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Abstract
Quantum machine learning recently gained prominence due to the promise of quantum computers in
solving machine learning problems that are intractable on a classical computer. Nevertheless, several
studies on problems which remain challenging for classical computing algorithms are emerging. One of
these is classifying continuously incoming data instances according to the continual learning paradigm,
which is studied in this paper through a hybrid computational solution that combines classical and
quantum techniques. Hybrid approaches represents one of the current ways for the use of quantum
computation in practical applications.

In this paper, we show how typical issues of continual learning can be equally addressed with the
properties of quantum mechanics, until to offer often better results. We propose the combined use
of quantum classification and quantum distance estimation to update the classification capabilities as
new data instances are processed. Experiments are performed on real-world datasets with quantum
simulators.

1. Introduction

Quantum machine learning has been introduced with the promise to handle machine learning
problems that are intractable on a classical computer, especially those characterized by huge
amounts of data. In the research on Quantum computing technologies, the current status sees
the era of noisy intermediate scale quantum (NISQ) computers [1], which are devices able to deal
with low-middle size data problems. An approach which seems bringing practical advantages is
instead the one of hybrid frameworks [2][3] that combine classical and quantum methods and
allow to exploit quantum physics properties while limiting the impact of the existing restrictions
of the quantum devices.

One of the categories of data-intensive problems in which the research on classical computing
dedicates still many efforts is learning of models from continuously incoming sequential data.
Even the accurate solutions of Deep Learning find challenging working on that data scenario.
This is demonstrated by the long list of recentest studies addressing the so-called catastrophic
forgetting [4], which is the tendency of an artificial neural network to abruptly and drastically
forget previously learned information upon learning new information. In those cases, it is not
important designing algorithms for massive computation, but keeping the quality of the models
high over unbounded sequences of data.
We investigate these points through a quantum-classical framework which builds a classi-

fication model in the supervised setting and works in continual learning [5, 6] by acquiring
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Figure 1: The components of the proposed hybrid framework as they run in continual learning setting
for binary classification.

continuously incoming data instances. The framework adapts continually a classification model
and keeps on learning over time. More precisely, it trains and updates a classifier on (sub-)
sequences of incoming data instances (data blocks) marked as labelled. Then, the classifier is
used to estimate the class-value of unlabelled incoming data instances. The update is performed
only when the properties and distribution of the labelled data changes, which is what typically
happens in continual learning. To detect such changes, we rely on a quantum centroid distance
estimation technique, often used in quantum clustering. The centroids are considered by their
characteristic of synthesizing clusters, which in this work are produced for each class-value on
the labelled data. So, the changes are detected when the properties of the clusters change and
this happens when the labelled data (assigned to the respective clusters) change. Consequently,
the classification model needs to be updated on those data.
The framework has been tested on the binary classification task by using two real-world

datasets. The data size of these experiments is of the same order of the magnitude, or even
higher, of the one used in the related works [7, 8]. It has been also compared against a classical
computing algorithm working in continual setting. The experimental results are encouraging
and show the potential superiority in terms of accurate estimations over different experimental
configurations.

2. Quantum-classical framework for binary classification

The overall framework (illustrated in Figure 1) relies on the classical computing techniques of
feature selection, data sampling, normalization and model optimization. On the quantum side,
it integrates quantum encoding techniques, quantum neural networks in the form of variational
quantum circuits for the problem of binary classification and quantum distance estimation.The
framework faces a binary classification problem that can be formulated as follows. We have data
instances described by X ∪ 𝑦, X are the descriptive attributes/features, while 𝑦 ∈ {−1, 1} denotes
the class label. By operating in continual learning, the framework alternates training sessions,
where we have labelled data blocks, with prediction sessions, where the data instances have



no class label. The succession of training sessions and prediction sessions is not predefined,
coherently with the realistic assumption according to which the distribution of labelled and
unlabelled data instances is not previously established and therefore not all the data instances
are labelled.
In the following, we first provide a short description of each component and then describe

how these work in the whole framework.
Feature selection operates only at the beginning and selects the subset of descriptive features

which we will consider afterwards. It exploits a classical computing technique based on the
mutual information between the class labels. This operation has been used to perceive the most
relevant characteristics and alleviate the problem of choosing the dimension of the quantum
circuits in terms of qubits. In fact, the number of the features of the input data determines the
number of qubits.
Normalization scales the values of the previously selected features within the range of

[0,1] by using the standard min-max function on the original ranges. It is performed for each
incoming data block, both those of training and those of prediction.
Data sampling selects a subset of the labelled data instances within the previously data

block of training session. The samples will contain data instances of both the class labels and,
for each class label, the component takes data instances with simple random techniques without
replacement. The sample size is fixed.

Quantum Centroid Distance Estimation operates only on the labelled data instances and
allows us to detect drift within data. Distance estimation is a standard operation in the realm
of the distance-based clustering and is used to build clusters and determine centroids, but, in
this work, there is no clustering procedure as it is typically defined. Indeed, we determine two
centroids as synthesis of the properties of the data instances of the two class labels, and use
distance estimation to compute the distance between the centroids and labelled data instances.
The centroids represent class prototypes and are used to identify the data instances underlying
the drift. When the drift occurs, the two centroids are re-determined. To implement these
operations we resort to the notion of fidelity between quantum states [9] and, inspired to
the algorithmic decisions of [10], design the computation of the distances between single data
instances and the two centroids in superposition. The estimation of the fidelity can be performed
through the SWAP test implemented in the following circuit which presents three groups of
qubits, the first one for the single data instance, the second one for the centroids and the third
one as ancillary. We described it by tensor-product terms:

Γ(𝑋) = 𝑈3(𝑋)|0⟩ Γ(𝐶𝑗) = 𝑈3(𝐶𝑗)|0⟩ (1)

where, 𝑈3 stands for the unitary matrix

𝑈3(𝜃, 𝜙, 𝜆) = (
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X stands for the data instance represented through Γ() with the angle encoding and 𝐶𝑗 is the
j-th centroid out of 𝑘 centroids (k=2).



So, the state preparation is defined as:

2
∏
𝑗=1

Γ(𝐶𝑗) ⊗ Γ(𝑋) ⊗ 𝐼⊗𝑘 (3)

while the SWAP test is implemented with the following term:

(𝐻⊗𝑘 ⊗ 𝐼⊗2𝑘)𝒦𝑌𝑗,Γ(𝐶𝑗),Γ(𝑋)(𝐻⊗𝑘 ⊗ 𝐼⊗2𝑘) (4)

where,𝒦 is the Fredkin gate and 𝑌𝑗 is the j-th ancillary qubit which works as control qubit
for the 𝒦.

QuantumClassificationworks in two modalities, training and prediction. It is implemented
through two quantum circuits with a number of qubits determined by the number features
selected by Feature selection. During the training sessions, the classifier learns on the data block
currently built with labelled data instances. The classifier is instead used during the prediction
sessions to infer the class labels on the data block currently built with unlabelled data instances.

The first quantum circuit takes the classical data and represents them as quantum states to be
assigned to the qubits. This circuit implements a feature mapping operation ℱ which encodes a
real-valued data instance 𝑋 into quantum states spanning 𝑑 qubits:

|𝜓 (X)⟩ = ℱ (X)|0⟩⊗𝑑 (5)

where, |0⟩⊗𝑑 denotes the register with d-qubits at the state |0⟩ (|0⟩ ⊗ … ⊗ |0⟩). In this work, ℱ
has been implemented as follows

𝑅𝑧⊗𝑑(X)𝐻⊗𝑑|0⟩⊗𝑑 (6)

where, the parameter for each gate 𝑅𝑧 is the normalized real-valued of of the feature (corre-
sponding to the qubit on which 𝑅𝑧 works). The term 𝐻⊗𝑑 denotes the tensor product H ⊗…⊗H
over 𝑑 occurrences (that is, the number of selected features) of the gate H (the same holds for
𝑅𝑧).
The second circuit is variational and manipulates the quantum states returned by the first

circuit. It implements a quantum neural network composed of layers of entangled rotation gates.
Entangled rotation gates are matrix operations which combine the gates Hadamard, CNOT
and Rotation under the quantum physics effect of the entanglement [11]. The second circuit
completes the structure of gates which builds the classifier 𝜙

|𝜙(X, 𝜃)⟩ = 𝒱 (𝜃)|𝜓 (X)⟩ (7)

where, 𝒱 is the variational circuit, 𝜃 denotes the parameters of the parameterized gates that
being optimized. In this work, 𝒱 has been implemented as follows

𝑅𝑦⊗𝑑𝐶𝑋⊗𝑑𝑅𝑦⊗𝑑 (8)

where, each occurrence of the two-qubit gate CX takes one pair of qubits (over the d-qubit
register) composed by the consecutive qubits indexed as 𝑖 and 𝑖 + 1.



Finally, we perform measurements on the qubits and the measured state is recorded. So, we
can estimate the expectation value of the circuit on 𝑥 and 𝜃, by measuring the state over multiple
runs, with the following

|ℰ(X, 𝜃) = ⟨𝜙(X, 𝜃)|𝜎⊗𝑑𝑧 |𝜙(X, 𝜃)⟩ (9)

where, 𝜎⊗𝑑𝑧 is the tensor product of the single qubit gate 𝜎𝑧 over 𝑑 occurrences. The gate 𝜎𝑧
has the interesting property that if the measured quantum state has odd parity, it returns -1 (as
eigenvalue), while, if the measured quantum state has even parity, it returns 1. This implies that
the expectation value of the circuit will always be within the interval [−1, 1]. We can use this
property to relate the expectation value to the probability that a data instance X being assigned
to a class label 𝑦, that is:

𝑃(𝑦|X) =
𝑦ℰ(X, 𝜃) + 1

2
(10)

The probability P(y|X ) is exploited in the optimization process concerning the parameters 𝜃.
In particular, the optimizer iteratively updates the circuit parameters by minimizing a cost
function, which accounts for the negative log-likelihood of the probabilities P(y|X ) computed
on the current labelled data-blocks, that is:

− 1
𝑠𝑖𝑧𝑒

𝑠𝑖𝑧𝑒
∑
𝑖=1

𝑙𝑜𝑔(𝑃(𝑦𝑖|X𝑖)) (11)

where, 𝑠𝑖𝑧𝑒 is the number of data instances of the data block, X𝑖 is the i-th data instance of
the data block.

The cost function is minimized by a classical computing optimizer based on gradient descent.
The derivative concerns the expectation value ℰ() with respect to the current values of 𝜃 and is
computed by means of the parameter shift rule [12]:

𝑑ℰ
𝑑𝜃

=
ℰ(𝜃 + 𝜖) − ℰ(𝜃𝑘 − 𝜖)

2
(12)

The gradient value is the difference between the two output values of the circuit: the first
value is the output of the circuit with the parameter 𝜃𝑘 increased by a value 𝜖, and the second
value is the parameter 𝜃𝑘 decreased by 𝜖.

Continual learning. Learning classification models on continuously incoming data can
be faced with time-windows models [13] in continual setting. Time-windows models allow
us to handle data instances by equally-sized blocks on which we train, update and apply the
classification model. During a training session, the training modality of Quantum classification
component is activated (Figure 1), which implies the execution the feature mapping ℱ on the
data instances of the current data block and optimization process of the parameters 𝜃 of the
variational circuit 𝒱. Differently, during a prediction session, the Quantum classification only
estimates the class labels on the current data block by using the classification model up there
updated.



To keep the classifier updated, we have to deal with the catastrophic forgetting effect raising
when updating neural networks. By the way, one of the purposes of this work is investigating
whether this is what happens also on the quantum neural networks. In the literature, three
alternatives are mainly suggested, replay methods, regularization-based methods, parameter
isolation methods [6]. Considering that the replay methods represent the solution which asks
for less and leaves unchanged the number of hyper-parameters of the neural network, we lean
for this approach.
The framework operates in three steps, namely initialization, update, prediction. Training

sessions are performed at the initialization and update. At the initialization step, the classi-
fier is trained from scratch on the first data block 𝐷𝐵1 (Figure 1). The operation of Feature
selection is used only at the initialization step, so the other steps of the framework work on
the features before selected. Still at the initialization, two centroids, one for each class label,
are determined from the labelled data instances of the data block 𝐷𝐵1. As new labelled data
blocks will be acquired, the centroids will be re-computed. However, the computation of the
centroids (Quantum centroid distance estimation) relies on the data representation based on
angle encoding to two dimensions which use two features that have not been selected for the
Quantum classification. Specifically, the feature value is added to 1 and multiplied by half 𝜋, to
be an admissible value for the gate 𝑈3. This is a data encoding different from the feature mapping
used for the Quantum classification. The rationale behind is to use a different representational
space in order to capture a different characteristics of the data from those expressed by the
feature mapping of the Quantum classification.

Next, the framework prepares the steps of update and prediction by collecting labelled data
instances in a data block 𝐷𝐵𝑖 and unlabelled data instances in 𝐷𝐵𝑗. Both data blocks store the
data instances in the order they arrive. As soon as one of the two data blocks is being filled
(the number of collected data instances is equal to the predefined size), either updated step or
prediction step is performed. By supposing the data block 𝐷𝐵𝑖 of labelled data instances has
been filled for first, the update step will be performed, otherwise it will be the turn of prediction
step working on 𝐷𝐵𝑗. When the update step starts, it first checks for possible concept drifts
within the current data block, and, if any is present, it updates the classification model. To
check the presence of drifts, we rely on a classical computing technique, that is, Page-Hinkley
test [14], which, in this work, detects the changes of a cluster that new data instances added
can imply. As indicator of the characteristics of a cluster, we use the sum of the squared errors

𝑆𝑆𝐸 ∶ ∑
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒ℎ∈𝐷𝐵𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑘, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒ℎ) (13)

where,𝐷𝐵𝑖 is the current data block, 𝑐𝑘 refers to one of the two centroids, the distance is the one
introduced in Quantum Centroid Distance Estimation component. This way, the Page-Hinkley
test spots the presence of drifts when the SSE computed on the new data instances greatly
differs from the one computed on the data instances previously processed. When this happens
the two centroids are recomputed considering the new data instances and the classification
model is updated. The training set used for the current learning round is composed of data
instances of the current data block (containing the new data instances) and those provided
by the component of Data sampling. As explained above, this is done to mitigate the effect of
catastrophic forgetting.



3. Experiments on real-world datasets

We implemented the proposed framework in IBM Qiskit [15] and run experiments by using
simulators on two real-world datasets, more precisely Ozone level detection 1 (having 2536 data
instances, 73 features) and Spambase (having 4600 data instances, 57 features) 2. Data blocks
have been partitioned so as having a portion of 75% of the dataset as labelled data instances
(training sessions) and the remaining 25% as unlabelled data instances (prediction sessions and
testing sets of the evaluation). The classical computing components described in Section 2 are
those available in the toolkit Scikit-learn [16]. The number of runs of the classification model
to estimate the expectation values is 1024, while the number of iterations (epochs) to optimize
the parameters is 20. The number of layers for the variational quantum circuit is 3. The sample
size of Data sampling is 30% the data-block size.
Experiments have been performed to emphasize the impact of the technical configuration

of the framework on the predictive capability, namely number of qubits (corresponding to the
features selected) and size of the data blocks (number of data instances in each training/prediction
session). In Table 1, we report the F1-score values of the proposed framework (named as𝐻𝑌𝑄𝑂𝐿)
compared to i) a classical computing solution (𝐶𝐶, originally designed for data stream learning)
[17] and ii) a baseline of the framework that works on the whole dataset (𝐹𝑄𝐶). Both CC and
FQC have been tested with the same features selected for HYQOL.

The values illustrated have been computed as the average computed over the data blocks. As
we can see, except two trials, HYQOL does not never worst than CC, even when the number
of qubit is the higher (i.e., 8). Also, we note that the configurations of HYQOL with smallest
set of qubits (i.e., 2) are better than those with largest set (i.e., 8), without, however, particular
discrepancy between the two endpoints. The size of the data blocks seems not be determinant
for the accuracies, but, it is evident that continual learning can be beneficial for quantum-based
classifiers compared to the version that works on the whole dataset (𝐹𝑄𝐶). In Table 2, we
report the averaged values of the cost function taken at the last iteration (20-th iteration of the
optimizer of 𝐻𝑌𝑄𝑂𝐿). As we can see, the lower costs are reached in correspondence of the
higher predictive performance, that is, data-block size at 200 with 2 and 5 qubits.

4. Related work

Continual learning, also known as lifelong learning, incremental learning, or sequential learning,
is a field of research dedicated to finding solutions for acquiring knowledge from an ever-
changing stream of data involving multiple tasks [5].

As our knowledge, the works of quantum machine learning focused on continual learning are
very few, quite recent and often in preliminary form. The paper [18] focuses on training sessions
of different classification tasks. Specifically, a sequence of quantum state classification tasks is
continually learned by a variational quantum classifier whose parameters are optimized by a
classical gradient-based optimizer. Inspired by the category replay methods (the same we follow
in this work), they propose to constrains the model updated by projecting the gradient direction

1https://archive.ics.uci.edu/ml/datasets/ozone+level+detection
2https://archive.ics.uci.edu/ml/datasets/Spambase



Table 1
F1-score (in [0,1] of the proposed framework against a classical computing solution and a hybrid solution
without continual learning. Dataset Ozone level detection at the top. Dataset Spambase at the bottom.)

data-block size
#qubits

2 5 8

50
HYQOL 0,9 0,9 0,9
CC 0,9 0,9 0,9

100
HYQOL 0,93 0,89 0,86
CC 0,87 0,87 0,87

200
HYQOL 0,94 0,94 0,91
CC 0,92 0,92 0,92

400
HYQOL 0,92 0,91 0,9
CC 0,9 0,9 0,9
FQC 0,9 0,87 0,81

data-block size
#qubits

2 5 8

50
HYQOL 0,88 0,84 0,84
CC 0,82 0,82 0,82

100
HYQOL 0,87 0,87 0,85
CC 0,82 0,82 0,82

200
HYQOL 0,9 0,89 0,8
CC 0,89 0,89 0,89

400
HYQOL 0,84 0,84 0,84
CC 0,86 0,9 0,84
FQC 0,83 0,83 0,8

Table 2
Cost function values of the classical computing optimizer working on the variational circuit. Dataset
Ozone level detection at the top. Dataset Spambase at the bottom.)

data-block size
#qubits

2 5 8
50 0,67 0,71 0,73
100 0,65 0,7 0,7
200 0,6 0,6 0,65
400 0,65 0,65 0,7

data-block size
#qubits

2 5 8
50 0,61 0,61 0,62
100 0,61 0,61 0,61
200 0,48 0,48 0,62
400 0,51 0,51 0,52

on the region outlined by previous task gradients. This is done also by storing a fraction of the
training data of previous tasks (gradient episodic memory, GEM) on which the gradient descent
is computed. A drawback is the necessity of computing gradients of previous tasks at each
training iteration. In [19], it has been observed that as quantum classifiers are exposed to new



classification tasks, their performance on previous tasks can deteriorate. To address this issue, a
method called elastic weight consolidation (EWC) has been introduced. EWC helps protect the
parameters deemed crucial for the previous tasks from undergoing drastic updates. Numerical
experiments have illustrated that a quantum classifier can continuously learn and adapt to three
distinct classification tasks without experiencing significant forgetting. However, this work
has been tested on classical data (e.g. MNIST images) which originally are not affected by drift
of data distribution and class labels, but characterized by new class labels (tasks). This may
make the changes of the characteristics of data of the same labels partially handled. The hybrid
quantum-classical method described in [20] reports the use of classical convolutional neural
networks with quantum layers. To mitigate the performance drop they propose to inject the
information of the regions of prediction identified on visual saliency maps. All these works
deal with the update of the classification model through purely classical computing, while we
present a quantum distance-based method to identify data instances revealing the drift. By the
way, GEM uses previously processed data kept in the memory to modify the gradient of the
current data. Unlike EWC, the performance of the old data is more likely to increase because
the previous data are rehearsed in the parameter update. That is another argument behind our
decision of selecting old samples through quantum techniques.

5. Conclusions

In this paper, we investigated the viability of quantummachine learning solutions to work on the
realistic scenarios of changeability of the statistical properties of the data, which often implies
the variability of the performances of the model. We conjecture this can be a machine learning
problem in which the quantum solutions can lead innovation. On simulated hardware, the
hybrid quantum-classical proposal offers encouraging results, in terms of accuracy, often better
than a classical computing solution working on data stream and hybrid solution working in
batch mode (no continual learning). As our opinion, three take-home messages can be identified
from this paper. The first one is methodological, in that the continual learning opens to practical
applications able to combine quantum computing and classical computing techniques, which
is likely the only way to concretely use current quantum technologies. The second one is
experimental, in that it provides arguments on the fact that stable quantum devices could even
do better in terms of performances and quality of the results, when used in predictive tasks.
The third one tell us that, although the high-performance computation and tractability of hard
problems are the promises of quantum computing which, with the current devices, often are
not kept, the research on the lifelong computation can be a field in which quantum computing
can already bring interesting results.
As future work, we plan two investigate two main research lines, one methodological, the

other one applicative. In the first case, we will focus on the technique of optimization of
parameters (component Quantum classification) and study machine/deep learning solutions to
predict the parameter values in order to reduce the computational cost of the classical optimizer.
In the second case, we will focus on more complex data, like social networks and interaction
graphs, in order to handle challenging tasks, like the one of link prediction between actors and
services.



Acknowledgment

Corrado Loglisci acknowledges the financial support from the project ”PNRR MUR project
PE0000023-NQSTI” for this research. The paper also achieves the research activities of the project
MUR-Fondo Promozione e Sviluppo - DM 737/2021, CUP: H91I21001630006, INNOAGROECOS.

References

[1] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79. URL:
https://doi.org/10.22331/q-2018-08-06-79. doi:10.22331/q-2018-08-06-79.

[2] A. Callison, N. Chancellor, Hybrid quantum-classical algorithms in the noisy intermediate-
scale quantum era and beyond, Phys. Rev. A 106 (2022) 010101. URL: https://link.aps.org/
doi/10.1103/PhysRevA.106.010101. doi:10.1103/PhysRevA.106.010101.

[3] C. Loglisci, I. Diliso, D. Malerba, A hybrid quantum-classical framework for binary
classification in online learning, in: SEBD, volume 3478 of CEUR Workshop Proceedings,
CEUR-WS.org, 2023, pp. 88–99.

[4] J. Peng, B. Tang, H. Jiang, Z. Li, Y. Lei, T. Lin, H. Li, Overcoming long-term catastrophic
forgetting through adversarial neural pruning and synaptic consolidation, IEEE Trans.
Neural Networks Learn. Syst. 33 (2022) 4243–4256. URL: https://doi.org/10.1109/TNNLS.
2021.3056201. doi:10.1109/TNNLS.2021.3056201.

[5] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, S. Wermter, Continual lifelong learning with
neural networks: A review, Neural Networks 113 (2019) 54–71. URL: https://doi.org/10.
1016/j.neunet.2019.01.012. doi:10.1016/j.neunet.2019.01.012.

[6] M. D. Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. G. Slabaugh,
T. Tuytelaars, A continual learning survey: Defying forgetting in classification tasks,
IEEE Trans. Pattern Anal. Mach. Intell. 44 (2022) 3366–3385. URL: https://doi.org/10.1109/
TPAMI.2021.3057446. doi:10.1109/TPAMI.2021.3057446.

[7] D. Arthur, P. Date, Hybrid quantum-classical neural networks, in: IEEE International
Conference on Quantum Computing and Engineering, QCE 2022, Broomfield, CO, USA,
September 18-23, 2022, 2022, pp. 49–55. doi:10.1109/QCE53715.2022.00023.

[8] A. Chalumuri, R. Kune, B. S. Manoj, A hybrid classical-quantum approach for multi-
class classification, Quantum Inf. Process. 20 (2021) 119. URL: https://doi.org/10.1007/
s11128-021-03029-9. doi:10.1007/s11128-021-03029-9.

[9] E. Aïmeur, G. Brassard, S. Gambs, Machine learning in a quantum world, in: Advances
in Artificial Intelligence, 19th Conference of the Canadian Society for Computational
Studies of Intelligence, Canadian AI 2006, Québec City, Québec, Canada, June 7-9, 2006,
Proceedings, 2006, pp. 431–442. URL: https://doi.org/10.1007/11766247_37. doi:10.1007/
11766247\_37.

[10] I. Kerenidis, J. Landman, A. Luongo, A. Prakash, q-means: A quantum algorithm for unsu-
pervisedmachine learning, in: H.M.Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, 2019, pp. 4136–4146.

[11] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, 2000.

https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
https://link.aps.org/doi/10.1103/PhysRevA.106.010101
https://link.aps.org/doi/10.1103/PhysRevA.106.010101
http://dx.doi.org/10.1103/PhysRevA.106.010101
https://doi.org/10.1109/TNNLS.2021.3056201
https://doi.org/10.1109/TNNLS.2021.3056201
http://dx.doi.org/10.1109/TNNLS.2021.3056201
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/QCE53715.2022.00023
https://doi.org/10.1007/s11128-021-03029-9
https://doi.org/10.1007/s11128-021-03029-9
http://dx.doi.org/10.1007/s11128-021-03029-9
https://doi.org/10.1007/11766247_37
http://dx.doi.org/10.1007/11766247_37
http://dx.doi.org/10.1007/11766247_37


[12] D. Wierichs, J. Izaac, C. Wang, C. Y.-Y. Lin, General parameter-shift rules for quantum
gradients, Quantum 6 (2022) 677. URL: https://doi.org/10.22331/q-2022-03-30-677. doi:10.
22331/q-2022-03-30-677.

[13] J. Gama, M. G. (Eds), Learning from Data Streams – Processing techniques in Sensor
Networks, Springer, 2007.

[14] E. S. Page, Continuous inspection schemes, Biometrika 41 (1954) 100–115. URL: http:
//www.jstor.org/stable/2333009.

[15] M. S. Anis, et al, Qiskit: An open-source framework for quantum computing, 2021. doi:10.
5281/zenodo.2573505.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[17] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-multiflow: A multi-output streaming
framework, Journal of Machine Learning Research 19 (2018) 1–5. URL: http://jmlr.org/
papers/v19/18-251.html.

[18] Quantum continual learning of quantum data realizing knowledge backward transfer,
Physica A: Statistical Mechanics and its Applications (2023) 128779. doi:https://doi.
org/10.1016/j.physa.2023.128779.

[19] W. Jiang, Z. Lu, D. Deng, Quantum continual learning overcoming catastrophic forgetting,
CoRR abs/2108.02786 (2021). URL: https://arxiv.org/abs/2108.02786. arXiv:2108.02786.

[20] S. Jain, Cqural: A novel CNN based hybrid architecture for quantum continual machine
learning, CoRR abs/2305.09738 (2023). URL: https://doi.org/10.48550/arXiv.2305.09738.
doi:10.48550/arXiv.2305.09738. arXiv:2305.09738.

https://doi.org/10.22331/q-2022-03-30-677
http://dx.doi.org/10.22331/q-2022-03-30-677
http://dx.doi.org/10.22331/q-2022-03-30-677
http://www.jstor.org/stable/2333009
http://www.jstor.org/stable/2333009
http://dx.doi.org/10.5281/zenodo.2573505
http://dx.doi.org/10.5281/zenodo.2573505
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
http://dx.doi.org/https://doi.org/10.1016/j.physa.2023.128779
http://dx.doi.org/https://doi.org/10.1016/j.physa.2023.128779
https://arxiv.org/abs/2108.02786
http://arxiv.org/abs/2108.02786
https://doi.org/10.48550/arXiv.2305.09738
http://dx.doi.org/10.48550/arXiv.2305.09738
http://arxiv.org/abs/2305.09738

	1 Introduction
	2 Quantum-classical framework for binary classification
	3 Experiments on real-world datasets
	4 Related work
	5 Conclusions

