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Abstract

In past work, we defined an approach to neuro-symbolic Reinforcement Learning (RL), where logical rules,
whose applicability can be either upon conditions and/or checked periodically, influence a reinforcement
learning agent in exploring an environment. In this paper, we focus on the experiments that we made to
show the effectiveness of the blended approach.
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1. Introduction

A particularly significant application of Reinforcement Learning (RL) is to empower the ability
of robots to autonomously explore unknown environments. Such autonomous exploration
capabilities serve as a keystone in various crucial applications where robots play pivotal roles,
including identifying areas of interest, retrieving specific targets, and much more.

Robotic explorations are especially pertinent for operations in outdoor, real-world environ-
ments, where human explorers would be in danger, or incapable of accessing the territory in
question because of natural obstacles or obstruction due, e.g., to catastrophic events of various
kinds. Indeed, these agents can actively participate in search and rescue missions, environmental
monitoring, and other activities necessitating navigation through unfamiliar settings. Deep
Reinforcement Learning [2, 3, 4] has proven to be one of the most effective methodologies
for training this kind of agents; however, despite some promising results, several significant
challenges still need to be addressed. These challenges include—but are not limited to— the poor
adaptability and generalization of these systems. This shortcoming hinders their effectiveness in
intricate real-world settings that would, in principle, demand capabilities like logical reasoning,
causal inference, and commonsense.

According to [5], the majority of RL research has traditionally focused on leveraging repre-
sentational models to encapsulate the fundamental components of the RL framework-rewards,
states, and actions-—while largely disregarding the potential benefits of incorporating rich,
high-level declarative knowledge. Leaving out this knowledge restricts RL’s potential to take
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advantage of the information and insights that could enhance its problem-solving abilities
in multifaceted, dynamic settings. In [6], we tried to bridge the gaps between reinforcement
learning’s current capabilities and its potential to handle complex real-world problems. This
by integrating declarative knowledge to demonstrate that it can serve as a critical driver in
overcoming the RL systems’ challenges. As an example, in this work, we implemented and
tested a deep reinforcement learning agent meant to search for specific targets in simulated
environments, which, in critical stages of its operation, is aided by (small blocks of) symbolic
rules. More specifically, we developed a deep Q-learning neural network agent able to explore
procedurally generated virtual environments and locate target objects, improving its search
performance through a reinforcement learning training process. The agent starts naive but
gradually enhances its search skills by receiving virtual rewards and punishments based on its
actions.

To augment the agent’s neural network functioning, we also implemented a symbolic reason-
ing component inspired by the subsumption architecture [7], where reactive rules of various
priorities guide an agent’s behavior. This module overrides the neural controls when needed to
improve the flexibility and context-awareness of the agent’s search behavior. In essence, the
agent fuses reinforcement learning with symbolic reasoning to exhibit increasingly intelligent
target search abilities as it gains experience in the training environments. In this paper, after
summarizing our past work, we illustrate and discuss the experiments that have been done, to
show in practice the effectiveness of the approach.

The paper is structured as follows. In Section 2, we shortly recall Reinforcement learning (and
in particular Deep Reinforcement Learning), Neuro-Symbolic Al, and the DALI language, i.e.,
the logic agent-oriented programming language that we adopted in our solution. In Section 3,
we discuss some related work. In Section 4, we introduce our explorer agent as defined in [6].
In Section 5, we present and discuss the experimental evaluation of our solution, and, finally, in
Section 6, we conclude.

2. Preliminaries

The following section provides overviews of RL and neuro-symbolic integration techniques.

2.1. Reinforcement Learning

Reinforcement learning [8] is a technique where agents learn through “trial and error” experi-
ence within an environment. Reinforcement learning agents explore and experiment in their
environment aimed at maximizing cumulative future rewards, typically represented numerically.
For instance, an agent may try to reach a goal state that provides a positive reward.

The main elements in RL methods are: (i) the policy, 7, is a mapping from environment states
to agent actions 7(s) : S — A, that specifies what action the agent should take in any given
situation, where the state s refers to the current situation the agent finds itself, based on previous
actions and observations; (ii) the reward, r which is a function of the state and action describing
the numerical payoff received for taking a particular action a from state s; the agent’s goal is
to maximize the overall reward it receives over the long run; (iii) the value-function, V,(s),



representing the expected cumulative reward from state s onwards, that should be obtained
when following policy 7.

2.1.1. Deep Q-Learning:

Q-learning is a so-called value-based RL algorithm aimed at estimating the value of state-action
pairs to determine future actions. This approach relies on Q-Table, which is a grid with two
dimensions: one representing different states and the other representing possible actions to take.
In this grid, each cell holds a value that represents the maximum expected future reward for a
particular combination of state and action. This value is known as the Q-value. The Q-table is
updated iteratively through a training process.

Deep Q-learning (DQL) [9] is a variation of Q-Learning that replaces the traditional Q-table
with a neural network that takes the current state as input and approximates the Q-values for
each possible action based on that state. The learning process remains the same, with iterative
updates, but instead of adjusting the Q-Table, the neural network’s weights are updated to
improve its output.

2.2. Neuro-Symbolic Al

The field of Neuro-Symbolic Al offers a promising path forward to master both intricate per-
ceptual patterns and abstract conceptual reasoning. Thus, Neuro-Symbolic (NeSy) systems
integrate structured symbolic representations with neural learning, aiming to combine their
complementary strengths.

NeSy systems encompass a rich diversity of architectures combining neural networks and
symbolic systems in different ways. One influential taxonomy proposed by Kautz [10] (see also
the references therein) outlines six different possible architectures: (i) Symbolic Neuro Symbolic,
involves translating symbolic input into feature vectors for neural networks, which subsequently
yield results in symbolic form. (ii) Symbolic[Neuro], involves a neuro pattern recognition sub-
routine that operates within a symbolic problem-solving framework that emphasizes symbolic
reasoning. (iii) Neuro:Symbolic, involves a sequential flow of information, starting from neural
networks and cascading into a symbolic reasoner. (iv) Neuro : Symbolic —Neuro, involves
compile symbolic rules within neural network training process. (v) Neuro_{Symbolic}, involves
compiling symbolic rules within neural network structure. (vi) Neuro[Symbolic] involves the
incorporation of symbolic reasoning into a neural engine.

Another notable taxonomy is the one of [11], which categorizes NeSy architectures as:
(i) Learning for reasoning, where neural networks preprocess data for symbolic modules.
(ii) Reasoning for learning, where symbolic systems provide knowledge for neural learning.
(iii) Learning-reasoning, where there is a tight interaction between neural and symbolic reason-
ing.

In this work, we mainly refer to the taxonomy proposed by [11].

2.3. DALI

To empower autonomous agents with human-like flexibility and adaptiveness, the logical
agent-oriented language DALI [12, 13, 14, 15] introduces several innovative event-driven



features. DALI agents react to external events in the environment as well as internal triggers
stemming from their reasoning. These events enable interleaved activities, planning, and
reactive responses.

Specifically, DALI recognizes four event types: (i) external, (ii) internal, (iii) present, and
(iv) past. External events model environmental occurrences like sensory data. Internal events
embody self-generated triggers from the agent’s own knowledge and inferences. Present events
signify situations the agent is currently aware of but hasn’t reacted to yet. Past events represent
previous events, allowing reflection.

Crucially, DALI agents can respond to events through declarative reactive rules. The syntax
concisely defines triggering conditions and corresponding actions. Internal events prove par-
ticularly significant since they allow proactive behaviors based on motivation, curiosity, and
goals beyond just external stimuli reactions. DALI agents exploit past events to inform future
decisions.

In our work, we leverage DALI reactive rules to implement top-down constraints and be-
haviors in our agent’s symbolic module. These rules react to environmental events detected
through the neural network’s sensory processing. For example, a rule triggers obstacle avoidance
behavior when the neural perception component signals a nearby obstacle.

3. Related Works

We review below related works in neuro-symbolic RL.

From the very beginning, RL has been intertwined with planning. This connection is especially
clear in model-based RL, where agents build models of their environment to enable planning.
A pioneering system called Dyna [16], developed back in the 1990s, nicely demonstrated this
idea by combining real-time action selection with behind-the-scenes planning over both real
experiences and simulated scenarios.

An innovative method called Darling [17] pushed this concept even further, using planning
to guide an agent’s behavior towards reasonable choices while letting reinforcement learning
handle adaptation to the environment.

Leveraging symbolic knowledge for reward shaping is another active area. In [18], the
authors provided both a framework for defining goal-based tasks and a method to automatically
generate matching reward functions.

Similarly, [19] proposed a way to leverage domain knowledge as a catalyst for boosting the
speed and optimality of various RL techniques. Their experiments revealed that this symbolic
knowledge-infused reward shaping outperformed other methods, including manual and model-
based rewards, when applied in its basic form.

Another area in which the integration of symbolic systems can increase the efficiency of RL
systems is the design of policies.

Recent works apply program synthesis to deduce policies from examples and constraints
(20, 21]. In [22], the authors introduce an algorithm designed to learn state machine policies
that capture repeating behaviors.

Our work is outside these established fields, as a symbolic component influences the policy of
the RL agent. In particular, the symbolic reasoning module(s) can provide top-down guidance



and structure to accelerate learning. According to the taxonomy proposed by [11], our model
falls under the “reasoning for learning” category of neuro-symbolic reinforcement learning.

4. Explorer Agent

In this section, we detail the different modules that collectively make up the structure of the
Explorer agent that we devised in [6]. This agent navigated a 2D virtual environment in order to
retrieve a target. The agent has a simulated "body” with 40 optical sensors covering a 120-degree
frontal view. These sensors, or “rays,” return the distance to objects like walls and obstacles.
With this input, the agent chooses from three action primitives: rotate left, move forward, or
rotate right.

In early experiments, we noticed that random action selection leads to poor exploration.
The agent often remains in the same place, turning on itself rather than moving forward. We
hypothesized that the 2:1 ratio of turn actions to forward movement is to blame. In fact, by
increasing the odds of moving forward to 93%, the agent spends more time traveling and less
time spinning in circles. This simple tweak produces more realistic and varied sensor data to
train the neural network.

Another design choice is to handle essential obstacle avoidance using a specific symbolic
module. This "avoidance” behavior triggers rotational actions when sensors report too close
objects. By allowing the avoidance module to replace the output of the neural network, we
prevent the agent from expending unnecessary effort to learn obstacle-avoidance behaviors.
In this way, the learning system can devote its resources to higher-level goals, such as full
exploration of the environment and sophisticated navigation. Combining random wandering
with reactive avoidance, the agent navigates the world from the start, gradually shifting from
aimless wandering to purposeful exploration. It turns out that by separating navigation and/from
collision detection, we simplify the learning problem.

Neural network: The agent is trained with a fully connected feed-forward neural network
(see Figure 1). The input layer intakes a 40-element vector of pre-processed sensor data.

The initial hidden layers employ densely connected nodes to identify low-level patterns. A
utility layer then “flattens” the multidimensional input into a 1D array. The hidden layers utilize
Rectified Linear Unit (ReLU) [23] activations to introduce non-linearities.

The widening progression of layers transforms the compact input into an enriched feature
space. This expanded representation collapses into a compact output layer signaling the desired
action. Softmax activation allows comparison of the three discrete movement options (turn
right, turn left, move forward). The final output constitutes the network’s navigation policy
recommendation. The loss function employed in this context is the Mean Square Error (MSE)
[24], which aligns with the formula derived from the Q-Function upon which the network
conducts its optimization. The deep learning algorithm in use is propelled by the Adam stochastic
gradient [25] optimization method.

Symbolic supervisor: The logic module allows the neural network to focus its resources on
navigation. The logic provides capabilities for obstacle avoidance and door detection. Obstacle
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Figure 1: Deep learning model for the Explorer agent’s controller. The input layer receives distance
readings from proximity sensors, and the output layer determines the agent’s movement direction or
rotation.

perception relies on the same sensory array as the neural network. For doors, we simulate
Bluetooth emitters with a 1-2 meter range, detectable when near. The logic rules have the
highest priority, thus overriding the network’s outputs if necessary. Reactive behaviors are
defined by exploiting DALI reactive rules; these are condition-action-rules designed such that,
where the event in the head (lefthand part) of the rule is detected, the body (righthand part of
the rule, after special token :>) is executed; the body may include reasoning tasks and actions
that are devised in consequence. The two simple behaviors that we defined are shown below.

obtstacleE(D) :> direction(D),
right (D), rotateA(left_angle);
left(D), rotateA(right_angle);

seen_door(D) :> direction(D),
rotateA(D), forwardA(1).

The first rule governs obstacle avoidance behavior. When an obstacle is detected in direction D
(obstacleE(D)), the agent sets its current facing to D (direction(D)), determines if the obstacle is
positioned to the right or left of D (right(D) or left(D)), and executes a rotational action to avoid
the obstacle by turning left or right by a fixed angle (rotateA(left_angle) or rotateA(right_angle)).
This allows the agent to redirect its movement away from obstacles and, in particular, to rotate
away from walls and furniture. This prevents the agent from countless collisions.

The second rule aims to push the agent towards the nearest door using the agent’s current
position. When a door is detected in direction D (seen_door(D)), the agent sets its facing towards
the door (direction(D)), rotates to directly face the door (rotateA(D)), and executes a forward
movement action to approach the door (forwardA(1)).

Indeed, the door detection logic offers-by encoding the very concept of doorways-the abstract
strategic understanding required to systematically leave rooms where the agent has spent some
time already. This prevents the agent from wandering uselessly before grasping a fundamental



spatial logic. Rather, the agent can thus parse its environment into distinct zones and travel
between them.

Training: The agent’s core reinforcement learning algorithm allows it to improve through
trial-and-error experience in the procedurally generated environments. To further enhance
learning, we utilize the proven Remember & Replay technique [26]. The agent stores experiences
in memory as transition tuples—state, action, reward, next state, terminal-. This captures the
full flow from one observation to the next. The terminal flag indicates the episode ends due to
collision, target find (score), or timeout. The pseudo-code of the training algorithm is reported
in Figurel.

Algorithm 1 Pseudo-code for the Explorer agent training
1: foriin range(1, episodes) do

2: terminal < False
3: frame_count, random_actions, room_changes < 0,0, 0
4: reward_accumulator, score_accumulator < 0,0
5: reset_objective()
6: reset_agent()
7: set_initial_state()
8: while not terminal do
9: frame_count < frame_count + 1
10: reward < 0
11: if logical_driver then
12: action, was_it_random <« slam_agent.act_logic(state)
13: else
14: action, was_it_random <« slam_agent.act(state)
15: end if
16: reward, score < make_reward()
17: terminal < check_episode_end()
18: state < environment.update_sensory_input()
19: slam_agent.remember(state, action, reward, terminal)
20: room_changed <« visual_scene_update(action)
21: if was_it_random then
22: random_actions < random_actions + 1
23: end if
24: if room_changed then
25: room_changes < room_changes + 1
26: end if
27: reward_accumulator < reward_accumulator + reward
28: score_accumulator < score_accumulator + score
29: end while
30: slam_agent.replay()

31: end for




Here, the score refers to the object that the RL agent is trying to find within the generated
virtual environment. This target object provides a training signal for the agent-by attempting
to locate this object during episodes, the agent can learn an optimal policy for taking actions
within the environment. Every time the agent starts a new try, called an “episode”, it can move
around and take different actions to try and locate the target objects. If it does find the object,
the agent gets a reward.

Accordingly, for the reward scheme, we defined different situations:

« Reward = -1, small penalty after every 10 frames elapsed. This prevents dawdling and
encourages efficiency.

« Reward = 1, for changing rooms. Reinforces systematic area coverage.
« Reward = 3, for looking towards target when in same room. Aligns with goal-finding.
» Reward = 5, for moving towards target. Motivates motion planning.

« Reward = 10, for reaching target. This strongly reinforces successful mission completion.

The choice to have different rewards at multiple levels has been motivated by wanting to
incentivize (or disincentivize) the agent on multiple aspects. Room change rewards drive
coverage and exploration of the area at a high level. The view angle reward tunes the agent’s
attention. The target approach reward models basic navigation. Finally, the payoff for the end
goal consolidates overall success.

5. Experimental Evaluation

Our experiments compare the pure RL agent against the hybrid neuro-symbolic version over
600 training episodes. The agents navigate artificially generated virtual environments with
new target locations for each episode. Performance metrics track (per episode) room coverage,
reward, randomness, and an overall target score.

For the sake of reproducibility, the source code of our experiments is public and available'.

Environment: To provide a rich training environment, we procedurally generated unique
2D house layouts (c.f. [6] for a detailed explanation) using constraint logic programming (CLP)
[27, 28].

CLP allowed us to declaratively define relationships and constraints to algorithmically create
plausible spaces. We used CLP(R) [29], which extends logic programming with real number
arithmetic. This enabled asserting geometric constraints between room sizes, positions, bound-
aries, and doorways and equipping rooms with suitable furniture. The CLP system searches for
layouts satisfying all constraints.

Key rules include:

« rooms connect to a central antechamber;

'https://github.com/AAAI-DISIM-UnivAQ/Neural-Logic-Reinforcement-Learning


https://github.com/AAAI-DISIM-UnivAQ/Neural-Logic-Reinforcement-Learning

User

GUI Python Prolog CLP(R)
preferences program program solver

Prolog
query

Y

JSON
house
plan

Figure 2: Data flow to obtain the constrained generated virtual house plan

e
ol

Figure 3: A set of generated home-like spaces derived from the constraints.

+ no room overlapping;

. room areas don’t exceed the antechamber area;
« each room has one door;

« realistic furniture positioning is provided.

The user sets high-level parameters like the number and types of rooms, which can be
dining rooms, bedrooms, etc. The CLP generator then formulates the specific constraints and
relationships needed to create structures matching the requested configuration. After the CLP
system successfully identifies a layout meeting all constraints, that layout gets passed along to
our Python module responsible for realizing the 2D environment file (see Figure2).

In Figure3, we show some results of the generation.

Experiment Design: We extensively trained the two agent types across 600 episodes, en-
abling robust comparison. Agents navigated a generative environment with 4 unique rooms



—hall, kitchen, bedroom, bathroom- populated with varying obstacles.

We utilized a memory replay buffer of 100 experiences to augment online learning. By
replaying past events, agents could reiterately learn from rare or critical cases. This improved
sample efficiency and stability.

The training concluded after a maximum number of steps proportional to the environment
size—in our setting 1500—, thus preventing overfitting.

The overall experiment design enabled the assessment of the hybrid neuro-symbolic archi-
tecture versus standard reinforcement learning under equivalent settings.

Metrics: To thoroughly compare the pure reinforcement learning agent against the hybrid
neuro-symbolic version, we employed complementary evaluation metrics. These provide multi-
faceted quantifications of performance per episode.

The first metric simply tracks the number of room changes achieved. The second metric
calculates the percentage of random actions taken. Lower randomness indicates more purposeful
and efficient navigation. The third metric looks at the cumulative reward obtained by the agent.
It provides a summary of success on the incremental goal curriculum. More reward implies
proper object viewing, approach, and target finding. Finally, a composite score accounts for the
amount of target objects reached by the agent.

Analyzing these diverse metrics reveals the strengths and weaknesses of each agent design.
The room changes metric highlights exploration capabilities. Action randomness evaluates
efficiency. Reward accumulation reflects goal achievement. And the overall score measures the
capacity of the agent to reach target objects.

5.1. Discussion

Our experiments offer relevant insights into the benefits of incorporating logic modules into
learning agents. The core objective was to assess how logic augmentation impacts performance
across training episodes. We tracked two agent types—with and without logic—over hundreds
of simulated trials.

Analysis of random action rates (Figure 4) provides a window into learned behaviors. Initially,
both agents act randomly as their policies are untrained. Then, the randomness declines steadily
as experience grows, indicating learned determinism. However, the non-logic agent plateaued
after 300 episodes, suggesting limits in its learning. In contrast, the logic-enhanced agent
continued improving, leveraging structured knowledge to advance beyond the neural network’s
capabilities. In a way, the rules provided to the agent, like room changes and door detection,
enabled higher-level learning.

The examination of reward accumulation (Figure 5) paints a nuanced picture of goal achieve-
ment. Reward incentives were provided for behaviors like room changes, target viewing, and
target reaching. We found that both agent types accrued rewards through training. However,
the logic agent displayed more frequent reward spikes than its non-logic counterpart.

Room change rates (Figure 6) quantify the exploratory drive essential for environmental
mastery. Here major differences emerged, with the logic agent changing rooms at a higher rate
across the episodes than the non-logic one. In a way, the logic’s incentives for systematic area
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coverage drove extensive exploration. The non-logic agent often lingered in the same room
without this top-down guidance.

Finally, overall score distributions (Figure 7) highlight comprehensive performance. The
non-logic agent scored zero on 80% of episodes, failing to find targets. Meanwhile, the logic
agent scored zero just 60% of the time while accruing top scores more frequently. The logic
allowed efficient parsing of the environment into navigable rooms and objectives.

Overall, these extensive results provide clear evidence that combining neural networks with
structured knowledge can profoundly enhance learning agents. Logic modules compensate for
limitations in solo neural learning by injecting new competencies.
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6. Conclusion

In this work, we review the definition and implementation of a virtual agent that we developed
in recent past work, and we discuss the experimental evaluation that we made. Our objective,
which turns out to have been successfully reached, was to demonstrate how the integration of
symbolic knowledge can enhance reinforcement learning processes adopted for real-world tasks.



Our agent leveraged deep Q-learning to search procedurally generated realistic environments,
to locate target objects. A key contribution has been the addition of a symbolic reasoning
module, inspired by the subsumption architecture, to augment the capabilities of the RL agent.
The symbolic component is very small. Nonetheless, it has been useful as a proof of concept to
outline the possibility of improving RL agents using such a methodology consisting of logically
inducing the agent to avoid shortcomings that might slow down or even make its operation
inconclusive. In fact, in real-world settings, there are in general, time deadlines to reach an
objective, which becomes less useful or superfluous if reached too late.

The experiments provided strong validation that combining flexible neural learning with
reactivity dictated by structured knowledge can help overcome major challenges in applying
RL to complex real-world problems. Notice that the reasoning tasks in our reactive rules are
indeed basic: however, any kind of reasoning can be incorporated therein. The right balance
between exploration and reasoning has itself to be experimentally devised. In our case, we
applied the reactive rules whenever applicable. An alternative might be to invoke them at a
certain frequency or after the RL agent has been stuck for a certain limit time. The logic-infused
agent exhibited more efficient and effective search behaviors than a pure learning agent. Indeed,
the logic module allowed the neural network to concentrate resources on higher-level planning
instead of focusing on low-level skills.

Overall, this work helps bridge the gap between RL’s current capabilities and its future
potential for autonomous exploration, discovery, and decision-making in complex spaces. We
argue that the logic components can compensate for issues like poor generalization, sample in-
efficiency, and lack of transparency that impede purely data-driven neural agents. There remain
ample opportunities to further enhance the integration of human knowledge into RL systems.
Promising directions include probabilistic logic programming to handle uncertainty, causal
reasoning to understand interactions, and meta-learning techniques to optimize knowledge
infusion. With further research, neuro-symbolic RL can perhaps better approach human-like
intelligence.
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