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Abstract

Stable models of logic programs have been studied and characterized also in comparison with other formalisms

by many researchers. As already argued, such characterizations are interesting for many reasons, including

the possibility of leading to new algorithms for computing stable models.

In this paper we provide a simple characterization of stable models which can be seen as the proof-theoretic

counterpart of the standard model-theoretic definition. We show how it can be naturally encoded in difference

logic. Our encoding, compared to the existing reductions to classical logics, does not explicitly rely on a

previous computation of Clark’s completion, and it does not involve any Boolean variable.
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1. Introduction

Stable models of logic programs [2, 3, 4, 5, 6, 7], a.k.a. answer set programming (ASP), have been

studied and characterized also in comparison with other formalisms by many researchers, given its

widespread use to solve application problems, even in an industrial setting [8, 9, 10, 11, 12, 13, 14]. As

already argued (see, e.g., [15]), such characterizations are interesting for many reasons, including the

possibility of leading to new algorithms for computing stable models.

In this paper we introduce stable derivations as a new characterization of stable models and show

how it can be naturally encoded in difference logic, i.e., in quantifier free first order formulas whose

atoms have the form

(𝑥 ◁▷ 𝑦 + 𝑐),

where 𝑥 and 𝑦 are variables ranging over the reals/rationals or the integers, ◁▷∈ {=, ̸=,≤, <,≥, >}
and 𝑐 is a numeric constant. While this is neither the first alternative to the standard definition of

stable models (see, e.g., [15]) nor the first reduction to difference logic (see, e.g., [16]),

1. our definition of stable derivation is simple, as witnessed by the fact that it is rather short, and

2. its corresponding reduction to difference logic uses only one numeric variable per atom in the

program, without the need to include any Boolean variable, given that it does not explicitly

rely on a previous computation of Clark’s completion [17].

Given the correspondence we establish between stable derivations and stable models, the former

can be seen as the proof-theoretic counterpart of the standard model-theoretic definition of the latter.
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The paper is structured as follows. First, Section 2 introduces needed preliminaries. Then, Section

3 presents our characterization, while the reduction to difference logic is shown in Section 4. The

paper ends by discussing (further) related work in Section 5, and by drawing some conclusion and

possible topics for future research in Section 6.

2. Stable models, Clark’s completion and ordering constraints

Let 𝑉 be a countable set of atoms. By 𝑉 ⊥
we mean the set obtained adding the atom ⊥ denoting

falsity to 𝑉 , i.e., 𝑉 ⊥ = 𝑉 ∪ {⊥}. A rule is an expression of the form

𝐴← 𝐴1, . . . , 𝐴𝑚,¬𝐴𝑚+1, . . . ,¬𝐴𝑛 (1)

(0 ≤ 𝑚 ≤ 𝑛) where 𝐴,𝐴1, . . . , 𝐴𝑛 are atoms in 𝑉 ⊥
and ¬ is the symbol for negation. We assume

that in (1), 𝐴𝑖 ̸= 𝐴𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. A (logic) program is a set of rules. Given a rule 𝑟 of the form (1),

ℎ𝑒𝑎𝑑(𝑟) = 𝐴 is the head, 𝑏𝑜𝑑𝑦+(𝑟) = {𝐴1, . . . , 𝐴𝑚} is the set of positive body atoms, 𝑏𝑜𝑑𝑦−(𝑟) =
{𝐴𝑚+1, . . . , 𝐴𝑛} is the set of negative body atoms, and 𝑏𝑜𝑑𝑦(𝑟) = {𝐴1, . . . , 𝐴𝑚,¬𝐴𝑚+1, . . . ,¬𝐴𝑛}
is the body of 𝑟. If 𝐴 = ⊥ then (1) is said to be a constraint.

Consider a logic program Π. A (truth) assignment is a subset of the set 𝑉 of atoms, thus not

containing ⊥. A truth assignment 𝑀 satisfies

1. an atom 𝐴 if 𝐴 ∈𝑀 ,

2. a negated atom ¬𝐴 if 𝐴 ̸∈𝑀 ,

3. a set of atoms and negated atoms if 𝑀 satisfies all the elements in the set,

4. a rule if 𝑀 satisfies the head whenever 𝑀 satisfies 𝑏𝑜𝑑𝑦(𝑟), and

5. a program Π if 𝑀 satisfies all the rules in Π, in which case 𝑀 is also said to be a model of Π.

A model 𝑀 of Π is minimal if Π has no other model which is a subset of 𝑀 . As standard, for a

suitable concept 𝑆, we write 𝑀 |= 𝑆 to mean that 𝑀 satisfies 𝑆.

For any truth assignment 𝑀 , the reduct Π𝑀
of Π relative to 𝑀 is the set of rules obtained from

Π by considering each rule 𝑟 ∈ Π of the form (1) and dropping 𝑟 if at least one of the atoms in

𝐴𝑚+1, . . . , 𝐴𝑛 is in 𝑀 , and then dropping ¬𝐴𝑚+1, . . . ,¬𝐴𝑛 otherwise, i.e.,

Π𝑀 = {ℎ𝑒𝑎𝑑(𝑟)← 𝑏𝑜𝑑𝑦+(𝑟) : 𝑟 ∈ Π,𝑀 ∩ 𝑏𝑜𝑑𝑦−(𝑟) = ∅}.

A truth assignment 𝑀 is a stable model of Π if it is the minimal model of the reduct of Π relative to

𝑀 .

Example 1. Consider the program Π in the three atoms 𝐴,𝐵,𝐶 whose rules are:

𝐴← 𝐵,
𝐵 ← 𝐴,
𝐴← ¬𝐶,
𝐶 ← 𝐶.

(2)

Π has the three models {𝐴,𝐵,𝐶}, {𝐴,𝐵} and {𝐶}, of which only the last two are minimal and only
the second one is stable.

Such definition of stable model is due to [4] and has the property that each stable model 𝑀 of Π is

a supported model of Π, i.e., for each atom 𝐴 ∈ 𝑉 ⊥
, 𝐴 ∈ 𝑀 if and only if there exists a rule 𝑟 ∈ Π

such that ℎ𝑒𝑎𝑑(𝑟) = 𝐴 and 𝑀 |= 𝑏𝑜𝑑𝑦(𝑟). Thus, all the stable models are also supported while the

converse is not necessarily true [18]. [19] proved that also the converse is true if Π is tight, i.e., if the

positive dependency graph of Π



1. having one node for each atom in 𝑉 , and

2. an edge from 𝐴 to each atom 𝐴1, . . . , 𝐴𝑚 for each rule (1) in Π,

does not contain any loop.

Theorem 1 ([19]). Let Π be a program. A stable model of Π is also a supported model of Π, and if Π
is tight then a supported model of Π is also a stable model of Π.

If for each atom 𝐴 there are finitely many rules with head 𝐴, the supported models of Π coincide

with the models of the Clark’s completion 𝐶𝑜𝑚𝑝(Π) [17]. Assuming Π is finite, the Clark’s completion
𝐶𝑜𝑚𝑝(Π) of Π is defined to be the set of formulas in propositional logic consisting of

𝐴 ≡
⋁︁

𝑟:𝑟∈Π,ℎ𝑒𝑎𝑑(𝑟)=𝐴

⋀︁
𝐿∈𝑏𝑜𝑑𝑦(𝑟)

𝐿, (3)

for each atom 𝐴 ∈ 𝑉 ⊥
.

Note that (3) is included in 𝐶𝑜𝑚𝑝(Π) for every 𝐴 ∈ 𝑉 ⊥
, even when 𝐴 = ⊥ or 𝐴 is not the head

of any rule in Π. In the former case, (3) is equivalent to

¬
⋁︁

𝑟:𝑟∈Π,ℎ𝑒𝑎𝑑(𝑟)=⊥

⋀︁
𝐿∈𝑏𝑜𝑑𝑦(𝑟)

𝐿

and, in the latter case, (3) is equivalent to ¬𝐴. Clark’s completion provides a reduction to classical

logic for tight programs. 𝐶𝑜𝑚𝑝(Π) has |𝑉 | Boolean variables and size 𝑂(||Π||), where ||Π|| is the

size of Π.

[20] and later [21] generalized Fages’ [19] result to programs Π tight on a set 𝑀 ⊆ 𝑉 of atoms,
defined as the programs for which there exists a function 𝜆Π

mapping each atom in 𝑀 to an ordinal

such that for each rule 𝑟 in Π, if 𝑀 satisfies the head and the body of the rule then, for each atom

𝐴 in the positive body of the rule, 𝜆(ℎ𝑒𝑎𝑑(𝑟)) > 𝜆(𝐴). A program is tight according to Fages’ [19]

definition, if it is tight on every set of atoms.

Theorem 2 ([21]). Let Π be a program. Let 𝑀 be a supported model of Π. If Π is tight on 𝑀 then 𝑀
is a stable model of Π.

Example 2. Consider the rules in (2). If Π consists of the second and third rules then Π is tight and
𝐶𝑜𝑚𝑝(Π) consists of the formulas

𝐴 ≡ ¬𝐶,
𝐵 ≡ 𝐴,
¬𝐶.

If Π consists of the last three rules in (2), then (𝑖) Π is not tight, (𝑖𝑖) 𝐶𝑜𝑚𝑝(Π) consists of the first
two of the above formulas, (𝑖𝑖𝑖) we can conclude that 𝑀 = {𝐴,𝐵} is a stable model since Π is tight on
𝑀 , but (𝑖𝑣) we are not allowed to conclude, on the basis of Theorem 2, that {𝐶} is not a stable model.

If Π consists of all the rules in (2), then (𝑖) Π is not tight, (𝑖𝑖) 𝐶𝑜𝑚𝑝(Π) consists of the formulas

𝐴 ≡ (𝐵 ∨ ¬𝐶),
𝐵 ≡ 𝐴,
𝐶 ≡ 𝐶,

(4)

(𝑖𝑖𝑖) the set of models of 𝐶𝑜𝑚𝑝(Π) is {{𝐴,𝐵,𝐶}, {𝐴,𝐵}, {𝐶}}, and (𝑖𝑣) Π is not tight on any of the
models of 𝐶𝑜𝑚𝑝(Π).



If the program Π is non tight, several authors showed how it possible to add extra constraints in

order to rule out the supported models which are not stable, see for instance [22, 23, 24].

Here, in the following, we give a brief overview of the approaches which are more related to our

work. Other related works are briefly discussed in Section 6.

Janhunen [25] proved that in order to rule out the models of the completion which are not stable,

it is sufficient to add suitable level ordering constraints. For any truth assignment 𝑀 ⊆ 𝑉 , define the

set of supporting rules of 𝑀 to be Π𝑀 = {𝑟 ∈ Π : 𝑀 |= 𝑏𝑜𝑑𝑦(𝑟)}. Given an assignment 𝑀 , a level
numbering of 𝑀 for Π is a function 𝜆Π : 𝑀 ∪Π𝑀 ↦→ N such that for each atom 𝐴 ∈𝑀 ,

𝜆(𝐴) = 𝑚𝑖𝑛{𝜆(𝑟) : 𝑟 ∈ Π𝑀 , ℎ𝑒𝑎𝑑(𝑟) = 𝐴}

and, for each rule 𝑟 ∈ Π𝑀 ,

𝜆(𝑟) = 𝑚𝑎𝑥{0,𝑚𝑎𝑥{𝜆(𝐴) : 𝐴 ∈ 𝑏𝑜𝑑𝑦+(𝑟)}}+ 1.

Theorem 3 ([25]). Let Π be a program. Let 𝑀 be a supported model of Π. 𝑀 is a stable model of Π if
and only if there exists a level numbering of 𝑀 for Π.

In the same work, Janhunen [25] proved that for a supported model𝑀 ofΠ there is at most one level

numbering, and also showed –assuming 𝑉 is finite– how to encode level numbering in propositional

logic using ⌈𝑙𝑜𝑔2(|𝑉 |+2)⌉ bits. Thanks to Theorem 3, there exists a one-one-correspondence between

the stable models of Π and the models of the set 𝐽(Π) of propositional formulas consisting of the

encoding of the level numbering and of 𝐶𝑜𝑚𝑝(Π). 𝐽(Π) has 𝑂(|𝑉 |×⌈𝑙𝑜𝑔2(|𝑉 |)⌉)) Boolean variables

and size 𝑂(||Π|| × 𝑙𝑜𝑔2(|𝑉 |)).
A few years later, Niemelä [16] introduced level ranking of an assignment 𝑀 for Π to be a function

𝜆Π : 𝑀 ↦→ N such that for each atom 𝐴 ∈ 𝑀 , there exists a rule 𝑟 ∈ Π𝑀 such that ℎ𝑒𝑎𝑑(𝑟) = 𝐴
and for each atom 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝜆(𝐴) ≥ 𝜆(𝐵) + 1. [16] also showed that if we add the restrictions

to level rankings saying that for each 𝐴 ∈𝑀

1. 𝜆(𝐴) = 1 whenever there is a rule 𝑟 ∈ Π𝑀 with ℎ𝑒𝑎𝑑(𝑟) = 𝐴 and 𝑏𝑜𝑑𝑦+(𝑟) = ∅, and

2. for every rule 𝑟 ∈ Π𝑀 with ℎ𝑒𝑎𝑑(𝑟) = 𝐴 and 𝑏𝑜𝑑𝑦+(𝑟) ̸= ∅, there exists 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟) with

𝜆(𝐴) ≤ 𝜆(𝐵) + 1,

then we have a one-to-one correspondence between level ranking and level numbering. Level rankings

satisfying such additional restrictions are said to be strong.

Theorem 4 ([16]). Let Π be a program. Let 𝑀 be a supported model of Π. 𝑀 is a stable model of Π if
and only if there exists a (strong) level ranking of 𝑀 for Π.

Like level numbering, for each supported model 𝑀 , there is at most one strong level ranking. The

strong level ranking can be thus used to produce compact encodings in propositional logic as in [25],

but without the need of encoding the level associated to the rules.

(Strong) level rankings can be encoded in difference logic, defined as the extension to propositional

logic in which the set of atomic formulas is extended in order to allow for expressions of the form

𝑥 ◁▷ 𝑦+𝑐, where 𝑥 and 𝑦 are variables ranging over a numeric unbounded domain (usually the integers

or the rationals/reals), 𝑐 is a numeric constant and ◁▷∈ {=, ̸=,≤, <,≥, >}. Then, an interpretation 𝜎
maps each numeric variable to a value in its domain, and 𝜎 satisfies an atomic formula 𝑥 ◁▷ 𝑦 + 𝑐
iff 𝜎(𝑥) ◁▷ 𝜎(𝑦) + 𝑐1

. Thanks to Theorem 4, the stable models of Π can be computed as the models

1

It is possible to distinguish between rational/real difference logic and integer difference logic; in the former, variables

take values in the rationals/reals while in the latter case variables are assumed to take integer values. The distinction is

useful as, e.g., the satisfiability of 0 < 𝑥−𝑦 < 1 depends on the domain of 𝑥 and 𝑦. However, in this paper such distinction

is useless since we are going to consider formulas whose satisfiability does not depend on the chosen domain.



of 𝑁(Π), where 𝑁(Π) is the set of formulas in difference logic consisting of 𝐶𝑜𝑚𝑝(Π) and of the

encoding of the (strong) level ranking. 𝑁(Π) has |𝑉 | Boolean variables, |𝑉 | numeric variables and

size 𝑂(||Π||), though the introduction of additional Boolean variables may produce a more compact

encoding, but still in 𝑂(||Π||).

Example 3. Let Π be the set rules in (2). For each atom 𝐴 ∈ 𝑉 , we assume to have a numeric variable
𝜆𝑁 (𝐴) in the difference logic encoding. Then, 𝑁(Π), as defined in [16], is equivalent to

𝐴 ≡ (𝐵 ∨ ¬𝐶),
𝐵 ≡ 𝐴,
𝐶 ≡ 𝐶,

𝐴→ ((𝐵 ∧ 𝜆𝑁 (𝐴) ≥ 𝜆𝑁 (𝐵) + 1) ∨ ¬𝐶),
𝐵 → 𝐴 ∧ 𝜆𝑁 (𝐵) ≥ 𝜆𝑁 (𝐴) + 1,
𝐶 → 𝐶 ∧ 𝜆𝑁 (𝐶) ≥ 𝜆𝑁 (𝐶) + 1,

(5)

where the first 3 formulas correspond to 𝐶𝑜𝑚𝑝(Π) and the other ones are the encoding of the level rank-
ing conditions. Any model of the above formulas satisfy 𝐴,𝐵,¬𝐶, 𝜆𝑁 (𝐵) ≥ 𝜆𝑁 (𝐴) + 1.

The formulas encoding the additional conditions on strong level ranking are

𝐴→ (¬𝐵 ∨ 𝜆𝑁 (𝐴) ≤ 𝜆𝑁 (𝐵) + 1) ∧ (𝐶 ∨ 𝜆𝑁 (𝐴) = 𝜆𝑁 (⊤)),
𝐵 → ¬𝐴 ∨ 𝜆𝑁 (𝐵) ≤ 𝜆𝑁 (𝐴) + 1,

𝐶 → 𝜆𝑁 (𝐶) ≤ 𝜆𝑁 (𝐶) + 1,
(6)

where𝜆𝑁 (⊤) is a “dummy" variable necessary in order to respect the syntax of difference logic and whose
intended interpretation is 1. The encoding in difference logic of the strong level ranking corresponds to the
formulas in (5) and (6) which impose, assuming the intended interpretation of 𝜆𝑁 (⊤), that the models
satisfy

𝜆𝑁 (𝐴) = 1,
𝜆𝑁 (𝐵) = 2.

As expected, strong level rankings (like level numbering) are unique: each atom in the stable model has
a uniquely associated level, while the constraints say nothing about the value of the variables associated
to the atoms not belonging to the stable model, in this case 𝜆𝑁 (𝐶).

Several other characterizations and corresponding reductions can be introduced on the basis of

Niemelä’s [16] level ranking. For instance, in the same paper Niemelä [16] defines other reductions

based on the strongly connected components (SCCs) of the positive dependency graph associated to

Π, and [26] show how it is possible to encode (strong) level rankings (also exploiting SCCs) in SAT

modulo acyclicity.

3. A simple proof-theoretic characterization of stable models

This section presents our characterization of stable models.

Consider a program Π. A stable derivation is a function 𝜆Π
mapping each atom 𝐴 ∈ 𝑉 ⊥

to an

ordinal such that 𝜆(𝐴) < 𝜆(⊥) if and only if there exists a rule 𝑟 ∈ Π with head 𝐴 and

1. for each atom 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝜆(𝐴) > 𝜆(𝐵), and

2. for each atom 𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟), 𝜆(𝐵) ≥ 𝜆(⊥).

Given a stable derivation 𝜆Π
, the set of atoms stably derived by 𝜆Π

is {𝐴 : 𝜆(𝐴) < 𝜆(⊥)}. A set

of atoms 𝑀 is stably derivable (from Π) if there exists a stable derivation of 𝑀 . From the above

definitions, it immediately follows that, in a stable derivation, 𝜆(⊥) = 0 only if the set of stably

derivable atoms is empty.



Example 4. In the case of the logic program (2), every stable derivation𝜆Π is such that𝜆(𝐴) < 𝜆(𝐵) <
𝜆(⊥) ≤ 𝜆(𝐶) and the only stably derivable set of atoms is {𝐴,𝐵}. In general, there is more than one
stably derivable set of atoms, as in the case of the program

𝐴← ¬𝐵,
𝐵 ← ¬𝐴

whose stable derivations satisfy either

𝜆(𝐴) < 𝜆(⊥) ≤ 𝜆(𝐵)

or
𝜆(𝐵) < 𝜆(⊥) ≤ 𝜆(𝐴)

and the two corresponding stably derivable sets of atoms are {𝐴} and {𝐵}.

A set of atoms is stably derivable if and only if it is a stable model.

Theorem 5. Let Π be a program. A set of atoms 𝑀 is a stable model of Π if and only if 𝑀 is stably
derivable from Π.

Proof. For the left to right direction, assume 𝑀 is a stable model. We define a stable derivation for Π
via the operator 𝑇Π𝑀 : 2𝑉 ↦→ 2𝑉 defined, for an arbitrary program Π, as

𝑇Π(𝐼) = {ℎ𝑒𝑎𝑑(𝑟) : 𝑟 ∈ Π, 𝐼 |= 𝑏𝑜𝑑𝑦(𝑟)},

and considering the following sequence of subsets of 𝑉

𝑇Π↑0= ∅,

and, for each 𝑖 ≥ 0,

𝑇Π↑𝑖+1= 𝑇Π(𝑇Π↑𝑖).

Now, since 𝑀 is a stable model of Π, for each 𝐴 ∈ 𝑀 there is a unique 𝑖 such that 𝐴 ∈ 𝑇Π𝑀 ↑𝑖
∖𝑇Π𝑀↑𝑖−1

, and we set 𝜆(𝐴) = 𝑖 iff 𝐴 ∈ 𝑇Π𝑀↑𝑖 ∖𝑇Π𝑀↑𝑖−1
. For 𝐴 ̸∈ 𝑀 , we set 𝜆(𝐴) = 𝜆(⊥) = 𝜔,

the first limit ordinal. Then, 𝑀 = 𝑇Π𝑀↑𝜔 and for each 𝐴 ∈ 𝑉 , 𝜆(𝐴) < 𝜆(⊥) iff 𝐴 ∈𝑀 . Clearly, 𝜆Π

is a stable derivation for Π: if 𝜆(𝐴) = 𝑖 < 𝜔 then 𝐴 ∈ 𝑇Π𝑀↑𝑖 ∖𝑇Π𝑀↑𝑖−1
and thus there exists a rule

𝑟 ∈ Π such that (𝑖) for each 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝐵 ∈ 𝑇Π𝑀↑𝑖−1
and thus 𝜆(𝐵) < 𝜆(𝐴), and (𝑖𝑖) for each

𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟), 𝐵 ̸∈𝑀 and thus 𝜆(𝐵) = 𝜆(⊥) = 𝜔.

For the right to left direction, suppose there is a stable derivation 𝜆Π
for Π. We show that

𝑀 = {𝐴 : 𝜆(𝐴) < 𝜆(⊥)} is the minimal model of Π𝑀
, which implies that 𝑀 is a stable model of

Π. We first show that 𝑀 is a model of Π𝑀
. Assume it is not. Then, there exists a rule 𝑟 of the form

(1) such that 𝑀 |= {𝐴1, . . . , 𝐴𝑚,¬𝐴𝑚+1, . . . ,¬𝐴𝑛,¬𝐴} i.e., 𝜆(𝐴1) < 𝜆(⊥), . . . , 𝜆(𝐴𝑚) < 𝜆(⊥)
while 𝜆(𝐴𝑚+1) ≥ 𝜆(⊥), . . . , 𝜆(𝐴𝑛) ≥ 𝜆(⊥), 𝜆(𝐴) ≥ 𝜆(⊥), which implies 𝜆(𝐴1) < 𝜆(𝐴), . . . ,

𝜆(𝐴𝑚) < 𝜆(𝐴) and 𝜆(𝐴𝑚+1) ≥ 𝜆(⊥), . . . , 𝜆(𝐴𝑛) ≥ 𝜆(⊥), 𝜆(𝐴) ≥ 𝜆(⊥), which is not possible

since 𝜆Π
is a stable derivation. Now we prove that 𝑀 is minimal. Assume it is not. Then, there is

another model𝑀 ′ ⊂𝑀 ofΠ𝑀
and an atom𝐴 ∈𝑀∖𝑀 ′

with the lowest value 𝜆(𝐴) among the atoms

in 𝑀 ∖𝑀 ′
. Since 𝐴 ∈𝑀 then 𝜆(𝐴) < 𝜆(⊥) and there exists a rule 𝑟 ∈ Π such that 𝑀 |= 𝑏𝑜𝑑𝑦(𝑟).

But, for each 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝐵 ∈ 𝑀 ′
since 𝜆(𝐵) < 𝜆(𝐴), and for each 𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟), 𝐵 ̸∈ 𝑀 ′

since 𝑀 ′ ⊂𝑀 . Thus, 𝑀 ′ |= 𝑏𝑜𝑑𝑦(𝑟) and then, since 𝑀 ′
is a model of Π, 𝐴 ∈𝑀 ′

, contradicting the

assumption.

The term “stable derivation" has been used given (𝑖) the analogy with the standard definition of

derivation in classical logic, and (𝑖𝑖) the correspondence, as established by Theorem 5, with stable

models. Indeed, a stable derivation can be seen as a sequence of applications of rules as in a standard

derivation in classical logic, once



1. each rule 𝑟 is interpreted as the inference rule ℎ𝑒𝑎𝑑(𝑟)← 𝑏𝑜𝑑𝑦+(𝑟) carrying the restriction

that the whole derivation must not contain the atoms in 𝑏𝑜𝑑𝑦−(𝑟), and

2. each applicable rule 𝑟 is applied in the derivation.

Differently from classical logic, given the restrictions of the rules, the later application of an applicable

rule 𝑟 may invalidate the (stability of the) derivation. These two differences make the stably derivable

relation nonmonotonic –while classical logic is indeed monotonic– but thanks to Theorem 5 we have

a nice correspondence between the standard “model-theoretic" definition of stable model and this

“proof-theoretic" definition of stable derivation, again similarly to what happens in classical logic.

Comparing the statements of Theorem 2, Theorem 3, and Theorem 4 with Theorem 5, our charac-

terization of stable models does not assume that the starting assignment 𝑀 is a supported model.

If instead we consider our definition of stable derivation, since for any two ordinals 𝛼 and 𝛽 the

condition 𝛼 > 𝛽 is equivalent to 𝛼 ≥ 𝛽 + 1, it is easy to check the correspondence between the first

condition on stable derivation and the condition on level ranking.

As it happens for level rankings, given the freedom in selecting the ordinal associated to each

atom, the number of stable derivations is, in general, infinite even in the case of finite programs. If

we consider two stable derivations 𝜆Π
1 and 𝜆Π

2 to be equivalent if, for each pair of atoms 𝐴,𝐵 ∈ 𝑉 ⊥
,

𝜆Π
1 (𝐴) < 𝜆Π

1 (𝐵) if and only if 𝜆Π
2 (𝐴) < 𝜆Π

2 (𝐵), then, whenever 𝑉 ⊥
is finite, there are finitely many

non equivalent stable derivations. It is however still possible that there exists two non equivalent

stable derivations having the same set of stably derivable atoms.

Example 5. Consider the logic program Π obtained adding 𝐵 ← ¬𝐶 to (2). In this case there are three
sets of non equivalent stable derivations 𝜆Π

1 , 𝜆Π
2 and 𝜆Π

3 for Π, characterized by 𝜆Π
1 (𝐴) < 𝜆Π

1 (𝐵) <
𝜆Π
1 (⊥) ≤ 𝜆Π

1 (𝐶), 𝜆Π
2 (𝐵) < 𝜆Π

2 (𝐴) < 𝜆Π
2 (⊥) ≤ 𝜆Π

2 (𝐶) and 𝜆Π
3 (𝐴) = 𝜆Π(𝐵) < 𝜆Π(⊥) ≤ 𝜆Π(𝐶).

However, all the stable derivations lead to the same set {𝐴,𝐵} of stably derivable atoms.

We can thus define a weaker notion of equivalence, and say that two stable derivations are weakly
equivalent if they have the same set of stably derivable atoms. Of course, two equivalent stable

derivations are also weakly equivalent. Further, similarly to what has been done in [16] for level

rankings, we can impose additional restrictions on stable derivations in order to enforce that any two

of them are either not weakly equivalent or map ⊥ to a different ordinal. We do this by introducing

strict stable derivations. A stable derivation 𝜆 is strict if it maps each atom 𝐴 ∈ 𝑉 to an ordinal 𝜆(𝐴)
such that 𝜆(𝐴) ≤ 𝜆(⊥) and either 𝜆(𝐴) = 1 or for each rule 𝑟 ∈ Π with head 𝐴,

1. either there exists an atom 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟) with 𝜆(𝐴) ≤ 𝜆(𝐵) + 1, or

2. there exists an atom 𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟) with 𝜆(𝐵) < 𝜆(⊥).

Notice that the above conditions trivially hold when 𝐴 = ⊥ and, thus, in a strict stable derivation

they hold for each 𝐴 ∈ 𝑉 ⊥
. Further, it is easy to check that in a strict stable derivation, for each

𝐴 ∈ 𝑉 ⊥
, 𝜆(𝐴) = 0 only if 𝜆(⊥) = 0 and thus only if the set of stably derived atoms is empty.

Theorem 6. Let Π be a program in the set 𝑉 of atoms. For any stable derivation 𝜆 of Π there is a strict
stable derivation 𝜆1 of Π which is equivalent to 𝜆 and such that 𝜆1(⊥) = |𝑉 | + 1 if 𝑉 is finite, and
𝜆1(⊥) = 𝜔, otherwise. Any two distinct weakly equivalent strict stable derivations of Π differ only in
the ordinal associated to ⊥.

Proof. Let 𝑀 be the set of atoms stably derived by 𝜆. Consider the stable derivation 𝜆1 having 𝑀 as

stably derived set of atoms constructed in the “left to right" direction of the proof of Theorem 5. By

construction 𝜆1 is strict, equivalent to 𝜆 and satisfies 𝜆1(⊥) = 𝜔. On the other hand, it is clear that if

𝑉 is finite, then the proof still holds if in the proof we replace 𝑀 = 𝑇Π𝑀↑𝜔 with 𝑀 = 𝑇Π𝑀↑|𝑉 |+1

and impose 𝜆1(⊥) = |𝑉 |+ 1.

Assume there are two weakly equivalent strict stable derivations 𝜆1 and 𝜆2 and an atom 𝐴 ∈ 𝑉
with 𝜆1(𝐴) ̸= 𝜆2(𝐴), and either 𝜆1(𝐴) ̸= 𝜆1(⊥) or 𝜆2(𝐴) ̸= 𝜆2(⊥). Since 𝜆1 and 𝜆2 are weakly



equivalent then 𝜆1(𝐴) < 𝜆1(⊥) and 𝜆2(𝐴) < 𝜆2(⊥). Take such atom 𝐴 to be such that for

each atom 𝐵 ∈ 𝑉 with 𝜆1(𝐵) ̸= 𝜆2(𝐵), 𝑚𝑖𝑛(𝜆1(𝐴), 𝜆2(𝐴)) ≤ 𝑚𝑖𝑛(𝜆1(𝐵), 𝜆2(𝐵)). Assume

𝑚𝑖𝑛(𝜆1(𝐴), 𝜆2(𝐴)) = 𝜆1(𝐴) (analogous proof can be done for the other case). Thus, for each atom

𝐵 with 𝜆1(𝐵) < 𝜆1(𝐴), 𝜆1(𝐵) = 𝜆2(𝐵). Further, from 𝜆1(𝐴) < 𝜆2(𝐴), it follows 𝜆2(𝐴) > 1. Then,

𝜆1(𝐴) < 𝜆1(⊥), 𝜆2(𝐴) < 𝜆2(⊥) and the equivalence between 𝜆1 and 𝜆2 implies the existence of a

rule 𝑟 with ℎ𝑒𝑎𝑑(𝑟) = 𝐴 and

1. for each 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝜆1(𝐵) = 𝜆2(𝐵) < 𝜆1(𝐴) < 𝜆2(𝐴),

2. for each 𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟), 𝜆1(𝐵) = 𝜆1(⊥) and 𝜆2(𝐵) = 𝜆2(⊥), and

3. since 𝜆2(𝐴) > 1, there exists 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝜆1(𝐵) + 1 = 𝜆2(𝐵) + 1 ≥ 𝜆2(𝐴) > 𝜆1(𝐴) ≥
𝜆1(𝐵) + 1 which is not possible.

It is worth observing that our definition of strict stable derivation explicitly imposes that for each

atom 𝐴 ∈ 𝑉 , 𝜆(𝐴) ≤ 𝜆(⊥). However, 𝜆(𝐴) ≤ 𝜆(⊥) is already entailed by the definition of stable

derivation for those atoms 𝐴 for which the rule 𝐴← ⊥ is in Π.

4. A simple reduction of stable derivations/models to difference
logic

The simple definition of (strict) stable derivation has a correspondingly simple reduction to difference

logic, which, thanks to Theorem 5, characterize also stable models.

Consider a finite program Π in a finite set 𝑉 of variables. In the reduction of Π to difference logic

we have a variable 𝜆𝑑𝑙(𝐴) for each atom 𝐴 ∈ 𝑉 ⊥
, while the set 𝜆𝑑𝑙(Π) of formulas corresponding to

Π consists of the formula

𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) ≡
⋁︀

𝑟:𝑟∈Π,𝐴=ℎ𝑒𝑎𝑑(𝑟)(
⋀︀

𝐵∈𝑏𝑜𝑑𝑦+(𝑟)(𝜆𝑑𝑙(𝐴) > 𝜆𝑑𝑙(𝐵))∧⋀︀
𝐵∈𝑏𝑜𝑑𝑦−(𝑟)(𝜆𝑑𝑙(𝐵) ≥ 𝜆𝑑𝑙(⊥))),

(7)

for each 𝐴 ∈ 𝑉 ⊥
. For a set of atoms 𝑀 , define 𝜆𝑑𝑙(𝑀) to be the set of formulas in difference logic

𝜆𝑑𝑙(𝑀) = {𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) : 𝐴 ∈𝑀} ∪ {𝜆𝑑𝑙(𝐴) ≥ 𝜆𝑑𝑙(⊥) : 𝐴 ̸∈𝑀}.

Theorem 7. Let Π be a finite program. A set of atoms 𝑀 is a stable model of Π or, equivalently, is
stably derivable from Π if and only if 𝜆𝑑𝑙(Π) ∪ 𝜆𝑑𝑙(𝑀) is satisfiable in difference logic.

Proof. Each formula in 𝜆𝑑𝑙(Π) is a direct translation of the corresponding condition in the definition

of stable derivation.

Thus, for the left to right direction, every stable derivation 𝜆 corresponds to an interpretation 𝜎𝜆
such that for each atom 𝐴 ∈ 𝑉 with 𝜆(𝐴) < 𝜆(⊥), 𝜎𝜆(𝜆𝑑𝑙(𝐴)) = 𝜆(𝐴) and for each atom 𝐴 ∈ 𝑉
with 𝜆(𝐴) ≥ 𝜆(⊥), 𝜎𝜆(𝜆𝑑𝑙(𝐴)) = 𝑉𝑚𝑎𝑥, where 𝑉𝑚𝑎𝑥 is a value bigger than any value assigned to

the variables 𝐴 with 𝜆(𝐴) < 𝜆(⊥). 𝜎𝜆 satisfies 𝜆𝑠𝑑𝑙(Π)∪𝜆𝑑𝑙(𝑀) where 𝑀 is the set of atoms stably

derived by 𝜆.

For the right to left direction, if 𝜎 is a satisfying interpretation of 𝜆𝑑𝑙(Π) ∪ 𝜆𝑑𝑙(𝑀), we can put

the set 𝑆 of values assigned by 𝜎 in one to one correspondence with the first |𝑆| ordinals respecting

the ordering. Then, if 𝑓 is the function defining the correspondence between the two sets, for each

atom 𝐴 ∈ 𝑉 ⊥
, define 𝜆(𝐴) = 𝑓(𝜎(𝜆𝑑𝑙(𝐴))). By construction, for each 𝐴,𝐵 ∈ 𝑉 ⊥

, 𝜆(𝐴) ≤ 𝜆(𝐵)
if and only if 𝜎(𝜆𝑑𝑙(𝐴)) ≤ 𝜎(𝜆𝑑𝑙(𝐵)) and, thus, given the correspondence between 𝜆𝑑𝑙(Π) and the

definition of stable derivation, 𝜆 is a stable derivation in which 𝑀 is the set of atoms stably derived

by 𝜆.



According to the above theorem, stably derivable set of atoms of a program Π can be computed

with difference logic solvers. We can also provide the corresponding translation for the al conditions

holding for strict stable derivations. However, difficulties arise if we consider variables ranging

over the rationals/reals. In fact, in such cases, when 𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) we would like to impose

additional conditions forcing 𝜆𝑑𝑙(𝐴) to be the “successor" value of some value 𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(𝐴),
and if 𝜆𝑑𝑙(𝐵) ranges over the rationals/reals there is no such successive value. Further, difference

logic does not allow to impose that a given variable is greater or equal than a constant and the set of

reals/rationals/integers do not have a minimum value.

A simple solution to all the above problems –providing a translation to the observations of the

previous section– is to modify condition (7) to

𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) ≡
⋁︀

𝑟:𝑟∈Π,𝐴=ℎ𝑒𝑎𝑑(𝑟)(
⋀︀

𝐵∈𝑏𝑜𝑑𝑦+(𝑟)(𝜆𝑑𝑙(𝐴) ≥ 𝜆𝑑𝑙(𝐵) + 1)∧⋀︀
𝐵∈𝑏𝑜𝑑𝑦−(𝑟)(𝜆𝑑𝑙(𝐵) ≥ 𝜆𝑑𝑙(⊥)))

∨𝜆𝑑𝑙(𝐴) > 𝜆𝑑𝑙(⊥),

(8)

and then include the formula corresponding to the strictness conditions:⋀︀
𝑟:𝑟∈Π,𝐴=ℎ𝑒𝑎𝑑(𝑟)(

⋁︀
𝐵∈𝑏𝑜𝑑𝑦+(𝑟)(𝜆𝑑𝑙(𝐴) ≤ 𝜆𝑑𝑙(𝐵) + 1)∨⋁︀
𝐵∈𝑏𝑜𝑑𝑦−(𝑟)(𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(⊥))∨

𝜆𝑑𝑙(𝐴) = 𝜆𝑑𝑙(⊤) ),

(9)

where, as it has been the case of the encoding of strong level ranking in difference logic, 𝜆𝑑𝑙(⊤)
is a new variable that is supposed to be interpreted as 1, and which is needed in order to respect

the syntax of difference logic. Let 𝜆𝑠𝑑𝑙(Π) be the set consisting of the formulas (8) and (9), for each

𝐴 ∈ 𝑉 .

Theorem 8. Let Π be a program in a finite set 𝑉 of atoms. For each 𝐴 ∈ 𝑉 , 𝜆𝑠𝑑𝑙(Π) entails both
𝜆𝑑𝑙(𝐴) ≤ 𝜆𝑑𝑙(⊥) and either 𝜆𝑑𝑙(⊤) < 𝜆𝑑𝑙(⊥) or 𝜆𝑑𝑙(𝐴) = 𝜆𝑑𝑙(⊥).

Proof. 𝜆𝑑𝑙(𝐴) ≤ 𝜆𝑑𝑙(⊥) is an easy consequence of (8). Assume there exists a model 𝜎 of 𝜆𝑠𝑑𝑙(Π)
satisfying 𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) and 𝜆𝑑𝑙(⊤) ≥ 𝜆𝑑𝑙(⊥) for some variable 𝜆𝑑𝑙(𝐴). Consider such variable

to be the one with the lowest 𝜎(𝜆𝑑𝑙(𝐴)) value. Since 𝜎(𝜆𝑑𝑙(𝐴)) < 𝜎(𝜆𝑑𝑙(⊥)), by (8) there must be

a rule 𝑟 with head 𝐴, 𝑏𝑜𝑑𝑦+(𝑟) = ∅ (otherwise for each 𝐵 ∈ 𝑏𝑜𝑑𝑦+(𝑟), 𝜎(𝜆𝑑𝑙(𝐵)) < 𝜎(𝜆𝑑𝑙(𝐴))
contradicting that 𝜆𝑑𝑙(𝐴) is the variable with minimum 𝜎(𝜆𝑑𝑙(𝐴)) value) and each 𝐵 ∈ 𝑏𝑜𝑑𝑦−(𝑟)
with 𝜎(𝜆𝑑𝑙(𝐵)) = 𝜎(𝜆𝑑𝑙(⊥)). Then, by (9), 𝜎(𝜆𝑑𝑙(𝐴)) = 𝜎(𝜆𝑑𝑙(⊤)). But 𝜎(𝜆𝑑𝑙(⊤)) = 𝜎(𝜆𝑑𝑙(𝐴)) <
𝜎(𝜆𝑑𝑙(⊥)) which contradicts the other initial hypothesis that 𝜎 satisfies 𝜆𝑑𝑙(⊤) ≥ 𝜆𝑑𝑙(⊥).

Theorem 9. Let Π be a program in a finite set 𝑉 of atoms. Let 𝜎 be an interpretation of 𝜆𝑠𝑑𝑙(Π) such
that 𝜎(𝜆𝑑𝑙(⊤)) = 1 and 𝜎(𝜆𝑑𝑙(⊥)) = |𝑉 | + 1. Let 𝜆𝜎 be the function such that for each 𝐴 ∈ 𝑉 ⊥,
𝜆(𝐴) = 𝜎(𝜆𝑠𝑑𝑙(𝐴)). 𝜎 is a model of 𝜆𝑠𝑑𝑙(Π) if and only if 𝜆𝜎 is a strict stable derivation.

Proof. Formulas (8) and (9) are a direct translation of the corresponding condition in the definition of

strict stable derivation.

Example 6. Let Π be the set rules in (2). The set of formulas in 𝜆𝑑𝑙(Π) are

𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) ≡ (𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(𝐴) ∨ 𝜆𝑑𝑙(𝐶) ≥ 𝜆𝑑𝑙(⊥)),
𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(⊥) ≡ 𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(𝐵),
𝜆𝑑𝑙(𝐶) < 𝜆𝑑𝑙(⊥) ≡ 𝜆𝑑𝑙(𝐶) < 𝜆𝑑𝑙(𝐶).

Any model of the above formulas satisfies 𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(⊥) ≤ 𝜆𝑑𝑙(𝐶).



The formulas in 𝜆𝑠𝑑𝑙(Π) encoding strict stable derivations are

𝜆𝑑𝑙(𝐴) < 𝜆𝑑𝑙(⊥) ≡ (𝜆𝑑𝑙(𝐴) ≥ 𝜆𝑑𝑙(𝐵) + 1 ∨ 𝜆𝑑𝑙(𝐶) ≥ 𝜆𝑑𝑙(⊥) ∨ 𝜆𝑑𝑙(𝐴) > 𝜆𝑑𝑙(⊥)),
𝜆𝑑𝑙(𝐵) < 𝜆𝑑𝑙(⊥) ≡ (𝜆𝑑𝑙(𝐵) ≥ 𝜆𝑑𝑙(𝐴) + 1 ∨ 𝜆𝑑𝑙(𝐵) > 𝜆𝑑𝑙(⊥)),
𝜆𝑑𝑙(𝐶) < 𝜆𝑑𝑙(⊥) ≡ (𝜆𝑑𝑙(𝐶) ≥ 𝜆𝑑𝑙(𝐶) + 1 ∨ 𝜆𝑑𝑙(𝐶) > 𝜆𝑑𝑙(⊥)),
(𝜆𝑑𝑙(𝐴) ≤ 𝜆𝑑𝑙(𝐵) + 1 ∧ 𝜆𝑑𝑙(𝐶) < 𝜆𝑑𝑙(⊥)) ∨ 𝜆𝑑𝑙(𝐴) = 𝜆𝑑𝑙(⊤),

𝜆𝑑𝑙(𝐵) ≤ 𝜆𝑑𝑙(𝐴) + 1 ∨ 𝜆𝑑𝑙(𝐵) = 𝜆𝑑𝑙(⊤),
𝜆𝑑𝑙(𝐶) ≤ 𝜆𝑑𝑙(𝐶) + 1 ∨ 𝜆𝑑𝑙(𝐶) = 𝜆𝑑𝑙(⊤),

and they entail 𝜆𝑑𝑙(⊤) = 𝜆𝑑𝑙(𝐴) = 𝜆𝑑𝑙(𝐵)− 1 < 𝜆𝑑𝑙(𝐶) = 𝜆𝑑𝑙(⊥).

The proposed encoding in difference logic of (strict) stable derivations has thus |𝑉 |+ 1 numeric

variables and size 𝑂(||Π||), as opposed to [16] encoding of (strong) level ranking which require |𝑉 |
Boolean variables and |𝑉 | numeric variables. Given that we can restrict the range of strict stable

derivation in [1, |𝑉 | + 1] it is also possible to produce a corresponding encoding in propositional

logic mimicking what has been done by [25]. Analogously, it is also possible to further improve the

encoding by exploiting the strongly connected component of the positive dependency graph and/or

provide “SAT modulo acyclity” encodings again mimicking what has been already proposed in the

literature, see, e.g., [25, 16, 27, 26].

To the best of our knowledge, we are the first to provide a linear encoding, in the number of variables

of the program, in classical logic (and more specifically in difference logic), without explicitly relying

on Clark’s completion.

5. Related Work

As mentioned in the Introduction, there have been several characterizations of stable models, with

(possibly) corresponding reductions, and some of them are introduced through the paper. Here, we

mention some of the main remaining charactizations/reductions to difference logic or other logic-

based formalisms other than propositional satisfiability. [26] presented alternative target formalisms

in which the acyclicity conditions can be checked using a linear representation. The input program

is instrumented such that propositional models of its completion subject to an acyclicity condition

checked on graph representation match the answer sets of the program. The required acyclicity can

be represented as additional SAT formulas, including difference logic [27]. Such acyclicity conditions

can be also linearly represented via SMT with Bit-Vector Logic [28], where the authors introduced

additional constraints for atoms involved in SCCs by considering external and internal support for the

rules, and Mixed Integer Programming [29]. [30] presented a reduction of programs with monotone

and convex constraints to pseudo-Boolean constraints, based on loop formulas. The approach of

[31] is based on a syntactic transformation which turns a logic program into a formula of second-

order logic similar to the formula from the definition of circumscription. Reductions have been also

presented for CASP, an extension of ASP with linear constraints [32], but often limited to difference

constraints due to their usefulness in, e.g., scheduling applications, in contrast to native approaches

to handle such extension natively (e.g., [33] and solver clingo[DL]). Reduction-based approaches

include those implemented in ezcsp [34] and ezsmt [35], which rely on CSP and some SMT logics,

including difference logic, respectively.

6. Conclusion

In this paper we strengthen the relation between ASP and classical logic [36, 37] by providing a new,

simple proof-theoretic characterization of stable models, and a corresponding reduction from logic



programs to difference logic, which does not rely on a previous computation of Clark’s completion, and

it does not involve any Boolean variable. As future work, we would like to implement the reduction

as SMT formulas, and test it employing SMT solvers for difference logic (see, e.g., [38, 39, 40]) on

benchmarks from the last ASP Competitions [41], against state-of-the-art ASP solvers such as clingo

[42], lp2diff [27], and wasp [43].
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