This produces plans that have a total duration of less than 9 time units. From Figure 3,
we see that SMTPlan+’s time to solve remains constant, which is expected since SMTPlan+
first evaluates if all shorter plans are feasible solutions before attempting longer ones. This is
at the cost of optimality, unlike NEAT, which exhibits very slow linear growth, but times out at
instance 44 because the heuristic evaluation function resulted in NEAT choosing an erroneous and
excessively long action sequence. ENHSP with a coarse discretization also has a time to solve
that remains constant, this is because its heuristic results in it choosing the same plan regardless
of the planning instance even if more optimal plans are available. It should be noted that when
tested with an upper bound 15 on the plan’s length, NEAT is able to solve all instances of the
domain in constant time like SMTPlan+ and ENHSP.

Instance 1 5 10 15 20 25 30 35 40 45 50
DiNo 26.75 64.39 112.18 157.43 205.48 252.78 300.95 352.44 398.26 443.26 485.44
NEAT 4.41 6.95 8.53 4.75 4.31 4.02 4.24 3.31 3.96 4.20 4.28

Table 3
Non-linear Solar Rover Results - Instance to Execution Time (sec)

Figure 4: Graph of planner execution times on the non-linear solar rover domain

In the last domain, a non-linear Solar Rover, a rover must wait for the sun to rise in order to
charge its main solar battery or drain backup batteries to increase the charge of the main battery.
Once a certain level of charge is reached for the main battery, the rover is able to complete
its mission and send data without depleting its energy reserves. The solar charging process is
governed by an ODE that is dependent on the initial state of charge of the battery, and thus



optimal plans should include draining the backup batteries, in order to reach the required charge
level as quickly as possible.

We generated 50 instances with different times for when the sun rises, initially starting at 50
time units and increasing by increments of 50 up to 2500 time units. Our planner can solve
all instances. Out of the discretizing planners, only DiNo (𝜖 = 0.1, 𝑇 = 10000) can solve all
instances, but it doesn’t produce optimal plans. SMTPlan+ is unable to solve any of the instances
because it is unable to model continuous change that isn’t polynomial over time during charging
process and throws an error on the linear variant of the benchmark. ENHSP was incapable of
compiling the planning domain file. No benchmark data are available for dReach and CASP.
Looking at Figure 4, we see that as the instance number increases, DiNo takes a longer amount of
time to solve each problem instance, increasing linearly with the instance number, unlike NEAT
which takes a constant amount of time to solve the problem regardless of the time horizon.

From these benchmarks, we see that our NEAT planner performs well in domains where there
are several objects, competing well with SMTPlan+, dReach and CASP. Our planner compares
well with DiNo and ENHSP in the domains where plan optimality was important. Finally, note
that this version of the NEAT planner was implemented in a few months by a Master student [66].
In a recent simplified version of NEAT, the total code size is relatively small. Namely, the planner
and heuristic together have less than 50 PROLOG rules and make about 150 calls to predicates in
total, i.e, the program is short and elegant.

5. Discussion and Future Work

Recently, we learned about research related to timeline-based planning, e.g., see [25, 12]. Since
the underlying framework is very different from HTSC, it may take some time to research the
conceptual differences between NEAT and timeline-based planning, and to understand if there
are common computational intuitions behind the heuristics.

Since our planner checks goal conditions for each new situation visited, it returns a correct
plan for the benchmarks that we explored. It is doable to prove formally that our planner is
sound under the reasonable assumptions. Completeness cannot be attained in general, due to
undecidability of the reachability problem in non-trivial hybrid systems. It is interesting and
important question how closely and under what conditions our planner can approximate optimal
plans on realistic benchmarks.

Since only one NLP solver Knitro was explored in [66], the natural question is how the
performance of the planner will be affected by using alternative NLP solvers. Moreover, the
planner submits incrementally growing NLPs to the external solver, and if the solver can warm-
start in the same region that has been already constructed from the previous set of constraints,
then the time to answer repeatedly growing NLP queries could be significantly reduced. We are
exploring both these directions, and they remain important directions of the near-term research.

Since our approach does not require grounding before planning can start, it is our hypothesis
that our approach can scale up to compute near-optimal plans for larger relational hybrid systems.
This hypothesis can be verified by exploring the unit commitment problem instances with
a few 100s of objects. There are several large benchmark instances for the unit commitment
problem. There is a related experimental research on developing more informative and less limited



benchmarks, and we hope that [73] will serve as the starting point to address this challenge.
We are aware that the Operations Research (OR) community usually solves the large-scale

optimization problems for hybrid systems by modelling the problem as a Mixed Integer Linear
Programming problem (MILP) [62, 100], and then using approximations of feasible solutions to
find an optimum. Often, MILP is chosen over Mixed Integer Non-Linear Programming (MINLP)
[11, 98], since MILP scales up better than MINLP. However, because the MILP formulation fails
to capture the underlying non-linear dynamics, the solutions are not optimal.

It is our hypothesis that our approach can achieve better performance on such domains. Our
reasoning is as follows. We do not discretize time in contrast to MILP-based methods which
allows us to accurately represent the continuous evolution of the system. Additionally, we
represent faithfully the non-linear dynamics of the system which results in a better objective
function cost. Lastly, to deal with combinatorics of a large search space MILP methods employ
somewhat crude approximation heuristics based on the problem’s underlying numerical structure
that does not preserve the meaning of the original hybrid system, and they disregard the semantics
of the underlying dynamical system. In contrast, a theorem-based proving approach like NEAT
captures well this semantics thanks to CLP.

In conclusion, we remind that there were previous publications about potential relative
advantages of Constraint Programming (CP), and specifically CLP, over OR modelling and
solution methods, e.g., see [43, 89], as well as proposals to integrate advantages of logic based
methods with OR [50, 71, 72, 99]. However, the previous work considered CP and CLP broadly,
while we focus specifically on using CLP for near-optimal planning in relational hybrid systems.
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6. Appendix: Bouncing Ball Example

1. Precondition Axioms
a) Action 𝑑𝑟𝑜𝑝

∀𝑠∀𝑡∀𝑏. 𝑝𝑜𝑠𝑠(𝑑𝑟𝑜𝑝(𝑏, 𝑡), 𝑠) ↔ 𝑏𝑎𝑙𝑙(𝑏) ∧ ¬𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ ¬𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡(𝑠).

b) Action 𝑐𝑎𝑡𝑐ℎ
∀𝑠∀𝑡∀𝑏. 𝑝𝑜𝑠𝑠(𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡), 𝑠) ↔ 𝑏𝑎𝑙𝑙(𝑏) ∧ (𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∨ 𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠)) ∧ 𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡(𝑠).

c) Action 𝑏𝑜𝑢𝑛𝑐𝑒
∀𝑠∀𝑡∀𝑏. 𝑝𝑜𝑠𝑠(𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡), 𝑠) ↔ 𝑏𝑎𝑙𝑙(𝑏) ∧ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏, 𝑡, 𝑠)=0 ∧

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑏, 𝑡, 𝑠) ≥ 𝜖 ∧ 𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡(𝑠).

d) Action 𝑎𝑡𝑃𝑒𝑎𝑘
∀𝑠∀𝑡∀𝑏. 𝑝𝑜𝑠𝑠(𝑎𝑡𝑃𝑒𝑎𝑘(𝑏, 𝑡), 𝑠) ↔ 𝑏𝑎𝑙𝑙(𝑏) ∧ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏, 𝑡, 𝑠) ≥ 0 ∧

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑏, 𝑡, 𝑠) = 0 ∧ 𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡(𝑠).

2. Successor State Axioms for Relational Atemporal Fluents



a) Atemporal fluent 𝑓𝑎𝑙𝑙𝑖𝑛𝑔
(∀𝑎∀𝑠∀𝑏). 𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑑𝑜(𝑎, 𝑠)) ↔ ∃𝑡(𝑎=𝑑𝑟𝑜𝑝(𝑏, 𝑡)) ∨ ∃𝑡(𝑎=𝑎𝑡𝑃𝑒𝑎𝑘(𝑏, 𝑡))∨

(¬∃𝑡(𝑎=𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡)) ∧ ¬∃𝑡(𝑎=𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡)) ∧ 𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠))

b) Atemporal fluent 𝑓𝑙𝑦𝑖𝑛𝑔
(∀𝑎∀𝑠∀𝑏). 𝑓 𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑑𝑜(𝑎, 𝑠)) ↔ ∃𝑡(𝑎=𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑡))∨

(¬∃𝑡(𝑎=𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡)) ∧ ¬∃𝑡(𝑎=𝑎𝑡𝑃𝑒𝑎𝑘(𝑏, 𝑡)) ∧ 𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠))

3. Successor State Axioms for Initial Values
a) Fluent 𝑖𝑛𝑖𝑡𝑣𝑒𝑙

(∀𝑠∀𝑦∀𝑎∀𝑏). 𝑖𝑛𝑖𝑡𝑣𝑒𝑙(𝑏, 𝑑𝑜(𝑎, 𝑠))=𝑦 ↔ ∃𝑦0.𝑦0=𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡𝑖𝑚𝑒(𝑎), 𝑠)∧
∃𝑡(𝑎=𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡) ∧ 𝑦 = 0)∨

∃𝑡(𝑎=𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡) ∧ 𝑦 = −𝑦0)∨
(¬∃𝑡(𝑎=𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡)) ∧ ¬∃𝑡(𝑎=𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡)) ∧ 𝑦=𝑦0).

b) Fluent 𝑖𝑛𝑖𝑡𝑑𝑖𝑠𝑡
(∀𝑠∀𝑦∀𝑎∀𝑏)𝑖𝑛𝑖𝑡𝑑𝑖𝑠𝑡(𝑏, 𝑑𝑜(𝑎, 𝑠))=𝑦 ↔ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖𝑚𝑒(𝑎), 𝑠)=𝑦

4. State Evolution Axioms for Temporal Functional Fluents
a) velocity

(∀𝑠∀𝑡∀𝑏).𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑏, 𝑡, 𝑠)=𝑦 ↔ ∃𝑦0.𝑦0= 𝑖𝑛𝑖𝑡𝑣𝑒𝑙(𝑏, 𝑠) ∧
(¬𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ ¬𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦=𝑦0)∨

(𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦=𝑦0 +
∫︀ 𝑡
𝑠𝑡𝑎𝑟𝑡(𝑠) 9.81𝑑𝑥)∨

(𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦=𝑦0 +
∫︀ 𝑡
𝑠𝑡𝑎𝑟𝑡(𝑠) 9.81𝑑𝑥).

b) distance
(∀𝑠∀𝑡∀𝑏).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏, 𝑡, 𝑠)=𝑦 ↔ ∃𝑦0.𝑦0= 𝑖𝑛𝑖𝑡𝑑𝑖𝑠𝑡(𝑏, 𝑠) ∧

(¬𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ ¬𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦 = 𝑦0)∨(︀
𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦 = 𝑦0 −

∫︀ 𝑡
𝑠𝑡𝑎𝑟𝑡(𝑠)(9.81 · 𝑥) 𝑑𝑥

)︀
∨(︀

𝑓𝑙𝑦𝑖𝑛𝑔(𝑏, 𝑠) ∧ 𝑦 = 𝑦0 +
∫︀ 𝑡
𝑠𝑡𝑎𝑟𝑡(𝑠)(9.81 · 𝑥) 𝑑𝑥

)︀
.

5. Foundational Axioms for Situations and Time (from Chapters 4 and 7 of [84]).
∀𝑎1∀𝑎2∀𝑠1∀𝑠2.𝑑𝑜(𝑎1, 𝑠1) = 𝑑𝑜(𝑎2, 𝑠2) → 𝑎1=𝑎2 ∧ 𝑠1=𝑠2
∀𝑠.¬(𝑠 ⊏ 𝑆0)
∀𝑎∀𝑠∀𝑠′.𝑠 ⊏ 𝑑𝑜(𝑎, 𝑠′) ↔ 𝑠 ⊑ 𝑠′, where 𝑠 ⊑ 𝑠′ means (𝑠 ⊏ 𝑠′ ∨ 𝑠=𝑠′)
∀𝑃.(𝑃 (𝑆0) ∧ ∀𝑎∀𝑠(𝑃 (𝑠) → 𝑃 (𝑑𝑜(𝑎, 𝑠)))) → ∀𝑠𝑃 (𝑠)
∀𝑎, 𝑠′.𝑑𝑜(𝑎, 𝑠′) ⊑ 𝑠 → (𝑝𝑜𝑠𝑠(𝑎, 𝑠′) ∧ 𝑠𝑡𝑎𝑟𝑡(𝑠′) ≤ 𝑡𝑖𝑚𝑒(𝑎))∧

∀𝑎′
(︀
𝑝𝑜𝑠𝑠(𝑎′, 𝑠) ∧ 𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑎′) ∧ 𝑎 ̸= 𝑎′ → 𝑡𝑖𝑚𝑒(𝑎′) ≤ 𝑡𝑖𝑚𝑒(𝑎)

)︀
∀𝑎. 𝑠𝑡𝑎𝑟𝑡(𝑑𝑜(𝑎, 𝑠)) = 𝑡𝑖𝑚𝑒(𝑎)
𝑠𝑡𝑎𝑟𝑡(𝑆0) = 0

6. Domain Specific Axioms for the Bouncing Ball Example
∀𝑡,∀𝑏.𝑡𝑖𝑚𝑒(𝑑𝑟𝑜𝑝(𝑏, 𝑡))= 𝑡 ∀𝑡,∀𝑏.𝑡𝑖𝑚𝑒(𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡))= 𝑡
∀𝑡,∀𝑏.𝑡𝑖𝑚𝑒(𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡))= 𝑡 ∀𝑡,∀𝑏.𝑡𝑖𝑚𝑒(𝑎𝑡𝑃𝑒𝑎𝑘(𝑏, 𝑡))= 𝑡.
∀𝑡∀𝑏.𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑎𝑡𝑃𝑒𝑎𝑘(𝑏, 𝑡)) ∀𝑡∀𝑏.𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑏𝑜𝑢𝑛𝑐𝑒(𝑏, 𝑡)).
∀𝑡∀𝑏.𝑎𝑔𝑒𝑛𝑡(𝑑𝑟𝑜𝑝(𝑏, 𝑡)) ∀𝑡∀𝑏.𝑎𝑔𝑒𝑛𝑡(𝑐𝑎𝑡𝑐ℎ(𝑏, 𝑡)).

7. Initial Theory



𝑏𝑎𝑙𝑙(𝑏1) 𝑏𝑎𝑙𝑙(𝑏2)
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑏1, 0, 𝑆0) = 0 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑏2, 0, 𝑆0) = 0
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏1, 0, 𝑆0) = 100 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏2, 0, 𝑆0) = 150
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