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Abstract
This paper proposes a new AND-OR graph search approach for synthesis of formulas in Linear Temporal
Logic on finite traces (ltl𝑓 ) that overcomes some limitations of previous works. We devise a procedure
inspired by the Davis-Putnam-Logemann-Loveland (DPLL) algorithm to generate the next available
agent-environment moves in a truly depth-first fashion, possibly avoiding exhaustive enumeration or
costly compilations. We also propose the use of an equivalence check for search nodes based on the
syntactic equivalence of state formulas. Since the resulting procedure is not guaranteed to terminate, we
identify a stopping condition to abort execution and restart the search with state-equivalence checking
based on Binary Decision Diagrams (BDD), which we show to be correct. The experimental results
show that in many cases the proposed technique outperforms other state-of-the-art approaches. Our
implementation Nike competed in the ltl𝑓 Realizability Track in the 2023 edition of SYNTCOMP, and
won the competition.
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1. Introduction

Program synthesis is the task of finding a program that provably satisfies a given high-level
formal specification [2]. A commonly used logic for program synthesis is Linear Temporal Logic
(ltl) [3, 4], typically used also in model checking [5]. ltl on finite traces (ltl𝑓 ) [6], a variant of
ltl to specify finite-horizon temporal properties, has been recently proposed as specification
language for temporal synthesis [7]. The ltl𝑓 synthesis setting considers a set of variables
controllable by the agent, a (disjoint) set of variables controlled by the environment, and a ltl𝑓
specification that specifies which finite traces over such variables are desirable. The problem
of ltl𝑓 synthesis consists in finding a finite-state controller that, at every time step, given the
values of the environment variables in the history so far, sets the next values for each agent
proposition such that the generated traces comply with the ltl𝑓 specification.

The basic technique for solving ltl𝑓 synthesis amounts to constructing a deterministic finite
automaton (dfa) corresponding to the ltl𝑓 specification, and then considering it as a game
arena where the agent tries to get to an accepting state regardless of the environment’s moves.
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A winning strategy, i.e. a finite controller returned by the procedure, can be obtained through a
backward fixpoint computation for adversarial reachability of the dfa accepting state.
Related works. State-of-the-art tools such as Lydia [8] and Lisa [9] are based on the classical
approach. The main drawback of this technique is that it requires to compute the entire dfa
of the ltl𝑓 specification, which in the worst case can be doubly exponential in the size of the
formula. Therefore, the dfa construction step becomes the main bottleneck.

A natural idea is to consider a forward search approach that expands the arena on-the-fly
while searching for a solution, possibly avoiding the construction of the entire arena. Forward-
based approaches are at the core of the best solution methods designed for other AI problems:
Planning with fully observable non-deterministic domains (FOND) [10, 11, 12, 13], where the
agent has to reach the goal, despite that the environment may choose adversarially the effects
of the agent actions, and Planning in partially observable nondeterministic domains (POND),
also known as contingent planning, where the search procedure must be performed over the
belief-states [14, 15, 16]. However, techniques developed for such problems cannot be applied to
ours: in a FOND planning problem, represented with PDDL [17], the search space is at most
single-exponential [18], whereas for ltl𝑓 synthesis the state space can be of double-exponential
size wrt the size of the formula; hence, we do not rely on an encoding into PDDL, as [19, 20],
which may result in a PDDL specification with exponential size. In POND planning, despite
the double-exponential size of the state space, belief-states have a specific structure [16, 21], so
their solution techniques cannot be directly applied to ltl𝑓 synthesis.

For these reasons, researchers have been looking into forward search techniques specifically
conceived for solving ltl𝑓 synthesis. Two notable attempts in this direction have been presented
in [22] and [23]. The former work presents an on-the-fly synthesis approach via conducting a
so-called Transition-based Deterministic Finite Automata (TDFA) game, where the acceptance
condition is defined on transitions, instead of states. The main issue of that approach is the
full enumeration of agent-environment moves, which are exponentially many in the number
of variables. Moreover, due to the fact that the acceptance condition is defined on transitions,
every generated transition has to be checked for acceptance. The latter work instead proposes a
search framework for ltl𝑓 synthesis, where the dfa arena is seen as an AND-OR graph. The
available moves are found according to the formula associated with the current search node
by means of a Knowledge Compilation technique: Sentential Decision Diagrams (SDD) [24].
Notably, they are able to branch on propositional formulas, representing several evaluations,
instead of individual ones. This can drastically reduce the branching factor. Nevertheless, for
certain types of problem instances, the approach can get stuck with demanding compilations of
the state formulas, needed both for state equivalence checking and for search node expansion.
Moreover, the requirement of having an irreducible representation of players’ moves can be of
little usefulness if the branching factor of the search problem is already high, hence resulting in
an even more significant compilation overhead.

We think there is a need for a search approach that scales well with the increase of compu-
tational power and that uses such power for actually exploring the search space rather than
wasting time either slavishly enumerating the exponentially many variable assignments, or by
finding the minimal representation of the available search moves.
Contributions. First, we focus our attention on two primitive operations for forward ltl𝑓
synthesis: state-equivalence checking and search node expansion, and explain at high-level how



these are combined in our approach, highlighting limitations of previous related works. Then, we
formalize and discuss two well-known instances of equivalence checks; one based on knowledge
compilation, and the other on a computationally-cheap syntactical equivalence between state
formulas. Furthermore, we propose a novel search graph expansion technique, based on a
procedure inspired by the famous Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Finally,
we describe the implementation of a new tool, Nike, that integrates the proposed modules in
the search procedure, and compare its performance on known benchmarks with other state-
of-the-art tools, showing its surprising effectiveness. Nike won the ltl𝑓 Realizability Track in
the 2023 edition of SYNTCOMP 1. The complete technical report, including detailed proofs and
comprehensive experimental results, is available on arXiv [25].

2. Preliminaries

ltl𝑓 Basics. Linear Temporal Logic over finite traces, called ltl𝑓 [6] is a variant of Linear
Temporal Logic (ltl) [5] that is interpreted over finite traces rather than infinite traces (as in
ltl). Given a set of propositions 𝒫 , the syntax of ltl𝑓 is identical to ltl, and defined as (wlog,
we require that ltl𝑓 formulas are in Negation Normal Form (nnf), i.e., negations only occur in
front of atomic propositions):

𝜙 ::= tt | ff | 𝑝 | ¬𝑝 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ∘𝜙 | ∙𝜙 | 𝜙1 𝒰 𝜙2 | 𝜙1ℛ𝜙2

tt is always true, ff is always false; 𝑝 ∈ 𝒫 is an atom, and ¬𝑝 is a negated atom (a literal 𝑙 is
an atom or the negation of an atom); ∧ (And) and ∨ (Or) are the Boolean connectives; and
∘ (Next), ∙ (Weak Next), 𝒰 (Until) and ℛ (Release) are temporal connectives. We use the usual
abbreviations true ≡ 𝑝 ∨ ¬𝑝, false ≡ 𝑝 ∧ ¬𝑝, ♢𝜙 ≡ true 𝒰 𝜙 and □𝜙 ≡ falseℛ𝜙. Also for
convenience we consider traces 𝜌 ∈ (2𝒫)*, i.e., we consider also empty traces 𝜖 as in [26]. More
specifically, a trace 𝜌 = 𝜌[0], 𝜌[1], . . . ∈ (2𝒫)* is a finite sequence, where 𝜌[𝑖] (0 ≤ 𝑖 < |𝜌|)
denotes the 𝑖-th interpretation of 𝜌, which can be considered as the set of propositions that are
𝑡𝑟𝑢𝑒 at instant 𝑖, and |𝜌| represents the length of 𝜌. We have that 𝜖 |= 𝜙 if 𝜙 is tt , an ℛ-formula
or ∙-formula, hence 𝜖 |= □𝑓𝑎𝑙𝑠𝑒. 𝜖 ̸|= 𝜙 if 𝜙 is ff , a literal, 𝒰-formula or ∘-formula, hence
𝜖 ̸|= ♢true .

We consider the semantics of ltl𝑓 as presented in [26], that also works for empty traces.
Given a finite trace 𝜌 and an ltl𝑓 formula 𝜙, we inductively define when 𝜙 is 𝑡𝑟𝑢𝑒 for 𝜌 at
point 𝑖 (0 ≤ 𝑖 < |𝜌|), written 𝜌, 𝑖 |= 𝜙, as follows:
- 𝜌, 𝑖 |= tt and 𝜌, 𝑖 ̸|= ff ;
- 𝜌, 𝑖 |= 𝑝 iff 𝑝 ∈ 𝜌[𝑖], and 𝜌, 𝑖 |= ¬𝑝 iff 𝑝 /∈ 𝜌[𝑖];
- 𝜌, 𝑖 |= 𝜙1 ∧ 𝜙2 iff 𝜌, 𝑖 |= 𝜙1 and 𝜌, 𝑖 |= 𝜙2;
- 𝜌, 𝑖 |= 𝜙1 ∨ 𝜙2 iff 𝜌, 𝑖 |= 𝜙1 or 𝜌, 𝑖 |= 𝜙2;
- 𝜌, 𝑖 |= ∘𝜙 iff 0 ≤ 𝑖 < |𝜌| − 1 and 𝜌, 𝑖+ 1 |= 𝜙;
- 𝜌, 𝑖 |= ∙𝜙 iff 0 ≤ 𝑖 < |𝜌| implies 𝜌, 𝑖+ 1 |= 𝜙;
- 𝜌, 𝑖 |= 𝜙1 𝒰 𝜙2 iff there exists 𝑗 with 𝑖 ≤ 𝑗 < |𝜌| such that 𝜌, 𝑗 |= 𝜙2, and ∀𝑘.𝑖 ≤ 𝑘 < 𝑗 we
have 𝜌, 𝑘 |= 𝜙1;

1http://www.syntcomp.org/syntcomp-2023-results/



- 𝜌, 𝑖 |= 𝜙1ℛ𝜙2 iff for all 𝑗 with 𝑖 ≤ 𝑗 < |𝜌| either we have 𝜌, 𝑗 |= 𝜙2, or ∃𝑘.𝑖 ≤ 𝑘 < 𝑗 we
have 𝜌, 𝑘 |= 𝜙1.
An ltl𝑓 formula 𝜙 is 𝑡𝑟𝑢𝑒 for 𝜌, denoted by 𝜌 |= 𝜙, if and only if 𝜌, 0 |= 𝜙. In particular,
𝜖 |= □𝑓𝑎𝑙𝑠𝑒 and 𝜖 ̸|= ♢𝑡𝑟𝑢𝑒.

We denote by cl(𝜙) the set of subformulas of 𝜙, including tt and ff . We denote by pa(𝜙) ⊆
cl(𝜙) the set of literals and temporal subformulas of𝜙whose primary connective is temporal [27].
Formally, for an ltl𝑓 formula 𝜙 in nnf, we have pa(𝜙) = {𝜙} if 𝜙 is a literal or temporal
formula; and pa(𝜙) = pa(𝜙1) ∪ pa(𝜙2) if 𝜙 = (𝜙1 ∧ 𝜙2) or 𝜙 = (𝜙1 ∨ 𝜙2). Having ltl𝑓
formula 𝜙, replacing every temporal formula 𝜓 ∈ pa(𝜙) with a propositional variable 𝑎𝜓
gives us a propositional formula 𝜙𝑝; we call this operation propositionalization of 𝜙. Note that
𝜙𝑝 ∈ ℬ+(cl(𝜙)), i.e. 𝜙𝑝 is a positive Boolean formula over variables cl(𝜙). Let 𝜑 = 𝜙𝑝, we
denote with 𝜑tf = 𝜙 the inverse operation of ·𝑝. Two formulas 𝜙1 and 𝜙2 are propositionally
equivalent, denoted by 𝜙1 ∼𝑝 𝜙2, if, 𝐶 |= 𝜙𝑝1 ↔ 𝐶 |= 𝜙𝑝2 holds for every propositional
assignment 𝐶 ∈ 2pa(𝜙1)∪pa(𝜙2).

An ltl𝑓 formula 𝜙 is in neXt Normal Form (xnf) if pa(𝜙) only includes literals, ∘- and
∙-formulas. For an ltl𝑓 formula 𝜙 in nnf, we can obtain its xnf by transformation function
xnf(𝜙), defined as follows:
- xnf(𝜙) = 𝜙 if 𝜙 is a literal, □𝑓𝑎𝑙𝑠𝑒, ♢𝑡𝑟𝑢𝑒, ∘-, ∙-formula;
- xnf(𝜙1 ∧ 𝜙2) = xnf(𝜙1) ∧ xnf(𝜙2);
- xnf(𝜙1 ∨ 𝜙2) = xnf(𝜙1) ∨ xnf(𝜙2);
- xnf(𝜙1 𝒰 𝜙2) = (xnf(𝜙2) ∧ ♢true) ∨ (xnf(𝜙1) ∧∘(𝜙1 𝒰 𝜙2));
- xnf(𝜙1ℛ𝜙2) = (xnf(𝜙2) ∨□false) ∧ (xnf(𝜙1) ∨∙(𝜙1ℛ𝜙2)).
Note that ♢true (resp. □false) guarantees that empty trace is not (resp. is) accepted by 𝒰-
formulas (resp. ℛ-formulas).

Theorem 1 ([27]). Every ltl𝑓 formula 𝜙 in nnf can be converted, with linear time in the formula

size, to an equivalent formula in xnf, denoted by xnf(𝜙).

ltl𝑓 Formula Progression [23]. Consider an ltl𝑓 formula 𝜙 over 𝒫 and a finite trace
𝜌 = 𝜌[0], 𝜌[1], . . . ∈ (2𝒫)*, in order to have 𝜌 |= 𝜙, we can start from 𝜙, progress or push 𝜙
through 𝜌. The idea behind formula progression is to split an ltl𝑓 formula 𝜙 into a requirement
about now 𝜌[𝑖], which can be checked straightaway, and a requirement about the future that
has to hold in the yet unavailable suffix. That is to say, formula progression looks at 𝜌[𝑖] and
𝜙, and progresses a new formula fp(𝜙, 𝜌[𝑖]) such that 𝜌, 𝑖 |= 𝜙 iff 𝜌, 𝑖+ 1 |= fp(𝜙, 𝜌[𝑖]). This
procedure is analogous to DFA reading trace 𝜌, where reaching accepting states is essentially
achieved by taking one transition after another. Formula progression has been studied in prior
work, cf. [28, 29]. Here we use the formalization provided in [23].

Note that, since 𝜌 is a finite trace, it is necessary to clarify when the trace ends. To do so, two
new formulas are introduced: □false and ♢true , which, intuitively, refer to finite trace ends and
finite trace not ends, respectively. For simplicity, we enrich cl(𝜙), the set of proper subformulas
of 𝜙, to include them such that cl(𝜙) is reloaded as cl(𝜙) ∪ cl(♢true) ∪ cl(□false).
For an ltl𝑓 formula 𝜙 in nnf, the progression function fp(𝜙, 𝜎), where 𝜎 ∈ 2𝒫 , is defined as
follows:
- fp(tt , 𝜎) = tt and fp(ff , 𝜎) = ff ;
- fp(𝑝, 𝜎) = tt if 𝑝 ∈ 𝜎, otherwise ff ;



- fp(♢(𝑡𝑟𝑢𝑒), 𝜎) = tt and fp(□(𝑓𝑎𝑙𝑠𝑒), 𝜎) = ff ;
- fp(¬𝑝, 𝜎) = tt if 𝑝 /∈ 𝜎, otherwise ff ;
- fp(𝜙1 ∧ 𝜙2, 𝜎) = fp(𝜙1, 𝜎) ∧ fp(𝜙2, 𝜎);
- fp(𝜙1 ∨ 𝜙2, 𝜎) = fp(𝜙1, 𝜎) ∨ fp(𝜙2, 𝜎);
- fp(∘𝜙, 𝜎) = 𝜙 ∧ ♢true , and fp(∙𝜙, 𝜎) = 𝜙 ∨□false ;
- fp(𝜙1 𝒰 𝜙2, 𝜎) = fp(𝜙2, 𝜎) ∨ (fp(𝜙1, 𝜎) ∧ fp(∘(𝜙1 𝒰 𝜙2), 𝜎));
- fp(𝜙1ℛ𝜙2, 𝜎) = fp(𝜙2, 𝜎) ∧ (fp(𝜙1, 𝜎) ∨ fp(∙(𝜙1ℛ𝜙2), 𝜎)).
Note that fp(𝜙, 𝜎) is a positive Boolean formula on cl(𝜙), i.e., fp(𝜙, 𝜎) ∈ ℬ+(cl(𝜙)). The
following two propositions show that fp(𝜙, 𝜎) strictly follows ltl𝑓 semantics and retains the
propositional behavior of ltl𝑓 formulas.

Proposition 1 ([23]). Let 𝜙 be an ltl𝑓 formula over 𝒫 in nnf, 𝜌 be a finite nonempty trace,

fp(𝜙, 𝜎) be as above. Then 𝜌, 𝑖 |= 𝜙 iff 𝜌, 𝑖+ 1 |= fp(𝜙, 𝜌[𝑖]).

Proposition 2 ([23]). Let 𝜙 and 𝜓 be two ltl𝑓 formulas over 𝒫 in nnf s.t. 𝜙 ∼𝑝 𝜓, and 𝜎 ∈ 2𝒫 .

Then fp(𝜙, 𝜎) ∼𝑝 fp(𝜓, 𝜎) holds.

We generalize ltl𝑓 formula progression from single instants to finite traces by defining
fp(𝜙, 𝜖) = 𝜙, and fp(𝜙, 𝜎𝑢) = fp(fp(𝜙, 𝜎), 𝑢), where 𝜎 ∈ 2𝒫 and 𝑢 ∈ (2𝒫)*.

Proposition 3 ([23]). Let 𝜙 be an ltl𝑓 formula over 𝒫 in nnf, 𝜌 be a finite trace. We have that

𝜌 |= 𝜙 iff 𝜖 |= fp(𝜙, 𝜌).

We take the definition of the remove-next function RmNext from [23], defined over proposi-
tionalized ltl𝑓 formulas in xnf, 𝜙𝑝:
- RmNext(♢𝑡𝑟𝑢𝑒) = tt , RmNext(□𝑓𝑎𝑙𝑠𝑒) = ff
- RmNext(𝜙1 ∧ 𝜙2) = RmNext(𝜙1) ∧ RmNext(𝜙2)
- RmNext(𝜙1 ∨ 𝜙2) = RmNext(𝜙1) ∨ RmNext(𝜙2)
- RmNext(∘𝜙) = 𝜙 ∧ ♢true , RmNext(∙𝜙) = 𝜙 ∨□false .
Note that RmNext applies to neither 𝒰-,ℛ- formulas, since they do not appear in xnf, nor
literals (𝑝, ¬𝑝), as the input of the function is a propositionalized ltl𝑓 formula in xnf form. We
have the following proposition:

Proposition 4 ([23]). Given an ltl𝑓 formula 𝜙 in nnf, ∀𝜎 ∈ 2𝒫 , fp(𝜙, 𝜎) ≡
RmNext(xnf(𝜙)𝑝|𝜎), where xnf(𝜙)𝑝|𝒫𝜎 stands for substituting in xnf(𝜙)𝑝 the variable 𝑝 with

⊤ if 𝑝 ∈ 𝜎 and ⊥ if 𝑝 ∈ 𝒫 ∖ 𝜎.

LTL𝑓 Synthesis. Let 𝜙 be an ltl𝑓 formula over 𝒫 = 𝒳 ∪ 𝒴 , and 𝒳 ,𝒴 are two disjoint sets of
propositional variables controlled by the environment and the agent, respectively. The synthesis

problem (𝜙,𝒳 ,𝒴) consists in computing a strategy 𝑔 : (2𝒳 )* → 2𝒴 , such that for an arbitrary
infinite sequence 𝜆 = 𝑋0, 𝑋1, . . . ∈ (2𝒳 )𝜔 , we can find 𝑘 ≥ 0 such that 𝜌𝑘 |= 𝜙, where
𝜌𝑘 = (𝑋0 ∪ 𝑔(𝜖)), (𝑋1 ∪ 𝑔(𝑋0)), . . . , (𝑋𝑘 ∪ 𝑔(𝑋0, 𝑋1, . . . , 𝑋𝑘−1)). If such a strategy does
not exist, then 𝜙 is unrealizable. ltl𝑓 synthesis can be solved by reducing to an adversarial
reachability game on the corresponding Deterministic Finite Automaton (dfa) [7]. Hence, a
strategy can also be represented as a finite-state controller 𝑔 : 𝒮 ↦→ 2𝒴 , where 𝒮 denotes the
state space of the dfa.



Algorithm 1 Forward ltl𝑓 Synthesis [23]

1: function Synthesis(𝜙) return strategy
2: if IsAccepting(𝜙) then
3: AddToStrategy(𝜙, true)
4: return GetStrategy()
5: InitialGraph(𝜙)
6: 𝑛 := GetGraphRoot()
7: found := Search(𝑛, ∅)
8: if found then return GetStrategy()
9: return EmptyStrategy() ◁ 𝜙 is unrealizable

10: function Search(𝑛, path) return True/False
11: if IsSuccessNode(𝑛) then return True

12: if IsFailureNode(𝑛) then return False

13: if InPath(𝑛, path) then ◁ We found a loop

14: TagLoop(𝑛) return False

15: 𝜓 :=FormulaOfNode(𝑛)
16: if IsAccepting(𝜓) then
17: TagSuccessNode(𝑛)
18: AddToStrategy(𝜓, true)
19: return True
20: for (𝑎𝑐𝑡,AndNd) ∈GetOrArcs (𝑛) do
21: for (𝑟𝑒𝑠𝑝, 𝑠𝑢𝑐𝑐) ∈GetAndArcs (AndNd) do
22: found :=Search(𝑠𝑢𝑐𝑐, [path|𝑛])
23: if ¬found then Break

24: if found then

25: TagSuccessNode(𝑛)
26: AddToStrategy(𝜓, 𝑎𝑐𝑡)
27: if IsTagLoop(𝑛) then
28: BackProp(𝑛)
29: return True
30: TagFailureNode(𝑛)
31: return False

Forward ltl𝑓 Synthesis. Two recent papers
[22, 23] proposed a forward approach to solve
the problem of ltl𝑓 synthesis. Their implementa-
tions are called, respectively, Ltlfsyn and Cynthia.
The idea is to build the dfa on-the-fly, while per-
forming an adversarial forward search towards
the final states, by considering the dfa as a sort of
AND-OR graph [30]. Therefore, a winning strat-
egy might be found before constructing the whole
dfa. The state-of-the-art forward technique [23],
implemented in the tool Cynthia, is described by
the pseudocode in Algorithm 1. The algorithm is
basically a top-down, depth-first traversal of the
AND-OR graph induced by the on-the-fly dfa con-
struction, proceeding forward from the initial state
and excluding strategies that lead to loops. The
forward-based generation of the AND-OR graph
is based on formula progression and on the ab-
stract functions GetOrArcs and GetAndArcs
functions (Line 20 and Line 21, respectively) that,
taken in input a search node 𝑛, it produces the
next available actions and successor states. The
presence of loops must be carefully handled; when
a loop is detected at node 𝑛, the procedure returns
false, temporarily considering 𝑛 as a failure node. Note that node 𝑛 is not tagged as failure,
since it is unknown whether all the or-arcs of 𝑛 are explored. If later during the search 𝑛 is
discovered as a success node, such information must be propagated from 𝑛 backwards to the
ancestor nodes of 𝑛. It should be noted that, in a forward search on an AND-OR graph, it
is critical to handle loops with the assistance of this backward propagation, implemented in
BackProp (Line 28), as illustrated in [31]. The main novelty of Cynthia over Ltlfsyn is that the
GetOrArcs and GetAndArcs are based on a compilation of the current state formula in a
Sentential Decision Diagram [24], which was used both for fast state-equivalence checking and
for possibly avoiding the exponential enumeration of players’ moves. Indeed, the experimental
evaluation of their technique is rather impressive, as its implementation Cynthia, outperformed
other state-of-the-art tools on challenging benchmarks, e.g. on the Nim benchmark [32]. For
more details on the search algorithm, please refer to the original paper [23].

3. DPLL-based Forward ltl𝑓 Synthesis

Our aim is to propose a new approach that tries to overcome the above limitations that we
consider crucial for a scalable approach. In the first place, we observe that Algorithm 1 can
be seen as an abstract specification that depends on two crucial subprocedures: (i) state-
equivalence checking, denoted with EquivalenceCheck(𝑛1, 𝑛2), that checks whether the



search nodes 𝑛1 and 𝑛2 can be considered equivalent w.r.t. the current AND-OR search graph;
and (ii) search node expansion, denoted with GetAndArcs(𝑛) (resp. GetOrArcs(𝑛)), that
returns an iterator of AND-arcs (resp. OR-arcs) of the AND-node (resp. OR-node) starting
from node 𝑛. The former is implicitly used, e.g. in the InPath function, while the latter
functions are employed at Line 20 and Line 21. Note that this separation was not clearly stated
in [23] and [22]; in particular, De Giacomo et al. referred to an Expand(𝑛) function that both

computes successors node of 𝑛 and finds a representation for such successors to be used for
state equivalence checking. The high-level search algorithm being used is not different from
the De Giacomo et al.’s one. However, this modular separation allows us to focus on each core
component separately, possibly giving a computational advantage in the computation of the
solution; later we will show that this is indeed the case. While in this paper we consider the
same search algorithm of theirs (i.e. a standard depth-first AND-OR search), these arguments
apply also to other AND-OR search algorithms, e.g. AO* [30]. Sometimes we will only refer
to GetArcs if the procedure is similar both for GetOrArcs and GetAndArcs (although, in
general, they might differ).

The crucial observation is that GetArcs(𝑛) does not require that the arcs of search node 𝑛
have already been computed or, in other words, that the node 𝑛 has been fully expanded (as
done by Expand function). As per specification, GetArcs(𝑛) is an iterator over the available
moves from 𝑛. The concept of iterator is well-known in the computer science community as a
way to decouple algorithms from containers [33]. More interestingly, a special case of iterators,
generators [34], would allow to compute the next players’ moves iteratively “on-demand”,
therefore allowing a depth-first search algorithm to visit the next arc returned by the generator
even if all arcs have not been computed yet. We will use a generator-based implementation of
DpllGetArcs in Algorithm 2.

In fact, De Giacomo et al.’s approach can be seen as a special case of the proposed framework,
in which both EquivalenceCheck and GetArcs are implemented using SDDs: two search
nodes are equivalent if they point to the same SDD node, and GetArcs is an iterator that simply
scans the children of the root SDD node of 𝑛. However, this framework can easily overcome the
limiting factors mentioned earlier, namely: (i) computed moves do not have to be disjoint and
covering (i.e. different moves that lead to the same successor are allowed, although preferably
avoided); (ii) if GetArcs is implemented using a generator-like approach, the visit of a child
node can happen far before the computation of all the available moves; and (iii) the two main
search subtasks, state-equivalence checking and a search node expansion, are implemented by
two potentially decoupled functions (EquivalenceCheck and GetArcs, respectively).

We exploit the above observations to design our new ltl𝑓 synthesis algorithm. At the core of
it, there is a novel search node expansion procedure, DpllGetArcs (Algorithm 2), inspired by the
DPLL algorithm [35, 36]. Such a procedure is somehow in the middle between full enumeration
(as Ltlfsyn) and optimal compilation (as Cynthia) of players’ moves. Unlike Cynthia, it selects an
assignment of the relevant variables for the current state formula, hence returning a successor
node without requiring the full SDD compilation, which is some cases might be prohibitive.
However, unlike Ltlfsyn, the recursive nature of the procedure gives room to propositional
formula simplification, which might drastically reduce the size of the action space (i.e. a smaller
number of branching variables to be considered). As state equivalence checking procedures,
we consider (i) BddEqCheck, which is based on Binary Decision Diagrams (BDD) [37], and



(ii) SyntacticEqCheck, based on syntactic equivalence. Intuitively, the BddEqCheck compiles
the state formula as Cynthia did using SDDs, but without requiring the variable decomposition
for finding the next moves. The SyntacticEqCheck just compares the formulas structurally,
which can be implemented very efficiently. A complete formalization of these components,
as well as proof of correctness of the constructions, and how these are combined in a unified
procedure, will be extensively discussed in the following sections.

4. BDD-based and Syntactic Equivalence Checks

In this section, we describe two equivalence checks that can be used for forward ltl𝑓 synthesis.
The first one is a knoweldge-compilation-based equivalence check, that uses BDDs to compile
the state formula and achieve constant (propositional) equivalence checking. The second one is
a simple and lightweight equivalence check that has never been used in this context and, as
we shall see, turns out to be very useful in the experimental evaluation. However, we discuss
implications regarding the completeness of the resulting synthesis procedure.
BDD-based EquivalenceCheck. The BDD-based equivalence check is similar to the SDD-
based equivalence check performed by Cynthia. That is, for a search node 𝑛, we take its
associated ltl𝑓 formula 𝜓 with FormulaOfNode (remember that search node is associated
with an ltl𝑓 formula). Then, we compute xnf(𝜓), which is propositionally equivalent to
𝜓. xnf(𝜓), by construction, is defined over the set of variables 𝒴 ∪ 𝒳 ∪ 𝒵 , where 𝒵 =⋃︀
𝜃∈cl(𝜙){𝑧𝛼|𝛼 ∈ pa(xnf(𝜃)), 𝛼 not literal}. Finally, we get its BDD representation, i.e. 𝐵𝜓 :=

BddRepresentation(xnf(𝜓)𝑝). We do these operations both for search nodes 𝑛1 and 𝑛2, whose
state formulas are 𝜓1 and 𝜓2 respectively, yielding𝐵xnf(𝜓1) and𝐵xnf(𝜓2). The equivalence check
whether the two BDDs point to the same BDD node (𝐵xnf(𝜓1) = 𝐵xnf(𝜓2)). If that is the case
then it means, thanks to the canonicity property of BDDs, that the associated (propositionalized)
formulas are propositionally equivalent.

Lemma 1. Let (𝜙,𝒳 ,𝒴) be a ltl𝑓 synthesis problem instance. The BddEqCheck procedure for

such instance induces a search space for Algorithm 1 with no more than 22
|𝒪(cl(𝜙))|

search nodes.

Proof. Any ltl𝑓 formula 𝜓 associated to some search node 𝑛 of Algorithm 1 is such that
xnf(𝜓)𝑝 ∈ ℬ+(𝒴 ∪ 𝒳 ∪ 𝒵). Since there are at most 2|𝒴∪𝒳∪𝒵| models, thanks to the canonicity
property of BDDs, there can be at most 22

|𝒴∪𝒳∪𝒵|
propositionally equivalent formulas. Since

𝒴 ∪ 𝒳 ∪ 𝒵 = 𝒪(cl(𝜙)), we get the claim.

We preferred the use of BDDs instead of SDDs since we do not need the decomposing feature
of SDDs, and also because robust and optimized implementations for BDDs already exists, e.g.
CUDD [38], with useful features such as dynamic variable reordering.
Syntactic EquivalenceCheck. We now consider an equivalence check procedure that
is based on structural equivalence: two search nodes 𝑛1 and 𝑛2 are considered equivalent
if their formulas 𝜓1 and 𝜓2 have the same syntax tree, i.e.: SyntacticEqCheck(𝑛1, 𝑛2) :=
FormulaOfNode(𝑛1) = FormulaOfNode(𝑛2). To make the comparison fast, we can use
hash consing [39] which is a technique used to share values that are structurally equal. Using
hash consing, two formulas can be stated as structurally equivalent if they point to the same



memory address, achieving constant time equality check. Unfortunately, naïvely applying
formula progression might give false negatives, as shown by the following result:

Theorem 2. Algorithm 1 with SyntacticEqCheck for EquivalenceCheck is sound but not

complete for ltl𝑓 synthesis.

Proof. Soundness follows from the soundness of hash-consing based equivalence check. To
disprove completeness, consider the synthesis problem with 𝜙 = □𝑎𝒰 ♢𝑏, 𝒴 = {𝑎} and
𝒳 = {𝑏}. Let 𝜎 = {𝑎}, 𝜙0 = 𝜙 and 𝜙𝑛 = fp(𝜙𝑛−1, 𝜎). It can be shown by induction on 𝑛
the following statement: for all 𝑛 ≥ 1, we have xnf(𝜙𝑛) = (((𝑏 ∧ ♢𝑡𝑟𝑢𝑒) ∨∘♢𝑏) ∧ ♢𝑡𝑟𝑢𝑒) ∨
(xnf(𝜙𝑛−1) ∧ (((𝑎 ∨ □𝑓𝑎𝑙𝑠𝑒) ∧ ∙□𝑎) ∨ □𝑓𝑎𝑙𝑠𝑒) ∧ ♢𝑡𝑟𝑢𝑒). By correctness of fp, the set of
formulas𝜙0, 𝜙1. . . . are semantically equivalent but structurally different, ending up in a infinite
loop, which is undetected by the SyntacticEqCheck.

At the core of the issue is that, by how the formula progression works, there are some cases in
which a new structurally different formula can be always produced by some particular sequence
of applications of formula progression rules, although propositionally equivalent formulas have
been already produced earlier during the search. Nevertheless, such equivalence check is very
computationally cheap and, as we shall see in the experimental section, often it performs better
than the BDD-based equivalence check.

To guarantee the termination of this version of the search algorithm, we propose the following
procedure: given a synthesis problem, first execute Algorithm 1 with SyntacticEqCheck as
equivalence check and some search node expansion procedure. As soon as, during the execution,
the size of the formula of any generated search node becomes greater than a given threshold 𝑡,
then abort the execution and resort to the search algorithm by using BddEqCheck as equivalence
check. In other words, if the problem does not present the pathological corner case shown in
the proof of Theorem 2, then try to solve it, without getting stuck with onerous BDD-based
compilations.

Lemma 2. Algorithm 1 with SyntacticEqCheck for EquivalenceCheck with size formula

threshold 𝑡 always terminates and is correct.

Proof. Correctness follows from [23, Theorem 5], whereas termination follows from considering
that (i) the number of distinct state formulas of size at most 𝑡 is finite, and (ii) in case the
threshold is hit, by the correctness of the BDD-based equivalence check (Lemma 1).

Lemma 2 says that the threshold guarantees that only a finite number of structurally equivalent
formulas can be computed. Empirically, we found that a good threshold that suitably postpones
the detection of pathological instances is three times the size of the initial formula: 𝑡 = 3 · |𝜙|.

5. DPLL-based Search Node Expansion

In this section, we describe our main novel approach for search node expansion, that we argue
is the key ingredient in achieving state-of-the-art performances for forward ltl𝑓 synthesis,
that allows to overcome some limitations of previous works discussed in previous sections. In
particular, GetArcs is implemented using a DPLL-based procedure (Algorithm 2). We claim



the DPLL-based GetArcs to be effective for solving ltl𝑓 synthesis in a forward fashion, as also
shown by the experimental evidence.
Algorithm 2 DPLL-based GetArcs

1: function DpllGetArcs(𝑛) return 𝐺𝑒𝑛[move, node]
2: 𝜓← xnf(FormulaOfNode(𝑛))
3: 𝑎𝑠𝑠← {} ◁ propositional assignment
4: if IsOrNode(𝑛) then
5: yield from DpllGetOrArcs (𝜓𝑝, 𝑎𝑠𝑠)
6: else

7: yield from DpllGetAndArcs (𝜓𝑝, 𝑎𝑠𝑠)
8: function DpllGetOrArcs(𝜑, 𝑎𝑠𝑠)
9: 𝒴 ′← GetAgentVars(𝜑)

10: if 𝒴 ′ ̸= ∅ then
11: ℓ← GetBranchingLiteral(𝜑)
12: 𝜑ℓ← Replace(𝜑, ℓ)
13: yield from DpllGetOrArcs(𝜑ℓ, 𝑎𝑠𝑠 ∪ {ℓ})
14: 𝜑¬ℓ← Replace(𝜑,¬ℓ)
15: yield from DpllGetOrArcs(𝜑¬ℓ, 𝑎𝑠𝑠 ∪ {¬ℓ})
16: else ◁ No branching on agent variables available
17: yield (𝑎𝑠𝑠, 𝜑tf) ◁ 𝜑tf is the next AND node
18: function DpllGetAndArcs(𝛹, 𝑎𝑠𝑠)
19: 𝒳 ′← GetEnvVars(𝛹)
20: if 𝒳 ′ ̸= ∅ then
21: ℓ← GetBranchingLiteral(𝛹)
22: 𝛹ℓ← Replace(𝛹, ℓ)
23: yield from DpllGetAndArcs(𝛹ℓ, 𝑎𝑠𝑠 ∪ ℓ)
24: 𝛹¬ℓ← Replace(𝛹,¬ℓ)
25: yield from DpllGetAndArcs(𝛹¬ℓ, 𝑎𝑠𝑠∪¬ℓ)
26: else ◁ No branching on environmentvariables available
27: 𝜓′← RmNext(𝛹)
28: yield (𝑎𝑠𝑠, 𝜓′) ◁ 𝜓′ is the next OR node

The DPLL algorithm is a very famous
algorithm for deciding the satisfiability
of proposition logic formulas in conjunc-
tive normal form (CNF). Many variants of
it have been proposed that work for gen-
eral non-clausal formulas [40, 41], moti-
vated by the fact that, quite often, con-
version of a boolean formula to CNF is
both unnecessary and undesirable, e.g.
because of loss of structural information
and due to the worst-case exponential
blow-up of the size of the formula. We
agree with this view, and in the following
we assume to deal with propositionalized
ltl𝑓 formulas in non-clausal form.

We are interested in designing a DPLL-
like procedure to identify the next moves
and successor nodes from a search node
𝑛. Our proposed procedure (Algo-
rithm 2), like any DPLL procedure, runs
by choosing a literal, assigning a truth
value to it, simplifying the formula and
then recursively applying the same pro-
cedure to the simplified formula, un-
til there are no agent or environment

variables to branch on. Both the computed set of assignments resulting from the se-
quence of recursive calls, 𝑎𝑠𝑠 (initialized at Line 3), and what remains of the formula 𝜑 =
xnf(FormulaOfNode(𝑛))𝑝 after the chosen literals have been replaced with their assigned
truth value, are yielded such that they can be consumed by the caller function (see Line 17 and
28; the instruction yield allows a generator to provide a value to the caller).

Given a search node 𝑛, DpllGetArcs returns a generator over pairs (move, node), where
move is a mapping from variables to truth values (the absence of a variable is considered as don’t

care), and node is a ltl𝑓 formula that, as required by ours and De Giacomo et al.’s search frame-
work, represents a search node (either AND or OR). Depending on whether 𝑛 is an OR-node or
an AND-node, the DpllGetOrArcs function (Line 5) or the DpllGetAndArcs function (Line 7)
is called, respectively. The DpllGetOrArcs function takes in input a propositionalization of
𝜓, i.e. 𝜑 := 𝜓𝑝, and the current variables’ assignment 𝑎𝑠𝑠. If there is still some agent variable
in 𝒴 to assign (Line 9), then we decide the next branching literal ℓ (by calling the function
GetBranchingLiteral, Line 11), we substitute its truth value to the formula 𝜑, and simplify it
by calling the function Replace (Line 12), obtaining 𝜑ℓ. Then, we do the recursive call to DpllGe-
tOrArcs with the new propositionalized formula 𝜑ℓ and updated assignment 𝑎𝑠𝑠 ∪ {ℓ}, and
start generating the next moves with a fixed value for literal ℓ. Intuitively, this step represents a



transition to another node of the search tree of a DPLL algorithm. The instruction yield from
allows a generator to forward the generation of results to another generating function. When
the generation terminates, the negated literal ¬ℓ is replaced to the original formula 𝜑, yielding
another propositionalized ltl𝑓 formula 𝜑¬ℓ, and the available moves starting from this branch
are generated. Intuitively, the last step represents the exploration of the opposite branch of the
current node of the DPLL search tree, with the branching literal ℓ set at the opposite truth value
¬ℓ. Note that in the base case, we return the pair (𝑎𝑠𝑠, 𝜑tf), where 𝑎𝑠𝑠 contains all the chosen
literals in the current final assignment, and 𝜑tf is the ltl𝑓 formula that represents the next AND
node. The DpllGetAndArcs is analogous to DpllGetOrArcs but for AND nodes; therefore,
it aims at finding an assignment of environmentvariables 𝒳 rather than of agent variables 𝒴 .
Another difference with DpllGetAndArcs is that in the base case, we use the propositional
formula 𝛹 (the result of the substitutions of chosen literals and the subsequent simplifications)
to compute the next search node formula 𝜓′, using the function RmNext, at Line 27. Note that,
at this stage, 𝛹 is a propositional formula over 𝒵 state variables only. By Proposition 4, since
𝛹 = xnf(𝜓)𝑝|𝒫𝜎 , we have that 𝜓′ = RmNext(𝛹) = fp(𝜓, 𝜎), i.e. the correct next state.

According to the needs of the search algorithm, the procedure can be run exhaustively, i.e.
until all available moves from node 𝑛 have been produced. Still, the simplification step can
possibly avoid a large part of the naive search space over 𝒴 and 𝒳 ; this is an improvement wrt
the Ltlfsyn approach, which blindly enumerates all possible assignments. The simplification step
recursively applies the usual propositional simplification rules, e.g. considering the absorbing
or neutral boolean values of binary operators. We suggest to simplify the propositional formula
to a great extent, but without resorting to any compilations. Instead, we leave the formula in
non-clausal form, aiming at eliminating branching variables from the resulting formula. Such
variables will be considered as don’t care in the current assignment.

We argue that such kind of procedures, like the one described in Algorithm 2, are suitable for
our use-case because of their depth-first nature, which implies a low-space requirement, and
because of their “responsive” nature: a candidate move is proposed in linear time in the number
of variables (possibly better thanks to simplifications). It is interesting to observe that the full
trace of a DPLL execution can be seen as a compilation of the propositional theory [42]. Note
that Algorithm 2 is an abstract specification that can be customized by different realizations of
GetBranchingLiteral and Replace.

Lemma 3. Let (𝜙,𝒳 ,𝒴) be a ltl𝑓 synthesis problem instance. DpllGetArcs correctly expands

the search graph.

Proof sketch. By construction, both DpllGetOrArcs and DpllGetAndArcs are complete
because they consider all possible agent’s and environment’s variable assignments (possi-
bly avoiding exhaustive enumeration thanks to Replace’s simplifications). Moreover, when
DpllGetOrArcs(𝜓) reaches its base case, by definition of AND-OR graph of 𝜙, (𝑎𝑠𝑠, 𝜑tf) is a
valid transition from 𝜓 to AND node 𝜑tf , while DpllGetOrArcs(𝜑tf) returns (𝑎𝑠𝑠, 𝜓′), where
𝜓′ = RmNext(xnf(𝜓)𝑝|𝒫𝑎𝑠𝑠) is the correct successor node by Proposition 4.

Theorem 3. Algorithm 1 with BddEqCheck for state-equivalence checking and Algorithm 2 for

search node expansion is correct and always terminates.



Proof. Termination follows from Lemma 1 and Thm. 4 of [23]. Correctness follows from
Lemma 1, 3, and Thm. 5 of [23].

Theorem 4. Algorithm 1 with SyntacticEqCheck and formula size threshold 𝑡 for state-

equivalence checking and Algorithm 2 for search node expansion is correct and always terminates.

Proof. Termination follows from Lemma 2 and Thm. 4 of [23]. Correctness follows from
Lemma 2, 3, and Thm. 5 of [23].

6. Implementation and Experiments

We implemented the presented synthesis methods in a tool calledNike, which resulted the winner
in the ltl𝑓 Realizability Track of SYNTCOMP 2023. Nike is an open-source tool implemented
in C++11. It uses Syfco to parse the synthesis problems described in TLSF format [43] to obtain
the ltl𝑓 specification and the partition of agent/environment propositions. Nike integrates
the preprocessing techniques presented in [22] to perform one-step realizability/unrealizability
checks, which is implemented using the BDD library CUDD [38], at the beginning of the
synthesis procedure. If neither one-step check succeeds, the AND-OR search begins. Since the
procedure is correct and terminates, either the search procedure does not find a winning strategy,
in which case the answer to the ltl𝑓 synthesis problem is “unrealizable”, or a winning strategy
is found, and therefore the outcome is “realizable”. We use n-ary trees with hash-consing for
representing the ltl𝑓 formulas and performing the hash-based state-equivalence checking.
The CUDD library is used for the BDD-based state-equivalence checking. Nike, as Cynthia and
Ltlfsyn, applies some optimizations to speed up the synthesis procedure. First, when visiting an
OR-node 𝑛 for the first time, we perform the pre-processing techniques described in [22]. More
specifically, we check: (i) there exists a one-step strategy that reaches accepting states from 𝑛,
then 𝑛 is tagged as success; or (ii) there does not exist an agent move that can avoid sink state (a
non-accepting state only going back to itself) from 𝑛, then 𝑛 is tagged as failure. Nike can run
in two modes: using BDD-based state-equivalence checking (BDD), and hash-consing-based
state-equivalence checking (Hash). In the DPLL-based search node expansion, we considered
variables in alphabetical order, and we combined them with three simple branching strategies:
True-first (TF) that first sets variables to true, False-first (FF) that first sets variables to false;
and Random (Rand) that sets variables at random. This yields six combinations of Nike that we
included in these experiments. We also include a parallel version of Nike, Nike-P, that runs in
Hash mode all the three branching strategies in parallel.
Experimental Methodology. We evaluated the efficiency of all variants of Nike, by comparing
against the following tools: Lisa [9] and Lydia [8] are state-of-the-art backward ltl𝑓 synthesis
approaches. Both tools compute the complete dfa first, and then solve an adversarial reachability
game following the symbolic backward computation technique described in [44]. We excluded
Ltlfsyn from the comparison since it was already superseded by Cynthia.
Experiment Setup. Experiments were run on a VM instance on Google Cloud, type
c2-standard-4, endowed with Intel(R) Xeon(R) CPU 3.10GHz, 4 logical CPU threads, 16
GB of memory and 300 seconds of time limit. The correctness of Nike was empirically verified
by comparing the results with those from all baseline tools. No inconsistency was found.
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Figure 1: Comparison results on all benchmarks.

Benchmarks. We collected 1494 ltl𝑓 synthesis instances from literature: 20 unrealizable 𝐺𝐹 -

pattern and 20 realizable 𝑈 -pattern instances, of the form 𝐺𝐹 (𝑛) = □(𝑝1)∧♢(𝑞2)∧ · · · ∧♢𝑞𝑛)
and 𝑈(𝑛)=𝑝1 𝒰(𝑝2 𝒰(. . . 𝑝𝑛−1 𝒰 𝑝𝑛)), respectively [45, 46]; 54 Two-player-Games instances
[47, 9]: Single-Counter, where the agent stores an 𝑛-bit counter (where 𝑛 is the scaling parameter)
which it must increment upon a signal by the environment. The agent wins if the counter
eventually overflows to 0; Double-Counter is similar to the Single-Counter one, except that in
this case there are two 𝑛-bit counters, one incremented by the environment and another by the
agent. The goal of the agent is for its counter to eventually catch up with the environment’s
counter; and Nim is a generalized version of the game of Nim with 𝑛 heaps of 𝑚 tokens each
[32]. Finally, we considered 1400 Random instances, of which 400 are from [44] and 1000 from
[8], constructed from ltl synthesis datasets Lily and Load Balancer [48].
Analysis. Figure 1a shows the running time of each tool on every instance of the GF-pattern
dataset. Across these instances, we can observe that all variants of Nike solve instances very
quickly, thanks to the pre-processing techniques. This is done with much less time comparing
to backward approaches, represented by Lisa and Lydia, simply because these tools do not have
such optimizations. Cynthia solved it in less time, but we attribute this to the set up time of the
CUDD BDD manager that worsens the performances. Nevertheless, this amounts to a negligible
time cost difference of ≪ 1 second. Results are similar for the U-pattern dataset, shown in the
supplementary material. On the Two-player-Games benchmarks, see Figure 1b, we observe that
Nike variants dominate all other tools on the Double-Counter instances, while competing with
backward approaches on the other instances. On Nim, Cynthia is the best performing tool, but on
the other benchmarks Nike shows to be better. The Nike-BDD combinations performs slightly
worse on Double Counter than the Nike-Hash combinations. On the Random benchmarks, all
variants of Nike, except the ones using Rand, are competitive with state-of-the-art backward
approaches, and far better than Cynthia.

It is clear from the plots that Nike, in general, shows an overall better performance than
Cynthia, illustrating the efficiency and better scalability of our approach. In particular, there
is a notable outperformance of Cynthia on the Double-Counter and in the Random instances.
We attribute this to the ability of Nike to not be stuck with compilation processes that can
easily become intractable, both on hand-designed datasets like Double-Counter, and in randomly



generated intractable cases. On the Nim benchmark, our tool does not perform as good as the
others, but its performance are still competitive, especially in the variant Nike-BDD-FF. This is
because the Nim formulas were manageable enough for SDD compilation (Cynthia) and for DFA
construction (Lydia/Lisa), whereas the blind branching strategies of Nike were not effective in
this case, as most of the time is spent on generating successors that have been already visited.
The worse performance of the Rand branching strategy on the Random benchmark can be
explained by the fact that the TF and the FF strategies might exploit a particular problem
structure of these instances, that allow to easily arrive at success nodes or failure nodes, and
frees the algorithm to explore more moves thanks to the short-circuit evaluation of the search
outcome (see Lines 23 and 24 in Algorithm 1). The best configuration is Nike-BDD-FF, which
suggests that for this benchmark the state compilation is not too hard and the canonicity of the
representation helps to prevent the revisit of propositionally-equivalent states.

Overall, despite the simplicity of the DPLL-based expansion, performances are very surprising
with respect to backward approaches; this suggests that our approach is very promising and
worth of future research.

7. Conclusions

We proposed the best forward search ltl𝑓 synthesis approach so far, and the first that is truly
competitive with the considered state-of-the-art tools based on backward computation (as in
the Random benchmark). Our implementation ranked first in the ltl𝑓 Realizability Track of the
2023 edition of SYNTCOMP. We think this work sets the foundations for a new family of ltl𝑓
synthesis algorithms, and opens several research avenues for investigating effective branching
heuristics [49] for the DPLL-based search graph expansion, e.g. non-chronological backtracking,
better order in which branching variables are chosen [50], or better termination strategies for
searching with syntactic state-equivalence checking.
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