
Characterizing Nexus of Similarity between Entities
Giuseppe Agresta1, Giovanni Amendola1,∗, Pietro Cofone1, Marco Manna1 and
Aldo Ricioppo1

1Department of Mathematics and Computer Science, University of Calabria, Italy

Abstract
Similarities play a significant role in diverse real-world scenarios. Researchers across various fields
have proposed different methodologies for measuring entity similarity and expanding sets of entities
with similar ones. As a result, modern machines are adept at performing these tasks by taking in some
regard relevant interconnected properties shared by entities, which we refer to as nexus of similarity.
To complement existing approaches, we present a very general logic-based framework, equipped with
a suitable formal semantics, for characterizing nexus of similarity between (tuples of) entities of any
knowledge base, namely express such nexus, formally and comprehensively, in a manner that they are
both understandable to machines and humans.

Keywords
Logic-based framework, Formal semantics, Nexus of similarity, Knowledge bases

1. Introduction

In real-life and everyday scenarios, the recognition and reasoning about similarities between
entities often play a significant role. Even at a young age, kids begin to informally describe,
classify, and compare entities. For example, they can easily recognize that both ⟨Paris⟩ and
⟨Rome⟩ are “cities”, and that ⟨Paris⟩ is more similar to ⟨Rome⟩ than to ⟨Gardaland⟩. Growing
up, people become also able to identify and explain relevant interconnected properties shared by
entities, hereinafter called nexus of similarity. Adults can easily agree that ⟨Paris⟩ and ⟨Rome⟩
are both “Europe’s capitals situated on rivers”. Likewise, one can identify nexus of similarity
between 𝑛-ary tuples of entities. For instance, ⟨Tokyo, Tokyo Tower⟩ and ⟨Paris, Eiffel Tower⟩
are fairly similar, as each is a “capital paired with one of its monument being a tower made of
metal”.

As we move towards more complex entities such as goods, services, or health conditions, the
challenges become greater, and the stakes become more interesting and valuable. For example,
in e-commerce, Amazon’s recommendation system may suggest specific smartphones to a user
interested in high-end devices equipped with features like accelerometer, compass, fingerprint,
and Android 14. In the tourism industry, travel agencies may recommend other theme parks to

IPS-RCRA-SPIRIT 2023: Italian Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation of
algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction,
and Reasoning in Italy. November 7-9th, 2023, Rome, Italy [1]
∗Corresponding author.
Envelope-Open gius3ppe.agresta@gmail.com (G. Agresta); giovanni.amendola@unical.it (G. Amendola); pietrocf02@outlook.it
(P. Cofone); marco.manna@unical.it (M. Manna); aldo.ricioppo@unical.it (A. Ricioppo)
Orcid 0000-0002-2111-9671 (G. Amendola); 0000-0003-3323-9328 (M. Manna)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gius3ppe.agresta@gmail.com
mailto:giovanni.amendola@unical.it
mailto:pietrocf02@outlook.it
mailto:marco.manna@unical.it
mailto:aldo.ricioppo@unical.it
https://orcid.org/0000-0002-2111-9671
https://orcid.org/0000-0003-3323-9328
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

a family based on those they have previously visited. Streaming services such as Netflix may
suggest trailers to their customers based on their previous viewing history and preferences. In
medicine, researchers may need to understand why certain individuals are more susceptible
to certain diseases than others. Clearly, in all the considered real-world scenarios, nexus of
similarity play a crucial role.
For over a century, researchers from various fields have proposed a range of approaches to

measure the semantic similarity between entities, usually expressed in the form of a descriptive
rating or a numerical score [2]. For example, computing machines nowadays reached a level of
advancement where they are capable of computing a plausibly high similarity score between
⟨Paris⟩ and ⟨Rome⟩, by taking into account somehow that both of them are “European cities”,
“places situated on rivers”, “capitals located in states that founded the European Economic
Community”, and so on. Moreover, some approaches are also capable of detecting that ⟨Paris⟩
and ⟨Eiffel Tower⟩ are not very similar, despite their high level of relatedness [3]. Finally, by
following the same rationale, machines are also able to classify ⟨Rome⟩ as a “capital” rather
then a “state” or a “park”, by comparing similarity scores between the considered entity and
some class names.

In the past two decades, inspired by “Google Sets” [4], considerable academic and commercial
efforts have been devoted to providing solutions for expanding a given set of entities with
similar ones. The most studied tasks here are entity set expansion [5], entity recommendation [6],
tuples expansion [7], or entity suggestion [8]. For example, via existing approaches one can
expand the set 𝑈 = {⟨Paris⟩, ⟨Rome⟩} and obtain, for example, 𝑈 ′ = 𝑈 ∪ {⟨Amsterdam⟩}; then,
one can reapply the process starting from 𝑈 ′ to obtain, for example, the expanded set 𝑈″ =
𝑈 ′ ∪ {⟨Brussels⟩, ⟨Rio de Janeiro⟩, ⟨Vienna⟩}. Indeed, all the elements of these sets share one or
more of the aforementioned properties, namely “European cities”, “places situated on rivers”,
etc.

Traditional approaches primarily measure similarities within (hyper)text corpora or tabular
data [9, 10]. In recent years, there has been an increasing trend in exploiting structured
knowledge bases (KBs), often represented as knowledge graphs (KGs) [11, 12]. Indeed, ‘the
heterogeneity, semantic richness and large-scale nature of knowledge base make traditional
approaches less effective’ [13].
The work conducted thus far is remarkable, as well as the achieved results. However, there

remain some foundational aspects that, in our perspective, warrant further exploration. We
propose a very general logic-based framework, equipped with a suitable formal semantics, for
characterizing nexus of similarity between (tuples of) entities of any knowledge base, namely
express such nexus, formally and comprehensively, so that the resulting explanations are
readable by both humans and machines.

In Section 2, we introduce the notion of selective knowledge base, and our nexus explanation
language together with an appropriate semantics taking into account summaries. Moreover, we
illustrate how to characterize the nexus of similarity between tuples of entities. In Section 3, we
show how to construct logic formulas, called canonical characterizations, that characterize the
nexus of similarity between tuples of entities. Finally, in Section 5 we draw our conclusions.

Discovery Cove

FloridaUS

theme park

amusement park

Epcot

Prater

AustriaCalifornia

Pacific Park

Gardaland

Italy Leolandia

located

partOf

isa

isa

located

isa

isa

locatedlocated

partOf

isa

located

isa

located

isa

Figure 1: Knowledge Graph 𝒢 underlying the Selective Knowledge Base 𝒮 discussed in Section 2.

2. Framework

Let us assume that we have the Knowledge Graph (KG) 𝒢 illustrated in Figure 1. This graph
can be naturally encoded as the dataset:

�̄� = {isa(Epcot, tp), located(Epcot, Florida), partOf(Florida,US), …}.

Here, tp is a shorthand for theme_park and ap for amusement_park. Additionally, let us
assume that we have an ontology ̄𝑂 that specifies some intentional knowledge enriching the
extensional knowledge already given by �̄�. As an example, we can consider the following
ontology containing a single Datalog rule:

̄𝑂 = {isa(𝑥, 𝑧) ← isa(𝑥, 𝑦), isa(𝑦 , 𝑧)}.

By combining the dataset �̄� and the ontology ̄𝑂, we have the Knowledge Base (KB) ̄𝐾 = (�̄�, ̄𝑂).
As is customary, an atom 𝛼 is entailed by some knowledge base 𝐾 if it occurs in every model of
𝐾; accordingly, the set of atoms entailed by 𝐾 is denoted by ent(𝐾). In our example, the set of
entailed atoms is:

ent(̄𝐾) = �̄� ∪ {isa(𝑐1, 𝑐3) ∶ isa(𝑐1, 𝑐2) ∈ �̄� ∧ isa(𝑐2, 𝑐3) ∈ �̄�}.

Consider now a set 𝑈 of 𝑛-ary tuples of entities, which can be referred to as an anonymous
relation or simply as a unit. For example, we can choose the unit ̄𝑈 = {⟨Discovery Cove⟩,
⟨Epcot⟩} consisting of two unary tuples of entities. To express the nexus of similarity between
the elements of 𝑈, it is indeed necessary to first establish a consensus on the relevant features or
predicates describing any entity in 𝐷. Since such features or predicates might vary depending
on the specific application scenario, we introduce the notion of summary selector.

Definition 1. A summary selector is a computable function 𝜍 that takes as input a KB 𝐾 = (𝐷, 𝑂)
together with an 𝑛-ary tuple 𝜏 of entities from 𝐷, selects a subset 𝑆 of ent(𝐾) containing at least all
the entities in 𝜏, and return 𝑆 enriched with a top atom ⊤(𝑒) for each entity 𝑒 in 𝑆. ■

For the purposes of our example, let us adopt the simple yet effective selector ̄𝜍 that builds,
for each entity 𝑒 in �̄�, the dataset 𝜍(̄𝐾 , ⟨𝑒⟩) as the union of the following sets:

𝐴(𝑒) = {𝑝(𝑒′, 𝑒″) ∈ ent(̄𝐾) ∶ 𝑒′ = 𝑒},
𝐵(𝑒) = {𝑝′(𝑒′, 𝑒″) ∈ ent(̄𝐾) ∶ 𝑝(𝑒, 𝑒′) ∈ 𝐴(𝑒) ∧ 𝑝 ≠ isa ∧ 𝑝′ ≠ isa},
𝐶(𝑒) = {⊤(𝑒′) ∶ 𝑒′ is an entity in 𝐴(𝑒) ∪ 𝐵(𝑒)} ∪ {⊤(𝑒)}.

It is not difficult to see that 𝜍 satisfies Definition 1 and thus it is a summary selector. For instance,
when 𝑒 = Discovery_Cove, we have that

𝐴(𝑒) = {isa(Discovery_Cove, tp), located(Discovery_Cove, Florida)}
𝐵(𝑒) = {partOf(Florida,US)}
𝐶(𝑒) = {⊤(Discovery_Cove), ⊤(tp), ⊤(Florida), ⊤(US)}

Intuitively, in 𝐴(𝑒) we select all knowledge directly connected (at distance 1) to our entity; in
𝐵(𝑒) we select all knowledge connected at distance 2 with our entity, but without involving the
relation isa; and in 𝐶(𝑒) we select all the necessary top atoms.

Definition 2. A selective knowledge base, SKB for short, is a pair 𝒮 = (𝐾, 𝜍), where 𝐾 is a
knowledge base and 𝜍 is a summary selector.

Our goal, now, is to express the nexus of similarity between the tuples of the given 𝑈 with
respect to the considered selective knowledge base 𝒮. According to our running example that
considers the unit ̄𝑈 and the SKB ̄𝒮, by examining the next formula

̄𝜑1 = 𝑥 ← isa(𝑥, ap), located(𝑥, 𝑦), partOf(𝑦 ,US),

where 𝑥 is its free variable (also known as output variable), it is evident that ̄𝜑1 explains some
nexus of similarity between ⟨Discovery Cove⟩ and ⟨Epcot⟩. Indeed, formula ̄𝜑1 says that 𝑥 is an
“amusement park located in some place 𝑦 which, in turn, is part of US”. However, ̄𝜑1 neglects the
additional information that both entities are also located in Florida according to their summaries.
Indeed, for example, the following formula

̄𝜑𝑎 = 𝑥 ← isa(𝑥, tp), isa(𝑥, ap), located(𝑥, Florida), partOf(Florida,US),
⊤(𝑥), ⊤(ap), ⊤(tp), ⊤(Florida), ⊤(US)

better explains the nexus of similarity between the two entities. For characterizing (all) the
nexus of similarity between the tuples of ̄𝑈, we have to both fix a suitable explanation language
and formalize the notion of characterization.
An (open conjunctive) formula is an expression 𝜑 of the form

𝑥1, … , 𝑥𝑛 ← 𝑝1(t1), … , 𝑝𝑚(t𝑚), (1)

where 𝑛 > 0 is its arity, 𝑚 > 0 is its size often denoted by |𝜑|, each t𝑖 is a sequence of terms, each
𝑝𝑖(t𝑖) is an atom, and each 𝑥𝑗 is a variable —called free— occurring in some of the atoms of 𝜑. A
formula 𝜑 is nearly connected if each of its atoms is connected to some free variable of 𝜑. For
example, formula ̄𝜑1 above is nearly connected. Indeed, both isa(𝑥, ap) and located(𝑥, 𝑦) are
connected to the free variable 𝑥 since they explicitly contain 𝑥; moreover, also partOf(𝑦 ,US)
is connected to 𝑥 since it contains the variable 𝑦 which occurs in an atom already marked as
connected to 𝑥. Differently, formula ̄𝜑2 = 𝑥 ← isa(𝑥, ap), partOf(𝑦 ,US) is not nearly connected.

We utilize nearly connected conjunctive formulas, NℂF for short, as the formalism to explain the
nexus of similarity between tuples within a unit, while considering their summaries.
As common in relational databases, a tuple ⟨𝑡1, … , 𝑡𝑛⟩ is an answer to 𝜑 over a dataset 𝐷

if there exists a variable substitution that maps each 𝑥𝑖 to 𝑡𝑖 and each atom of 𝜑 to 𝐷. The
output to 𝜑 over 𝐷 is the set 𝜑(𝐷) of all answers to 𝜑 over 𝐷. For example, ̄𝜑1(�̄�) is the set
{⟨Pacific_Park⟩} and ̄𝜑1(ent(̄𝐾)) is the set {⟨Pacific_Park⟩, ⟨Discovery_Cove⟩, ⟨Epcot⟩}. Since we
deal with summaries, the notion of output of a formula has to be refined. To this end, an instance
of a formula 𝜑 according to some selective knowledge base 𝒮 = (𝐾, 𝜍) is any tuple 𝜏 which is an
answer to 𝜑 over 𝜍(𝐾, 𝜏). Intuitively, if 𝜏 is not an answer to 𝜑 over its summary 𝜍(𝐾, 𝜏), then 𝜑
does not express properties of 𝜏 in terms of the considered scenario; if so, we consider 𝜏 not an
instance of 𝜑 according to 𝒮. The set of all 𝜑-instances is denoted by inst(𝜑, 𝒮).

Definition 3. A nearly connected formula 𝜑 characterizes the nexus of similarity between the
tuples of the unit 𝑈 if both the next conditions hold:

(𝑖) inst(𝜑, 𝒮) ⊇ 𝑈;

(𝑖𝑖) for each nearly connected formula 𝜑′ such that inst(𝜑′, 𝒮) ⊇ 𝑈, it holds that 𝜑(𝐷′) ⊆ 𝜑′(𝐷′)
for every dataset 𝐷′.

Accordingly, we may also say, for short, that 𝜑 characterizes 𝑈, that 𝜑 is a characterization for 𝑈, or
that 𝑈 is characterized by 𝜑 (with respect to 𝒮). ■

It is now clear that formula ̄𝜑1 above expresses some nexus of ̄𝑈, but does not characterize it
with respect to ̄𝒮. Conversely, ̄𝜑𝑎 characterizes ̄𝑈. In the next section, we show how to construct
a (canonical) characterization.
Essentially, having a canonical characterization is important because it shows directly two

results, namely: a) a characterization always exists, which obviously is not an immediate result;
b) such a characterization has a bound in its size with respect to the initial input and this bound
is exponential with respect to the cardinality of the input unit, hence it becomes polynomial
whenever you fix this parameter. The latter is particularly relevant, as often the sets of entities
that we are interested in characterizing in the most diverse scenarios are formed from a few
examples.

3. Canonical characterizations

We first recall and adapt to our purposes some well-known notions from database theory. Then,
we show how to explicitly build a canonical characterization of the 𝑛-ary unit 𝑈={𝜏1, … , 𝜏𝑚}
according to 𝒮=(𝐾, 𝜍), called can(𝑈 , 𝒮).

Definition 4. Consider the 𝑛-ary tuples ̄𝜏1, … , ̄𝜏ℓ. Their direct product, hereinafter denoted by
̄𝜏1 ⊗ … ⊗ ̄𝜏ℓ, is the sequence 𝑑 ̄s1 , … , 𝑑 ̄s𝑛 of constants, where s̄𝑖 is the sequence ̄𝜏1[𝑖], … , ̄𝜏ℓ[𝑖], for each
𝑖 = 1, … , 𝑛.1 Accordingly, given 𝑘 datasets 𝐷1, … , 𝐷𝑘, their direct product is the dataset

1The direct product of tuples is usually defined as a binary operation. Given two 𝑛-ary tuples, 𝜏 = ⟨𝜏[1], … , 𝜏 [𝑛]⟩ and

{𝑝(⟨𝑐11 , … , 𝑐𝑛1⟩ ⊗ … ⊗ ⟨𝑐1𝑘 , … , 𝑐𝑛𝑘 ⟩) ∶ 𝑝(𝑐11 , … , 𝑐𝑛1) ∈ 𝐷1, … , 𝑝(𝑐1𝑘 , … , 𝑐𝑛𝑘) ∈ 𝐷𝑘}

hereinafter denoted by 𝐷1 ⊗ … ⊗ 𝐷𝑘. ■

Let us illustrate these notions with a simple example.

Example 1. Consider the following three binary tuples ⟨1, 2⟩, ⟨3, 4⟩, and ⟨5, 6⟩. Hence, their direct
product is the sequence

⟨1, 2⟩ ⊗ ⟨3, 4⟩ ⊗ ⟨5, 6⟩ = 𝑑1,3,5, 𝑑2,4,6.

Now, consider the following two datasets

𝐷1 = {𝑝(a, c), 𝑝(c, e), 𝑝(e, b)} and 𝐷2 = {𝑝(a, b), 𝑝(b, a), 𝑟(b, d)}.

Then, their direct product is the dataset

𝐷1 ⊗ 𝐷2 = {𝑝(𝑑a,a, 𝑑c,b), 𝑝(𝑑a,b, 𝑑c,a), 𝑝(𝑑c,a, 𝑑e,b), 𝑝(𝑑c,b, 𝑑e,a), 𝑝(𝑑e,a, 𝑑b,b), 𝑝(𝑑e,b, 𝑑b,a)}.

Note that, since there is no element in 𝐷1 capable of being in direct product with the element 𝑟(b, d)
of 𝐷2, the final set of atoms is devoid of the predicate 𝑟. ■

For a dataset 𝐷 and an 𝑛-ary unit 𝑈 = {𝜏1, … , 𝜏𝑚}, the direct product 𝑃 = 𝐷 ⊗ … ⊗ 𝐷
—multiplying 𝐷 with itself 𝑚 times— has been already used in database theory to check whether
𝑈 admits a conjunctive query (i.e., a constant-free conjunctive formula) 𝜑 such that 𝜑(𝐷) = 𝑈 [14].
In particular, let 𝑑s1 , … , 𝑑s𝑛 = 𝜏1 ⊗ … ⊗ 𝜏𝑚, the query 𝜑 is the following formula

𝑥s1 , … , 𝑥s𝑛 ← ⋀
𝑝(𝑡1,…,𝑡𝑘)∈𝑃

𝑝(𝜇(𝑡1), … , 𝜇(𝑡𝑘)),

where, for each constant 𝑡 of the form 𝑑s occurring in 𝑃, 𝜇(𝑡) = 𝑥s. In case 𝐾 = (𝐷, ∅) and
𝜍(𝐾, 𝜏) = 𝐷 ∪ {⊤(𝑒) ∶ 𝑒 is an entity in 𝐷} for every 𝜏, then there are cases in which 𝜑 would
characterize 𝑈, but in general this is not guaranteed. The following examples precisely show
where the classical direct product breaks and provide some useful insights on how the direct
product could be enriched to correctly deal with nearly connected formulas and selective
knowledge bases.

Example 2. Let us start by considering the dataset

𝐷 = {𝑟(1, 3), 𝑟(2, 4), 𝑟(5, 6), 𝑠(3, 5), 𝑝(4, 5)},

which is graphically represented in Figure 2 as a directed graph. Let 𝑈 = {⟨1⟩, ⟨2⟩}. Accordingly,
𝐷 ⊗ 𝐷 is depicted in Figure 3. Since ⟨1⟩ ⊗ ⟨2⟩ = 𝑑1,2, the expected query 𝜑 is

𝑥1,2 ← 𝑟(𝑥1,1, 𝑥3,3), 𝑟(𝑥1,2, 𝑥3,4), 𝑟(𝑥2,2, 𝑥4,4), 𝑟(𝑥5,1, 𝑥6,3), 𝑟(𝑥5,5, 𝑥6,6), 𝑟(𝑥5,2, 𝑥6,4),
𝑟(𝑥2,1, 𝑥4,3), 𝑟(𝑥2,5, 𝑥4,6), 𝑟(𝑥1,5, 𝑥3,6), 𝑠(𝑥3,3, 𝑥5,5), 𝑝(𝑥4,4, 𝑥5,5),

𝜏 ′ = ⟨𝜏 ′[1], … , 𝜏 ′[𝑛]⟩, then 𝜏 ⊗ 𝜏 ′ is the 𝑛-ary tuple ⟨⟨𝜏 [1], 𝜏 ′[1]⟩, … , ⟨𝜏 [𝑛], 𝜏 ′[𝑛]⟩⟩. Hence, this operation is associative
up to isomorphisms, and it is possible to consider the direct product of more than two tuples [14, 15]. As we are not
interested in a reiterate application of the direct product operator, for notational convenience, our direct product of
two 𝑛-ary tuples is not an 𝑛-ary tuple, but just a sequence of fresh constants.

1

2

3

4

5 6

r

s

r

r

p

Figure 2: Graphical representation of dataset 𝐷 presented in the Example 2.

𝑑1,1

𝑑2,2

𝑑3,3

𝑑4,4

𝑑5,5 𝑑6,6𝑑1,2 𝑑3,4

𝑑4,6

𝑑3,6𝑑1,5

𝑑2,5

𝑑5,1

𝑑5,2

𝑑2,1

𝑑6,3

𝑑4,3

𝑑6,4

𝑑1,2 𝑑3,4

r

s

r

r

p

r

r

r r

r

r

Figure 3: Graphical representation of dataset 𝐷 ⊗ 𝐷 presented in the Example 2.

whose atoms are isomorphic to the dataset depicted in Figure 3. Assume now that the given SKB
𝒮 = (𝐾, 𝜍) is such that 𝐾 = (𝐷, ∅) and 𝜍(𝐾, 𝜏) = 𝐷 ∪ {⊤(𝑒) ∶ 𝑒 is an entity in 𝐷} for every 𝜏.
Clearly, 𝜑 is not a characterization for 𝑈 with respect to 𝒮. In this case, to obtain the following
characterization for 𝑈 with respect to 𝒮

𝑥1,2 ← 𝑟(𝑥1,2, 𝑥3,4), ⊤(𝑥1,2), ⊤(𝑥3,4)

one can discard from 𝜑 all the atoms that are not connected to 𝑥1,2 and add a few ⊤-atoms. Note
that, the only residual atom is 𝑟(𝑥1,2, 𝑥3,4), which is isomorphic to 𝑟(𝑑1,2, 𝑑3,4) —the one in yellow
in Figure 3— which, in turn, is the only one connected to 𝑑1,2, despite the fact that 𝐷 is connected.■

Unfortunately, discarding atoms not connected to free variables and adding extra ⊤-atoms is
not enough to always yield to a characterization. This is illustrated via the following example.

Example 3. Consider the SKB 𝒮 = (𝐾, 𝜍), where 𝐾 = (𝐷, ∅), 𝐷 = {𝑟(1, 3), 𝑟(2, 3), 𝑟(3, 4)}, and
𝜍(𝜏) = 𝐷 ∪ {⊤(𝑒) ∶ 𝑒 is an entity in 𝐷} for every tuple 𝜏. Let 𝑈 = {⟨1⟩, ⟨2⟩}. Accordingly, we have:

𝐷 ⊗ 𝐷 = {𝑟(𝑑1,1, 𝑑3,3), 𝑟(𝑑2,2, 𝑑3,3), 𝑟(𝑑3,3, 𝑑4,4), 𝑟(𝑑1,2, 𝑑3,3), 𝑟(𝑑2,1, 𝑑3,3)
𝑟(𝑑1,3, 𝑑3,4), 𝑟(𝑑3,1, 𝑑4,3), 𝑟(𝑑2,3, 𝑑3,4), 𝑟(𝑑3,2, 𝑑4,3)},

𝜑 = 𝑥1,2 ← 𝑟(𝑥1,1, 𝑥3,3), 𝑟(𝑥2,2, 𝑥3,3), 𝑟(𝑥3,3, 𝑥4,4), 𝑟(𝑥1,2, 𝑥3,3), 𝑟(𝑥2,1, 𝑥3,3)
𝑟(𝑥1,3, 𝑥3,4), 𝑟(𝑥3,1, 𝑥4,3), 𝑟(𝑥2,3, 𝑥3,4), 𝑟(𝑥3,2, 𝑥4,3)}.

By discarding from 𝜑 all the atoms that are not connected to 𝑥1,2 and adding the needed ⊤-atoms,
we obtain

𝜑′ = 𝑥1,2 ← 𝑟(𝑥1,2, 𝑥3,3), 𝑟(𝑥2,1, 𝑥3,3), 𝑟(𝑥1,1, 𝑥3,3), 𝑟(𝑥2,2, 𝑥3,3), 𝑟(𝑥3,3, 𝑥4,4),
⊤(𝑥1,2), ⊤(𝑥3,3), ⊤(𝑥2,1), ⊤(𝑥1,1), ⊤(𝑥2,2), ⊤(𝑥4,4).

Even if 𝜑′ is nearly connected and inst(𝜑′, 𝒮) ⊇ 𝑈, formula 𝜑′ is still not a characterization in
general. Indeed, it suffices to consider the following formula

𝜑″ = 𝑥 ← 𝑟(𝑥, 3), ⊤(𝑥), ⊤(3)

and the dataset 𝐷′ = {𝑟(1, 1), ⊤(1)}. It is not difficult to see that 𝜑′ does not satisfy condition (𝑖𝑖) of
Definition 3 since inst(𝜑″, 𝒮) ⊇ 𝑈 but 𝜑′(𝐷′) ⊆ 𝜑″(𝐷′) does not hold: 1 is an answer of 𝜑′ over
𝐷′ but not an answer of 𝜑″ over 𝐷′.

A possible turn around could be the following: replace in 𝜑′ any variable of the form 𝑥𝑐,…,𝑐 with
the constant 𝑐. This would produce the following formula

𝜑‴ = 𝑥1,2 ← 𝑟(𝑥1,2, 3), 𝑟(𝑥2,1, 3), 𝑟(1, 3), 𝑟(2, 3), 𝑟(3, 4), ⊤(𝑥1,2), ⊤(3), ⊤(𝑥2,1), ⊤(1), ⊤(2), ⊤(4),

which, this time, is a characterization for 𝑈. ■

Note, however, that in some cases a constant of the form 𝑑𝑐,…,𝑐 may give rise to a free variable
𝑥𝑐,…,𝑐. Clearly, if so, it cannot be replaced by 𝑐, otherwise the arity of the resulting formula
would be smaller than the arity of the unit. Unfortunately, as shown by the following example,
keeping the the variable 𝑥𝑐,…,𝑐 is not enough.2

Example 4. Consider the SKB 𝒮 = (𝐾, 𝜍) together with the unit 𝑈 = {⟨1, 1⟩, ⟨1, 2⟩}, where 𝐾 =
(𝐷, ∅), 𝐷 = {𝑟(1, 2), 𝑟(2, 1), 𝑠(2, 1), 𝑠(1, 2)}, and 𝜍 is such that 𝜍(⟨1, 1⟩) = {𝑟(1, 2), 𝑠(1, 2), ⊤(1), ⊤(2)}
and 𝜍(⟨1, 2⟩) = {𝑟(1, 2), 𝑠(2, 1), ⊤(1), ⊤(2)}. In this case, by taking into account the summaries of
the tuples of 𝑈, instead of computing 𝐷 ⊗ 𝐷 we compute 𝜍(⟨1, 1⟩) ⊗ 𝜍(⟨1, 2⟩). Hence, we obtain

𝑃 = 𝜍(⟨1, 1⟩) ⊗ 𝜍(⟨1, 2⟩) = {𝑟(1, 2), 𝑠(1, 2), ⊤(1), ⊤(2)} ⊗ {𝑟(1, 2), 𝑠(2, 1), ⊤(1), ⊤(2)} =
= {𝑟(𝑑1,1, 𝑑2,2), 𝑠(𝑑1,2, 𝑑2,1), ⊤(𝑑1,1), ⊤(𝑑1,2), ⊤(𝑑2,1), ⊤(𝑑2,2)}.

Since the direct product between the tuples of 𝑈 is ⟨1, 1⟩ ⊗ ⟨1, 2⟩ = 𝑑1,1, 𝑑1,2, then the candidate
characterization (constructed by using the approach discussed before) should be:

𝜑 = 𝑥1,1, 𝑥1,2 ← 𝑟(𝑥1,1, 2), 𝑠(𝑥1,2, 𝑥2,1), ⊤(𝑥1,1), ⊤(𝑥1,2), ⊤(𝑥2,1), ⊤(2),

where only the constant 𝑑2,2 is replaced by the constant 2. However, this is not a characterization.
Indeed, it violates condition (𝑖𝑖) of Definition 3. To see that, consider the formula

𝜑′ = 𝑥1,1, 𝑥1,2 ← ⊤(𝑥1,1), ⊤(𝑥1,2), 𝑟(1, 2), ⊤(1), ⊤(2)

together with the dataset 𝐷′ = {𝑟(2, 2), 𝑠(2, 2), ⊤(2)}. ■

In light of the previous example, it seems that atoms containing constants of the form 𝑑𝑐,…,𝑐
occurring in the sequence 𝜏1 ⊗… ⊗ 𝜏𝑚 should be “cloned” so that in some of them, 𝑑𝑐,…,𝑐 can be
replaced by 𝑥𝑐,…,𝑐, while in some other, 𝑑𝑐,…,𝑐 can be replaced by 𝑐. We are now ready to show
how to construct the canonical characterization can(𝑈 , 𝒮).
2To lighten the notation, in what follows instead of writing 𝜍(𝐾, 𝜏), we will just write 𝜍(𝜏).

Step 1. Let 𝑑s1 , … , 𝑑s𝑛 = 𝜏1 ⊗… ⊗ 𝜏𝑚 denote the sequence of constants used to determine the
free variables of can(𝑈 , 𝒮), and let Fr denote the set collecting these constants (note that, in
general, |Fr | ≤ 𝑛). According to Example 4, 𝜏1 = ⟨1, 1⟩, 𝜏2 = ⟨1, 2⟩, 𝑑s1 , 𝑑s2 = 𝑑1,1, 𝑑1,2, and Fr is
the set {𝑑1,1, 𝑑1,2}.

Step 2. Build the dataset 𝑃 = 𝜍(𝜏1) ⊗ … ⊗ 𝜍(𝜏𝑚) used to determine some atoms of can(𝑈 , 𝒮).
See, for instance, the set 𝑃 of atoms constructed in Example 4. In particular, the domain of 𝑃 is
the set 𝔻𝑃 = {𝑑1,1, 𝑑1,2, 𝑑2,2, 𝑑2,1}.

Step 3. Consider any 𝑑s occurring in 𝑃, and let 𝔻s be the set of constants of s. If |𝔻s| = 1,
then the atoms of 𝑃 containing 𝑑s might have to be “cloned” to determine some extra atoms
of can(𝑈 , 𝒮). As we already discussed, this is needed whenever 𝑑s satisfies both |𝔻s| = 1 and
𝑑s ∈ Fr . Accordingly, let Ge = {𝑑s ∈ 𝔻𝑃 ∶ |𝔻s| = 1} be the set of constants used as possible
“genes” for such clones. According to Example 4, Ge = {𝑑1,1, 𝑑2,2}.

Step 4. For each 𝑑s ∈ 𝔻𝑃, let

𝑓 (𝑑s) = { {𝑑s, s[1]} if 𝑑s ∈ Fr ∩ Ge
{𝑑s} otherwise.

Now, for any atom 𝛼 = 𝑝(𝑡1, … , 𝑡𝑘) of 𝑃, we define

clones(𝛼) = {𝑝(𝑐1, … , 𝑐𝑘) ∶ 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑓 (𝑡𝑖)} ⧵ {𝛼}

and, finally, let
𝐶 = {𝛼′ ∈ clones(𝛼) ∶ 𝛼 ∈ 𝑃}

be the set of all the clones that complement the atoms of 𝑃. According to Example 4, Fr ∩
Ge = {𝑑1,1}. Moreover, 𝑓 (𝑑1,1) = {𝑑1,1, 1}, 𝑓 (𝑑1,2) = {𝑑1,2}, 𝑓 (𝑑2,1) = {𝑑2,1}, and 𝑓 (𝑑2,2) = {𝑑2,2}.
Hence, clones(𝛼) = ∅, whenever 𝛼 ∈ {𝑠(𝑑1,2, 𝑑2,1), ⊤(𝑑1,2), ⊤(𝑑2,1), ⊤(𝑑2,2)}; clones(𝑟(𝑑1,1, 𝑑2,2)) =
{𝑟(1, 𝑑2,2)}; and clones(⊤(𝑑1,1)) = {⊤(1)}. Finally, we have that 𝐶 = {𝑟(1, 𝑑2,2), ⊤(1)} and the
domain of 𝐶 is 𝔻𝐶 = {1, 𝑑2,2}.

Step 5. Let 𝜇 be the mapping {𝑐 ↦ 𝑐 ∶ 𝑐 ∈ 𝔻𝐶⧵𝔻𝑃} ∪ {𝑑s ↦ 𝑔(𝑑s) ∶ 𝑑s ∈ 𝔻𝑃} used to transform
atoms of 𝑃 ∪ 𝐶 into atoms of can(𝑈 , 𝒮), where

𝑔(𝑑s) = {
𝑥s if 𝑑s ∈ Fr
𝑦s if 𝑑s ∉ Fr ∪ Ge
s[1] if 𝑑s ∈ Ge ⧵ Fr .

Consider the next formula (“∧” is used instead of “,”):

Φ(𝑈 , 𝒮) = 𝑥s1 , … , 𝑥s𝑛 ← ⋀
𝑝(𝑡1,…,𝑡𝑘)∈𝑃∪𝐶

𝑝(𝜇(𝑡1), … , 𝜇(𝑡𝑘)).

According to Example 4, Fr ∪ Ge = {𝑑1,1, 𝑑1,2, 𝑑2,2} and Ge ⧵ Fr = {𝑑2,2}. Hence, 𝑔(𝑑1,1) = 𝑥1,1,
𝑔(𝑑1,2) = 𝑥1,2, 𝑔(𝑑2,1) = 𝑦2,1, and 𝑔(𝑑2,2) = 2. Moreover, 𝔻𝐶 ⧵ 𝔻𝑃 = {1} and, therefore, 𝜇 = {1↦1}
∪ {𝑑1,1↦𝑥1,1, 𝑑1,2↦𝑥1,2, 𝑑2,1↦𝑦2,1, 𝑑2,2↦2}. Then, we have

𝑃 ∪ 𝐶 = {𝑟(𝑑1,1, 𝑑2,2), 𝑠(𝑑1,2, 𝑑2,1), ⊤(𝑑1,1), ⊤(𝑑1,2), ⊤(𝑑2,1), ⊤(𝑑2,2), 𝑟(1, 𝑑2,2), ⊤(1)}.

Finally, we obtain

Φ(𝑈 , 𝒮) = 𝑥1,1, 𝑥1,2 ← 𝑟(𝑥1,1, 2), 𝑠(𝑥1,2, 𝑦2,1), ⊤(𝑥1,1), ⊤(𝑥1,2), ⊤(𝑦2,1), ⊤(2), 𝑟(1, 2), ⊤(1).

Step 6. We are now ready to define the desired canonical characterization can(𝑈 , 𝒮).

Definition 5. We define can(𝑈 , 𝒮) as the nearly connected formula obtained from Φ(𝑈 , 𝒮) by
discarding all and only the atoms that are not connected to any free variable of Φ(𝑈 , 𝒮).We refer
to can(𝑈 , 𝒮) as the canonical characterization of 𝑈 according to 𝒮.

According to Example 4, since Φ(𝑈 , 𝒮) is already a nearly connected formula, then we
immediately get that can(𝑈 , 𝒮) = Φ(𝑈 , 𝒮).

Theorem 1. It holds that can(𝑈 , 𝒮) characterizes 𝑈.

For completeness of exposition, we close the section by showing how to systematically
construct can(̄𝑈 , ̄𝒮) according to our running example started in Section 2. The direct product
of the elements of ̄𝑈 is the (unary) sequence ⟨Epcot⟩ ⊗ ⟨Discovery_Cove⟩ = 𝑑Epcot,Discovery_Cove.
Hereinafter, to lighten the notation, we denote Discovery_Cove by D, Epcot by E, and Florida
by F. Thus, Fr = {𝑑E,D}. Now, to compute 𝑃 = ̄𝜍(⟨Epcot⟩) ⊗ ̄𝜍(⟨Discovery Cove⟩), we need to
exploit the summaries of ⟨Epcot⟩ and ⟨Discovery_Cove⟩ already introduced in the previous
section:

̄𝜍(⟨E⟩) = {located(E, F), partOf(F,US), isa(E, tp), isa(E, ap),
⊤(E), ⊤(F), ⊤(US), ⊤(tp), ⊤(ap)}

̄𝜍(⟨D⟩) = {located(D, F), partOf(F,US), isa(D, tp), isa(D, ap),
⊤(D), ⊤(F), ⊤(US), ⊤(tp), ⊤(ap)}

Therefore, the set 𝑃 of atoms is:

{located(𝑑E,D, 𝑑F,F), partOf(𝑑F,F, 𝑑US,US), isa(𝑑E,D, 𝑑tp,tp), isa(𝑑E,D, 𝑑tp,ap), isa(𝑑E,D, 𝑑ap,tp),
isa(𝑑E,D, 𝑑ap,ap), ⊤(𝑑E,D), ⊤(𝑑E,F), ⊤(𝑑E,US), ⊤(𝑑E,tp), ⊤(𝑑E,ap), ⊤(𝑑F,D), ⊤(𝑑F,F), ⊤(𝑑F,US),
⊤(𝑑F,tp), ⊤(𝑑F,ap), ⊤(𝑑US,D), ⊤(𝑑US,F), ⊤(𝑑US,US), ⊤(𝑑US,tp), ⊤(𝑑US,ap)⊤(𝑑tp,D), ⊤(𝑑tp,F),
⊤(𝑑tp,US), ⊤(𝑑tp,tp), ⊤(𝑑tp,ap), ⊤(𝑑ap,D), ⊤(𝑑ap,F), ⊤(𝑑ap,US), ⊤(𝑑ap,tp), ⊤(𝑑ap,ap), }.

Accordingly, Ge = {𝑑F,F, 𝑑US,US, 𝑑tp,tp, 𝑑ap,ap}. This time, since Fr ∩ Ge = ∅, we have that also
the set 𝐶 is empty. Therefore,

𝜇 = {𝑑E,D ↦ 𝑥E,D, 𝑑E,F ↦ 𝑦E,F, 𝑑E,US ↦ 𝑦E,US, 𝑑E,tp ↦ 𝑦E,tp, 𝑑E,ap ↦ 𝑦E,ap,
𝑑F,D ↦ 𝑦F,D, 𝑑F,F ↦ F, 𝑑F,US ↦ 𝑦F,US, 𝑑F,tp ↦ 𝑦F,tp, 𝑑F,ap ↦ 𝑦F,ap,
𝑑US,D ↦ 𝑦US,D, 𝑑US,F ↦ 𝑦US,F, 𝑑US,US ↦ US, 𝑑US,tp ↦ 𝑦US,tp, 𝑑US,ap ↦ 𝑦US,ap,
𝑑tp,D ↦ 𝑦tp,D, 𝑑tp,F ↦ 𝑦tp,F, 𝑑tp,US ↦ 𝑦tp,US, 𝑑tp,tp ↦ tp, 𝑑tp,ap ↦ 𝑦tp,ap,
𝑑ap,D ↦ 𝑦ap,D, 𝑑ap,F ↦ 𝑦ap,F, 𝑑ap,US ↦ 𝑦ap,US, 𝑑ap,tp ↦ 𝑦ap,tp, 𝑑ap,ap ↦ ap}.

Thus,

Φ(̄𝑈 , ̄𝒮) = 𝑥E,D ← located(𝑥E,D, F), partOf(F,US), isa(𝑥E,D, tp), isa(𝑥E,D, 𝑦tp,ap),
isa(𝑥E,D, 𝑦ap,tp), isa(𝑥E,D, ap), ⊤(𝑥E,D), ⊤(𝑦E,F), ⊤(𝑦E,US), ⊤(𝑦E,tp),
⊤(𝑦E,ap), ⊤(𝑦F,D), ⊤(F), ⊤(𝑦F,US), ⊤(𝑦F,tp), ⊤(𝑦F,ap), ⊤(𝑦US,D),
⊤(𝑦US,F), ⊤(US), ⊤(𝑦US,tp), ⊤(𝑦US,ap), ⊤(𝑦tp,D), ⊤(𝑦tp,F), ⊤(𝑦tp,US),
⊤(tp), ⊤(𝑦tp,ap), ⊤(𝑦ap,D), ⊤(𝑦ap,F), ⊤(𝑦ap,US), ⊤(𝑦ap,tp), ⊤(ap).

Now, we can obtain the canonical characterization

can(̄𝑈 , ̄𝒮) = 𝑥E,D ← located(𝑥E,D, F), partOf(F,US), isa(𝑥E,D, tp),
isa(𝑥E,D, 𝑦tp,ap), isa(𝑥E,D, 𝑦ap,tp), isa(𝑥E,D, ap),
⊤(𝑥E,D), ⊤(US), ⊤(tp), ⊤(𝑦tp,ap), ⊤(F), ⊤(𝑦ap,tp), ⊤(ap),

by discarding all the atoms that are not connected to the free variable 𝑥E,D.
It is worth noting that, by the construction, we have not only proved that a characterization

always exists, which is a non-trivial result, but also that, since its construction is clearly
exponential in the cardinality of the input unit, whenever you fix this parameter you get
something of polynomial size.

4. Related Work

There are some works that show how to construct least general generalizations in specific
settings. We are going to discuss some key approaches using our terminology.

In [16], given a dataset 𝐷 over a single ternary relation triple encoding an RDF graph, a unary
unit 𝑈 of resources, and a characteristic function 𝜍 returning, for any resource ⟨𝑟⟩ ∈ 𝑈, a set 𝑇𝑟 of
RDF triples connected to 𝑟 (like our summaries which, however, are not necessarily connected),
the authors show how to construct a generalized RDF graph (namely, an RDF graph with blank
nodes) being connected and acting as the least common subsumer (LCS) of the resources in 𝑈
(like our canonical characterizations). Hence, NℂFs can be considered an extension of rooted
RDF-graphs. Indeed, in [16], the formalism roughly coincides with unary (nearly) connected
conjunctive formulas; here the authors adopt this notion to discard irrelevant (i.e., disconnected)
properties. To guarantee the existence of LCSs, the authors consider only characteristic functions
that return sets 𝑇𝑟 containing at least one atom of the form triple(𝑟 , 𝑝, 𝑜) for some 𝑝 and 𝑜. Note
that, differently from [16], we enforce summaries to be closed under ⊤. In case of unary units
as considered by [16], one could avoid top atoms: whenever a characterization does not exist,
then one might assume 𝑥 ← ⊤(𝑥) as a default characterization. Conversely, in case of units of
arbitrary arities, there are meaningful characterizations that would not exist if summaries are
not closed under ⊤: for example, 𝑥, 𝑦 ← 𝑟(𝑥), ⊤(𝑥), ⊤(𝑦) would not exist as a characterization
but it is more informative than the default one, namely 𝑥, 𝑦 ← ⊤(𝑥), ⊤(𝑦).
Speaking of arbitrary arity, one of the key elements of our framework is precisely its non-

limitation to being able to ask questions only in relation to unary units. The justification for this
also lies, just to give an example, in wanting to study similarities between tuples of objects by
finding so-called ”analogies” as in the case of the common ”a is to b as c is to d” [17]. In fact, one
way to look at this in our setting is that an analogy between two tuples exists in our context when

they have the same characterization when viewed as units. A concrete example of this is the one
we gave in the introduction, wherewe referred to ⟨Tokyo, Tokyo Tower⟩ and ⟨Paris, Eiffel Tower⟩,
which are fairly similar, as each is a “capital paired with one of its monuments being a towermade
of metal”, or as already stated in [17] the two tuples ⟨Leopard, Cat⟩ and ⟨Wolf, Dog⟩ in which
essentially the first element is nothing other than a more ferocious species equipped with fangs
who lives in a wild environment with respect to the second element. It is, however, important to
note that while in the aforementioned work they give rise to real scores to determine whether
an analogy exists or not we should turn to query answering, it will however be the aim of future
work to also evaluate adequate metrics for the discovery of nexus of similarity.

In [18], given a KB 𝐾 expressed in the EL(I) description logic, a unary unit 𝑈 with |𝑈 | = 1,
and a summary selector always returning ent(𝐾), the authors study the problem of checking
whether an EL(I)-characterization (called most specific concept or MSC) exists and verifying
whether a given EL(I) concept is an MSC. Moreover, the authors also study the variant of these
problems where the input unit contains a set of EL(I) concepts rather then entities, in order to
study existence and verification of LCSs.

In [19], under arbitrary (union of) conjunctive queries (U)CQs, KBs with an empty (onto)logi-
cal part, and summary selectors always returning the entire dataset, the authors study existence,
verification, and construction of characterizations (called fitting CQs).

Finally, it is worth noting that our NℂFs can be considered an extension also of routed CQs
[20]. This formalism essentially coincides with nearly connected conjunctive formulas without
constants; here, the authors show that, without summaries, CQs and routed CQs are invariant
with respect to their instances. However, in case summaries do not coincide with the whole
ent(𝐾), CQs (resp., conjunctive formulas) and routed CQs (resp., NℂFs) behave in different
ways: in general, instances of characterizations are different.

5. Discussion and Conclusion

We start by examining some key design choices that have shaped our framework. After that,
we will outline future directions for our research.

As already recognized by [16], when dealing with common properties, the use of summaries
is rather crucial. Indeed, in our framework, avoiding the use of reasonably small summaries
has the following negative effects: (𝑎) characterizations would lose readability for humans; (𝑏)
nexus of similarity would not nicely fit the considered scenario; and (𝑐) the direct product of two
large datasets would be computationally unfeasible. In contrast, the ability to selectively exclude
irrelevant features and predicates plays a crucial role in achieving meaningful characterizations.
By focusing on the relevant information, we ensure that resulting characterizations are effective
and tailored to the specific needs of the given application scenario.
NℂFs naturally captures shared interconnected properties since they: (1) allow the inclusion

of constants, which provide informative details; (2) allow for existential quantification (i.e., non-
free variables), capturing connections beyond constants; (3) support conjunction and joins, as
they inherently express connections between entities; (4) accommodate multiple free variables
to go beyond unary concepts; (5) prevent disconnected components and disjunction, which
go beyond semantic connections; (6) avoid forcing one connected component or acyclicity,

as characterizations may not exist; (7) waive negation or universal quantification, as they
inherently consider information beyond summaries; and (8) disallow built-in equality, which
badly interacts with constants. Regarding the latter, consider the following SKB 𝒮 = (𝐾, 𝜍),
where𝐾 = (𝐷, ∅),𝐷 = {𝑟(𝑎, 𝑎), 𝑟(𝑎, 𝑏), 𝑟(𝑏, 𝑎), 𝑟(𝑏, 𝑏)}, 𝜍(⟨𝑎⟩) = 𝜍(⟨𝑏⟩) = 𝐷∪{⊤(𝑒) ∶ 𝑒 occurs in 𝐷},
and 𝑈 = {⟨𝑎⟩}. Intuitively, 𝑎 and 𝑏 are indistinguishable as they “encounter” exactly the same
constants; indeed, they are transposable (i.e., more than automorphic). If we allowed equality,
then can(𝑈 , 𝒮) would be of the form 𝑥 ← … 𝑥 = 𝑎.
Future directions include: (𝑖) a computational analysis of key reasoning tasks; (𝑖𝑖) further

tuning NℂF; (𝑖𝑖𝑖) enriching summaries with intentional knowledge or anonymous individuals;
for example, by incorporating rules such as isa(𝑥, film) → ∃𝑦 directed(𝑥, 𝑦), films without
known directors would share more nexus of similarities with films with known directors; (𝑖𝑣)
dealing with entity set expansion; (𝑣) designing and developing a prototype as a web service
that implements the proposed framework on top of Linked Open Data; (𝑣 𝑖) the definition of an
appropriate metric to evaluate the nexus of similarity; and (𝑣 𝑖𝑖) conducting experiments and
evaluations to test and compare different summary selectors.

Acknowledgments

This work contributes to the basic research activities of the WP9.1: “KRR Frameworks for
Green-aware AI” supported by the PNRR project FAIR - Future AI Research (PE00000013), Spoke
9 - Green-aware AI, under the NRRP MUR program funded by the NextGenerationEU.

References

[1] R. De Benedictis, N. Gatti, M. Maratea, A. Murano, E. Scala, L. Serafini, I. Serina, E. Tosello,
A. Umbrico, M. Vallati, Preface to the Italian Workshop on Planning and Scheduling,
RCRA Workshop on Experimental evaluation of algorithms for solving problems with
combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction, and
Reasoning in Italy (IPS-RCRA-SPIRIT 2023), in: Proceedings of the Italian Workshop on
Planning and Scheduling, RCRA Workshop on Experimental evaluation of algorithms
for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies,
Prediction, Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023) co-located with
22th International Conference of the Italian Association for Artificial Intelligence (AI* IA
2023), 2023.

[2] W. Gomaa, A. Fahmy, A survey of text similarity approaches, International Journal of
Computer Applications 68 (2013) 13–18.

[3] D. Chandrasekaran, V. Mago, Evolution of semantic similarity - A survey, ACM Comput.
Surv. 54 (2022) 41:1–41:37. URL: https://doi.org/10.1145/3440755. doi:10.1145/3440755 .

[4] J. Cirasella, Google sets, google suggest, and google search history: Three more tools
for the reference librarians bag of tricks, The Reference Librarian 48 (2007). URL:
http: //ref.haworthpress.com.

[5] P. Pantel, E. Crestan, A. Borkovsky, A. Popescu, V. Vyas, Web-scale distributional similarity
and entity set expansion, in: Proceedings of the 2009 Conference on Empirical Methods

https://doi.org/10.1145/3440755
http://dx.doi.org/10.1145/3440755
http://ref.haworthpress.com
http://ref.haworthpress.com

in Natural Language Processing, EMNLP 2009, 6-7 August 2009, Singapore, A meeting
of SIGDAT, a Special Interest Group of the ACL, ACL, 2009, pp. 938–947. URL: https:
//aclanthology.org/D09-1098/.

[6] R. Blanco, B. B. Cambazoglu, P. Mika, N. Torzec, Entity recommendations in web search,
in: H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F.
Noy, C. Welty, K. Janowicz (Eds.), The Semantic Web - ISWC 2013 - 12th International
Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings,
Part II, volume 8219 of Lecture Notes in Computer Science, Springer, 2013, pp. 33–48. URL:
https://doi.org/10.1007/978-3-642-41338-4_3. doi:10.1007/978-3-642-41338-4_3.

[7] N. A. S. Er, T. Abdessalem, S. Bressan, Set of t-uples expansion by example, in:
G. Anderst-Kotsis (Ed.), Proceedings of the 18th International Conference on Information
Integration and Web-based Applications and Services, iiWAS 2016, Singapore, Novem-
ber 28-30, 2016, ACM, 2016, pp. 221–230. URL: https://doi.org/10.1145/3011141.3011144.
doi:10.1145/3011141.3011144.

[8] Y. Zhang, Y. Xiao, S. Hwang, H. Wang, X. S. Wang, W. Wang, Entity suggestion with
conceptual expanation, in: C. Sierra (Ed.), Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, ijcai.org, 2017, pp. 4244–4250. URL: https://doi.org/10.24963/ijcai.2017/593.
doi:10.24963/ijcai.2017/593.

[9] G. Xun, Y. Li, W. X. Zhao, J. Gao, A. Zhang, A correlated topic model using word
embeddings, in: C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-
25, 2017, ijcai.org, 2017, pp. 4207–4213. URL: https://doi.org/10.24963/ijcai.2017/588.
doi:10.24963/ijcai.2017/588.

[10] J. Huang, W. Zhang, Y. Sun, H. Wang, T. Liu, Improving entity recommendation with
search log and multi-task learning, in: J. Lang (Ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, ijcai.org, 2018, pp. 4107–4114. URL: https://doi.org/10.24963/ijcai.
2018/571. doi:10.24963/ijcai.2018/571.

[11] J. Chen, Y. Chen, X. Zhang, X. Du, K. Wang, J. Wen, Entity set expansion with semantic
features of knowledge graphs, J. Web Semant. 52-53 (2018) 33–44. URL: https://doi.org/10.
1016/j.websem.2018.09.001. doi:10.1016/j.websem.2018.09.001.

[12] M. Lissandrini, D. Mottin, T. Palpanas, Y. Velegrakis, Graph-query suggestions for knowl-
edge graph exploration, in: Y. Huang, I. King, T. Liu, M. van Steen (Eds.), WWW ’20: The
Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, ACM / IW3C2, 2020, pp. 2549–2555.
URL: https://doi.org/10.1145/3366423.3380005. doi:10.1145/3366423.3380005.

[13] H. Ma, Y. Ke, An introduction to entity recommendation and understanding, in:
A. Gangemi, S. Leonardi, A. Panconesi (Eds.), Proceedings of the 24th International Confer-
ence on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22, 2015 - Com-
panion Volume, ACM, 2015, pp. 1521–1522. URL: https://doi.org/10.1145/2740908.2741991.
doi:10.1145/2740908.2741991.

[14] P. Barceló, M. Romero, The complexity of reverse engineering problems for conjunctive
queries, in: M. Benedikt, G. Orsi (Eds.), 20th International Conference on Database Theory,
ICDT 2017, March 21-24, 2017, Venice, Italy, volume 68 of LIPIcs, Schloss Dagstuhl - Leibniz-

https://aclanthology.org/D09-1098/
https://aclanthology.org/D09-1098/
https://doi.org/10.1007/978-3-642-41338-4_3
http://dx.doi.org/10.1007/978-3-642-41338-4_3
https://doi.org/10.1145/3011141.3011144
http://dx.doi.org/10.1145/3011141.3011144
https://doi.org/10.24963/ijcai.2017/593
http://dx.doi.org/10.24963/ijcai.2017/593
https://doi.org/10.24963/ijcai.2017/588
http://dx.doi.org/10.24963/ijcai.2017/588
https://doi.org/10.24963/ijcai.2018/571
https://doi.org/10.24963/ijcai.2018/571
http://dx.doi.org/10.24963/ijcai.2018/571
https://doi.org/10.1016/j.websem.2018.09.001
https://doi.org/10.1016/j.websem.2018.09.001
http://dx.doi.org/10.1016/j.websem.2018.09.001
https://doi.org/10.1145/3366423.3380005
http://dx.doi.org/10.1145/3366423.3380005
https://doi.org/10.1145/2740908.2741991
http://dx.doi.org/10.1145/2740908.2741991

Zentrum für Informatik, 2017, pp. 7:1–7:17. URL: https://doi.org/10.4230/LIPIcs.ICDT.2017.
7. doi:10.4230/LIPIcs.ICDT.2017.7.

[15] B. ten Cate, V. Dalmau, The product homomorphism problem and applications, in:
M. Arenas, M. Ugarte (Eds.), 18th International Conference on Database Theory, ICDT
2015, March 23-27, 2015, Brussels, Belgium, volume 31 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015, pp. 161–176. URL: https://doi.org/10.4230/LIPIcs.ICDT.2015.
161. doi:10.4230/LIPIcs.ICDT.2015.161.

[16] S. Colucci, F. M. Donini, S. Giannini, E. D. Sciascio, Defining and computing least common
subsumers in RDF, J. Web Semant. 39 (2016) 62–80. URL: https://doi.org/10.1016/j.websem.
2016.02.001. doi:10.1016/j.websem.2016.02.001.

[17] H. Prade, G. Richard, Analogical proportions: From equality to inequality, Int. J. Approx.
Reason. 101 (2018) 234–254. URL: https://doi.org/10.1016/j.ijar.2018.07.005. doi:10.1016/j.
ijar.2018.07.005.

[18] J. C. Jung, C. Lutz, F. Wolter, Least general generalizations in description logic: Verification
and existence, in: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 2854–2861.
URL: https://ojs.aaai.org/index.php/AAAI/article/view/5675.

[19] B. ten Cate, V. Dalmau, M. Funk, C. Lutz, Extremal fitting problems for conjunctive queries,
in: F. Geerts, H. Q. Ngo, S. Sintos (Eds.), Proceedings of the 42nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA,
June 18-23, 2023, ACM, 2023, pp. 89–98. URL: https://doi.org/10.1145/3584372.3588655.
doi:10.1145/3584372.3588655.

[20] J. C. Jung, C. Lutz, H. Pulcini, F. Wolter, Logical separability of labeled data examples under
ontologies, Artif. Intell. 313 (2022) 103785. URL: https://doi.org/10.1016/j.artint.2022.103785.
doi:10.1016/j.artint.2022.103785.

https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.4230/LIPIcs.ICDT.2015.161
https://doi.org/10.4230/LIPIcs.ICDT.2015.161
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.161
https://doi.org/10.1016/j.websem.2016.02.001
https://doi.org/10.1016/j.websem.2016.02.001
http://dx.doi.org/10.1016/j.websem.2016.02.001
https://doi.org/10.1016/j.ijar.2018.07.005
http://dx.doi.org/10.1016/j.ijar.2018.07.005
http://dx.doi.org/10.1016/j.ijar.2018.07.005
https://ojs.aaai.org/index.php/AAAI/article/view/5675
https://doi.org/10.1145/3584372.3588655
http://dx.doi.org/10.1145/3584372.3588655
https://doi.org/10.1016/j.artint.2022.103785
http://dx.doi.org/10.1016/j.artint.2022.103785

	1 Introduction
	2 Framework
	3 Canonical characterizations
	4 Related Work
	5 Discussion and Conclusion

