
A polynomial quantum computing algorithm for
solving the dualization problem for positive boolean
functions
Mauro Mezzini1,*,†, Fernando Cuartero Gomez2,†, Fernando Lopez Pelayo2,†,
Jose Javier Paulet Gonzalez3,†, Hernan Indibil de la Cruz Calvo2,† and Vicente Pascual2,†

1Department of Education, Roma Tre University, 00185 Rome, Italy
2Computing Systems Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, 02071
Albacete, Spain
3Quantum Computing Department, Qsimov Quantum Computing S.L, 45600 Talavera de la Reina, Toledo, Spain

Abstract
Given two positive Boolean functions 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} expressed in
their positive irredundant DNF Boolean formulas, the dualization problem consists in determining if 𝑔 is
the dual of 𝑓 , that is if 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑔(𝑥1, . . . 𝑥𝑛) for all (𝑥1, . . . 𝑥𝑛) ∈ {0, 1}𝑛. In this paper we
present a quantum computing algorithm that solves the dualization problem in polynomial time with
respect to the dimensions of the DNF expressions.

Keywords
Quantum Algorithm, Dualization, Boolean Functions, Computational complexity,

1. Introduction

We deal in this paper with Boolean functions 𝑓 : {0, 1}𝑛 → {0, 1} on 𝑛 Boolean or binary
variables. A literal is a variable 𝑥 or its negation 𝑥. Given two Boolean functions 𝑓 : {0, 1}𝑛 →
{0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} we say that 𝑔 ≤ 𝑓 if 𝑔(𝑥) ≤ 𝑓(𝑥) for all 𝑥 ∈ {0, 1}𝑛. Given
two Boolean vectors 𝑣 = (𝑣1, . . . , 𝑣𝑛) and 𝑤 = (𝑤1, . . . , 𝑤𝑛), we write 𝑣 ≤ 𝑤 if 𝑣𝑖 ≤ 𝑤𝑖 for
all 𝑖 ∈ {1, 2, . . . , 𝑛}. A Boolean function is positive (or elsewhere called monotone) if 𝑣 ≤ 𝑤
implies 𝑓(𝑣) ≤ 𝑓(𝑤) [1]. A conjunction 𝐶 = ∧𝑖∈𝐼ℓ𝑖, 𝐼 ⊆ {1, . . . , 𝑛}, of literals is an implicant
of a Boolean function 𝑓 if 𝐶 ≤ 𝑓 . An implicant 𝐶 of 𝑓 is called prime if there is no implicant
𝐷 ̸= 𝐶 of 𝑓 such that 𝐶 ≤ 𝐷. If there exists an implicant 𝐷 of 𝑓 such that 𝐶 ≤ 𝐷 then we say
that 𝐷 absorbs 𝐶 . In other words 𝐶 is prime if it is not absorbed by any other implicant of 𝑓
distinct from 𝐶 .

AIxIA 2023: International Workshop on AI for Quantum and Quantum for AI, November 06–11, 2023, Rome, IT
*Corresponding author.
†
These authors contributed equally.
$ mauro.mezzini@uniroma3.it (M. Mezzini); Fernando.Cuartero@uclm.es (F. C. Gomez);
fernandol.pelayo@uclm.es (F. L. Pelayo); jose.paulet@uclm.es (J. J. P. Gonzalez); hernanindibil.cruz@uclm.es
(H. I. d. l. C. Calvo); vpfuniversity@gmail.com (V. Pascual)
� 0000-0002-5308-0097 (M. Mezzini); 0000-0001-6285-8860 (F. C. Gomez); 0000-0001-7849-087X (F. L. Pelayo);
0000-0001-7849-087X (J. J. P. Gonzalez); 0000-0001-6445-5256 (H. I. d. l. C. Calvo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mauro.mezzini@uniroma3.it
mailto:Fernando.Cuartero@uclm.es
mailto:fernandol.pelayo@uclm.es
mailto:jose.paulet@uclm.es
mailto:hernanindibil.cruz@uclm.es
mailto:vpfuniversity@gmail.com
https://orcid.org/0000-0002-5308-0097
https://orcid.org/0000-0001-6285-8860
https://orcid.org/0000-0001-7849-087X
https://orcid.org/0000-0001-7849-087X
https://orcid.org/0000-0001-6445-5256
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


It is known [1] that a positive Boolean function 𝑓 always can be expressed in a disjunctive
normal form (DNF) containing no negated literals. We will call it a positive DNF expression of 𝑓 .
In the following we will denote a positive DNF expression of a positive Boolean function 𝑓 as

𝜙 =
⋁︁
𝐼∈𝐹

⋀︁
𝑖∈𝐼

𝑥𝑖 (1)

where 𝐹 is a family of subsets of {1, 2, . . . , 𝑛}. For any 𝐼 ∈ 𝐹 the implicant
⋀︀

𝑖∈𝐼 𝑥𝑖 is called
term of the DNF 𝜙. A positive DNF expression of a boolean function is prime if all its terms are
prime implicants of 𝑓 ; furthermore it is said irredundant if there is no 𝐽 ∈ 𝐹 such that

𝜓 =
⋁︁

𝐼∈𝐹,𝐼 ̸=𝐽

⋀︁
𝑖∈𝐼

𝑥𝑖

is another positive DNF representation of 𝑓 . The following theorem characterizes positive DNF
expressions

Theorem 1 ([1] Theorem 1.24 pag.37). Let 𝜙 be a positive DNF expression of a positive Boolean
function 𝑓 . Then 𝜙 contains all of the prime implicants of 𝑓 and it is irredundant if and only if no
term of 𝜙 is absorbed by any other term of 𝜙.

By Theorem 1, a positive DNF which contains only and all the implicants of a positive
Boolean function 𝑓 is unique and irredundant. We will call it positive irredundant DNF (PIDNF).
The dualization problem [2, 3, 4, 5], given a positive Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}
expressed in its PIDNF, consists in finding the PIDNF of a positive Boolean function 𝑔 such
that 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ {0, 1}𝑛. The decision version of the dualization problem, is
defined as follows: given two positive Boolean functions 𝑓 and 𝑔 expressed in their PIDNF, is
𝑔 the dual of 𝑓? The dualization problem and its associated decision version, are prominent
problems in several research areas such as machine learning and data mining [6, 7, 8, 9] artificial
intelligence [10, 11, 12], database systems and others (see [2] and the references within). The
best deterministic classical computing algorithm for solving the dual problem has complexity
𝑂(𝑁𝑜(log𝑁)) where 𝑁 = |𝐹 | + |𝐺| and |𝐹 | and |𝐺| are the number of terms of the PIDNF
expression of 𝑓 and 𝑔 [5]. Determining the complexity status of the dualization problem and
its associated decision version is a prominent open problem [13]. Equally interesting is the
self-dualization problem, that is, the problem of determining if a positive Boolean function,
expressed in its PIDNF, is self-dual. Obviously, if we set 𝑔 equal to 𝑓 , the self-dualization can be
cast as a dualization problem. Conversely, given two distinct Boolean functions 𝑓 and 𝑔, the
dualization problem can be reduced to the self-dualization of the function ℎ = 𝑦𝑓 ∨ 𝑧𝑔 ∨ 𝑦𝑧
where 𝑦 and 𝑧 are two additional Boolean variables [5]. Therefore, in the following, we treat
the self-dualization and the dualization problems as equivalent problems having the same
complexity. In this paper we develop quantum computing algorithm for the self-dualization
problem whose complexity is polynomial in the number of term of the PIDNF expression of 𝑓 .

2. Methods

In the following the variable 𝑥 is interpreted sometimes as a Boolean (or binary) 𝑛-dimensional
vector and sometimes as the decimal expression of the binary vector. In particular if 𝑥 is the



decimal value of the binary vector (𝑥1, . . . , 𝑥𝑛) then the decimal value of the binary vector
(𝑥1, . . . , 𝑥𝑛) is 𝑥 = 2𝑛 − 𝑥 − 1. We start with the following proposition which will be often
used later in the paper.

Proposition 2 ([5]). Necessary condition for two positive Boolean functions 𝑓 =
⋁︀

𝐼∈𝐹
⋀︀

𝑖∈𝐼 𝑥𝑖
and 𝑔 =

⋁︀
𝐽∈𝐺

⋀︀
𝑗∈𝐽 𝑥𝑗 expressed in their PIDNF to be mutually dual is that

𝐼 ∩ 𝐽 ̸= ∅ for every 𝐼 ∈ 𝐹 and 𝐽 ∈ 𝐺 (2)

Proof. If, by contradiction, there exist implicants 𝐼 ∈ 𝐹 and 𝐽 ∈ 𝐺 such that 𝐼 ∩ 𝐽 = ∅, let
𝑥 = (𝑥1, . . . , 𝑥𝑛) such that 𝑥𝑖 = 1 if 𝑖 ∈ 𝐼 and 𝑥𝑖 = 0 if 𝑖 /∈ 𝐼 . Clearly 𝑓(𝑥) = 1 = 𝑔(𝑥) and 𝑓
and 𝑔 could not be mutually dual.

By Proposition 2, if 𝑓 is self-dual then every implicant of 𝐹 must intersect every other
implicant.

Lemma 3. Suppose 𝑓 is self-dual. Then 𝑓 is balanced, that is, for half of 𝑥 values is 0 and for the
other half is 1.

Proof. Let 0 ≤ 𝑥 < 2𝑛, then 𝑥 = 2𝑛 − 𝑥 − 1. Furthermore since 𝑓 is self-dual we have that
𝑓(𝑥) ̸= 𝑓(𝑥) for all 0 ≤ 𝑥 < 2𝑛. Therefore

2𝑛−1−1∑︁
𝑥=0

𝑓(𝑥) +

2𝑛−1∑︁
𝑥=2𝑛−1

𝑓(𝑥) =

2𝑛−1−1∑︁
𝑥=0

𝑓(𝑥) +

2𝑛−1−1∑︁
𝑥=0

𝑓(2𝑛 − 𝑥− 1) =

2𝑛−1−1∑︁
𝑥=0

[𝑓(𝑥) + 𝑓(𝑥)] = 2𝑛−1

Lemma 4. Let 𝑓 be a positive Boolean function expressed in its PIDNF which satisfies also (2).
Then 𝑓 is self-dual if and only if

∑︀2𝑛−1
𝑥=0 𝑓(𝑥) = 2𝑛−1.

Proof. The necessity is given by Lemma 3. As for the sufficiency, suppose that
∑︀2𝑛−1

𝑥=0 𝑓(𝑥) =
2𝑛−1 and suppose by contradiction that 𝑓(𝑥) = 𝑓(𝑥) for some 0 ≤ 𝑥 < 2𝑛. Since (2) holds,
when 𝑓(𝑥) = 1 there exists an implicant 𝐼 such that 𝑥𝑖 = 1 for all 𝑖 ∈ 𝐼 . But then 𝑓(𝑥) = 0
since 𝐼 intersects all other implicants of 𝐹 . In other words 𝑓(𝑥) + 𝑓(𝑥) ≤ 1 for all 0 ≤ 𝑥 < 2𝑛.
Therefore we must have that 𝑓(𝑧) = 𝑓(𝑧) = 0 for some 0 ≤ 𝑧 < 2𝑛. But since

2𝑛−1 =

2𝑛−1∑︁
𝑥=0

𝑓(𝑥) =

2𝑛−1−1∑︁
𝑥=0

[𝑓(𝑥) + 𝑓(𝑥)] ≤ 2𝑛−1

we must have, for every 0 ≤ 𝑥 < 2𝑛−1, that 𝑓(𝑥) + 𝑓(𝑥) = 1, and this is a contradiction.



Now we state he following Remark which will be useful for the rest of the paper (see Theorem
1.11 of reference [1]).

Remark 5. A term 𝐶 =
⋀︀

𝑖∈𝐼 𝑥𝑖 of a positive DNF expression 𝜙 =
⋁︀

𝐼∈𝐹
⋀︀

𝑖∈𝐼 of a positive
Boolean function 𝑓 is absorbed by a term 𝐷 =

⋀︀
𝑗∈𝐽 𝑥𝑗 of 𝜙 if and only if 𝐽 ⊆ 𝐼 .

We define 𝑤(𝑥) the Hamming weight of the integer 0 ≤ 𝑥 < 2𝑛, as the number of ones in
the binary representation of 𝑥, or, equivalently, if 𝑥 = (𝑥1, . . . , 𝑥𝑛) is a binary vector, then
𝑤(𝑥) =

∑︀𝑛
𝑖=1 𝑥𝑖.

We said that the complexity of the dualization problem is measured with respect to the
combined size of the PIDNF representation of 𝑓 and 𝑔, that is, with respect to 𝑁 = |𝐹 |+ |𝐺|.
Furthermore as stated in [5], the number 𝑛 of variables of the Boolean functions is always less
than |𝐹 ||𝐺|. However there exists instances of the self-dual function in which 𝑁 = 𝑂(2𝑛) as
in the following example.

Choose 𝑛 > 4 odd and consider the following Boolean function whose positive DNF expres-
sion 𝜙 has as a set 𝐹 of implicants, the set of all subsets of {1, . . . , 𝑛} of cardinality ⌈𝑛/2⌉
where ⌈𝑎⌉ is the least integer greater or equal than 𝑎.

Lemma 6. The function 𝑓 expressed by 𝜙 is self-dual. Moreover 𝜙 is the PIDNF representation of
𝑓 , and has a number of terms equal to

(︀
𝑛

⌈𝑛/2⌉
)︀
.

Proof. Trivially, by definition, |𝐹 | =
(︀

𝑛
⌈𝑛/2⌉

)︀
. If there exist two implicants 𝐼 and 𝐽 such that

𝐼 ∩ 𝐽 = ∅ then |𝐼 ∪ 𝐽 | = |𝐼|+ |𝐽 | = 2 ⌈𝑛/2⌉ > 𝑛 a contradiction to the fact that the number
of variables is 𝑛. So we have that (2) holds for 𝜙.

For every 𝑥 such that 𝑤(𝑥) < ⌈𝑛/2⌉ we have that 𝑓(𝑥) = 0 since every implicant 𝐼 of 𝜙 has
cardinality |𝐼| = ⌈𝑛/2⌉. On the other hand for every 𝑥 such that 𝑤(𝑥) ≥ ⌈𝑛/2⌉ then 𝑓(𝑥) = 1
since, if we consider 𝑥 as a binary vector, we will always find an implicant 𝐼 such that 𝑥𝑖 = 1
for all 𝑖 ∈ 𝐼 . Now it is immediate to check that |{𝑥 : 0 ≤ 𝑥 < 2𝑛, 𝑤(𝑥) ≥ ⌈𝑛/2⌉}| = 2𝑛−1.
By Lemma 4, 𝑓 is self-dual. It remains to show that 𝜙 is irredundant. By Theorem 1, 𝜙 is not
irredundant if there is some term 𝐶 =

⋀︀
𝑖∈𝐼 𝑥𝑖 of 𝜙 which is absorbed by some other term

𝐷 =
⋀︀

𝑖∈𝐽 𝑥𝑖 of 𝜙. By Remark 5, this happens if and only if 𝐽 ⊆ 𝐼 and 𝐽 ̸= 𝐼 . But this is
impossible because |𝐽 | = |𝐼| for all pairs of 𝐼, 𝐽 ∈ 𝐹 .

2.1. The quantum computing approach

In the following we give several quantum computing algorithms for the dual and self-dual
problems.

2.1.1. Deutsch-Jozsa approach

Given two Boolean functions 𝑓 and 𝑔 we build the function ℎ(𝑥) = 𝑓(𝑥)⊕ 𝑔(𝑥) where ⊕ is
the sum modulo two.

Note that ℎ can be obtained from 𝑓 and 𝑔 by using a polynomial number of logic gates
with respect to the number of terms in their PIDNF expressions. If 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 then
ℎ(𝑥) = 0 for all 𝑥; that is ℎ is a constant function. We prepare a black box 𝑈ℎ which performs



the transformation |𝑥⟩|𝑦⟩ → |𝑥⟩|𝑦 ⊕ ℎ(𝑥)⟩, for 0 ≤ 𝑥 < 2𝑛. We use the blackbox 𝑈ℎ in the
Deutsch-Jozsa [14] algorithm. We have that the measurements of first 𝑛 qubits will be

1

2𝑛

2𝑛−1∑︁
𝑧=0

2𝑛−1∑︁
𝑥=0

(−1)𝑥·𝑧+ℎ(𝑥)|𝑧⟩

and the probability of measuring for |𝑧⟩ = |0⟩ is, when ℎ(𝑥) = 0 for all 𝑥, equal to 1 since

1

2𝑛

2𝑛−1∑︁
𝑥=0

(−1)ℎ(𝑥)|0⟩ = |0⟩

so we have the following remark.

Remark 7. Let 𝑓 and 𝑔 be two monotone prime Boolean functions which also satisfy (2) and let
ℎ = 𝑓 ⊕ 𝑔. If we measure at the end of the Deutsch-Jozsa algorithm with blackbox function 𝑈ℎ, a
value |𝑥⟩ ≠ |0⟩ then 𝑓 is not the dual of 𝑔.

In the same way as above we could build a blackbox𝑈𝑓 and apply the Deutsch-Jozsa algorithm
to check if 𝑓 is balanced. By Lemma 3, if 𝑓 is self-dual the Deutsch-Jozsa algorithm will output
a value |𝑦⟩ ≠ |0⟩ with probability one. If we measure a value equal to |0⟩ at the end of the
algorithm, we can conclude that 𝑓 is not self-dual.

We note that if 𝑓 is not self-dual then the Deutsch-Jozsa algorithm could output a value
equal |𝑦⟩ ̸= |0⟩ with probability 𝑝 < 1. So if we repeat the algorithm 𝑘 times and 𝑓 is not
self-dual, the probability of observing |𝑦⟩ ≠ |0⟩ for 𝑘 times will be 𝑝𝑘 . We obtained, in this way,
a probabilistic algorithm whose running time depend on 𝑝.

2.1.2. Quantum counting approach

Another approach to solve the self-dual problem would be to use the quantum counting algorithm
[15]. In this approach we build a blackbox 𝑈𝑓 . Let 𝑀 be the number of 𝑥 such that 𝑓(𝑥) = 1.
By Lemma 4, if 𝑓 is self-dual and (2) holds, then 𝑀 = 2𝑛−1. The quantum counting algorithm
will estimate the phase of the eigenvalues of the Grover operator which are 𝑒𝑖𝜃 or 𝑒𝑖(2𝜋−𝜃)

where 𝜃 is the angle of rotation of the Grover operator and it satisfies the following equation

sin
𝜃

2
=

√︂
𝑀

2𝑛
. Thus, if 𝑀 = 2𝑛−1, we have that 𝜃 =

𝜋

2
. We assume that the register for

measuring the phase is composed by 𝑡 qubits. At the end of the counting algorithm we will
measure the phase 𝜙 of the eigenvalue 𝑒𝑖2𝜋𝜙 = 𝑒𝑖𝜃 or 𝑒𝑖2𝜋𝜙 = 𝑒𝑖(2𝜋−𝜃) from which we obtain
that 𝜙 = 1/4 or 𝜙 = 3/4. Therefore, if the function 𝑓 is self-dual, at the end of the counting
algorithm, we should measure |2𝑡−2⟩ or |2𝑡−1 + 2𝑡−2⟩ with probability one. In other words, if
the measurement at the end of the counting algorithm is not equal to |2𝑡−1⟩ and not equal to
|2𝑡−1 + 2𝑡−2⟩ the function 𝑓 is not self-dual.

We note that the number of iteration of the counting algorithm, and therefore its complexity,
depend on the number of qubits 𝑡 we use to approximate the phase 𝜙.



2.1.3. Grover algorithm approach

A final approach is to use the Grover algorithm to find an 𝑥 such that 𝑓(𝑥) = 𝑓(𝑥). If such 𝑥 is
found then 𝑓 is not self-dual.

2.1.4. Merging all the approaches

From Remark 1, Lemma 3 and Lemma 4 we may summarize the discussion above in the
following quantum algorithm for checking if a function 𝑓 is self-dual.

Algorithm Quantum Dual
Input: A PIDNF of a Boolean function 𝑓 satisfying (2) and a black box 𝑈𝑓 which performs the
transformation |𝑥⟩|𝑦⟩ → |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩, for 0 ≤ 𝑥 < 2𝑛.

Output: True if 𝑓 is self-dual and False otherwise.

Procedure:

1. Let ℎ(𝑥) = 𝑓(𝑥) ⊕ 𝑓(𝑥). Use the Deutsch-Jozsa algorithm to check if ℎ is constant. If
the output of the Deutsch-Jozsa algorithm is not equal to |0⟩ then output False and exit.

2. Use the Deutsch-Jozsa algorithm to check if 𝑓 is balanced. If the output of the Deutsch-
Jozsa algorithm is equal to |0⟩ then output False and exit.

3. Use the Quantum Counting algorithm to count the number of 𝑥 such that 𝑓(𝑥) = 1
using 𝑡 = ⌈𝑛/2⌉ qubits to measure the phase angle. If the measurement at the end of the
algorithm is |𝑦⟩ and if 𝑦 ̸= 2𝑡−2 and 𝑦 ̸= 2𝑡−1 + 2𝑡−2 then output False and exit.

4. Use the Grover algorithm to find an 𝑥 such that 𝑓(𝑥) = 𝑓(𝑥). If such 𝑥 is found then
output False and exit.

5. Output True

The complexity of the algorithm Dual is dominated by the complexity of the quantum counting
and of the Grover algorithms. Recall that 𝑛 is the number of variables of the Boolean formula
and 𝑁 is the dimension of the algorithm’s input. The blackbox used in the algorithms requires
𝑂(𝑛𝑁) gates. Both algorithms achieve a complexity on the number of quantum iterations which
is 𝑂(2𝑛/2) while the best deterministic classical computing algorithm has time complexity of
𝑂(𝑁𝑜(log𝑁)) [5]. However, we saw in Lemma 6, that a self-dual function can have a number
of terms in its PIDNF equal to

(︀
𝑛

⌈𝑛/2⌉
)︀

which is asymptotic to 𝑂(2𝑛). Therefore we have that
𝑁 = 𝑂(2𝑛) from which we obtain that the complexity of our quantum algorithm for the
dualization problem is 𝑂(𝑛𝑁3/2) = 𝑂(𝑁3/2 log𝑁).

3. Conclusions

In this paper we shed a new light on the complexity of the dualization problem, with a perspective
from a quantum computing approach. We demonstrate that the dualization problem can be
solved by using a mixture of several quantum computing algorithms obtaining an exponential
speed up if compared to the best classical computing algorithm proposed in literature when the



input size of the problem is exponential to the number of variables of the Boolean functions.
We think that these ideas, far from being conclusive, could be used to develop faster, either
classical or quantum computing, dualization algorithms.

References

[1] Y. Crama, P. L. Hammer, Boolean Functions - Theory, Algorithms, and Applications, volume
142 of Encyclopedia of mathematics and its applications, Cambridge University Press, 2011.
URL: http://www.cambridge.org/gb/knowledge/isbn/item6222210/?site_locale=en_GB.

[2] T. Eiter, G. Gottlob, K. Makino, New results on monotone dualization and gen-
erating hypergraph transversals, SIAM Journal on Computing 32 (2003) 514–537.
URL: https://doi.org/10.1137/S009753970240639X. doi:10.1137/S009753970240639X.
arXiv:https://doi.org/10.1137/S009753970240639X.

[3] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph
and related problems, SIAM Journal on Computing 24 (1995) 1278–1304.
URL: https://doi.org/10.1137/S0097539793250299. doi:10.1137/S0097539793250299.
arXiv:https://doi.org/10.1137/S0097539793250299.

[4] T. Eiter, K. Makino, G. Gottlob, Computational aspects of monotone dualization: A brief
survey, Discrete Appl. Math. 156 (2008) 2035–2049. URL: https://doi.org/10.1016/j.dam.
2007.04.017. doi:10.1016/j.dam.2007.04.017.

[5] M. L. Fredman, L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms., J. Algorithms 21 (1996) 618–628.

[6] D. Gunopulos, R. Khardon, H. Mannila, H. Toivonen, Data mining, hypergraph transversals,
and machine learning, in: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database and Knowledgebase Systems (PODS’97), ACM,
United States, 1997, pp. 209–216.

[7] E. Boros, V. Gurvich, L. Khachiyan, K. Makino, Dual-bounded generating prob-
lems: Partial and multiple transversals of a hypergraph, SIAM Journal on Comput-
ing 30 (2001) 2036–2050. URL: https://doi.org/10.1137/S0097539700370072. doi:10.1137/
S0097539700370072. arXiv:https://doi.org/10.1137/S0097539700370072.

[8] E. Boros, V. Gurvich, L. Khachiyan, K. Makino, On the complexity of generating maximal
frequent and minimal infrequent sets, in: H. Alt, A. Ferreira (Eds.), STACS 2002, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 133–141.

[9] C. Domingo, N. Mishra, L. Pitt, Efficient read-restricted monotone cnf/dnf dualization by
learning with membership queries, Mach. Learn. 37 (1999) 89–110. URL: https://doi.org/10.
1023/A:1007627028578. doi:10.1023/A:1007627028578.

[10] R. Khardon, Translating between horn representations and their characteristic models, J.
Artificial Intelligence Res. 3 (1995) 349–372.

[11] G. Gogic, C. Papadimitriou, M. Sideri, Incremental recompilation of knowledge, J. Artificial
Intelligence Res. 8 (1998) 23–37.

[12] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–95.
[13] G. Gottlob, E. Malizia, Achieving new upper bounds for the hypergraph du-

ality problem through logic, SIAM Journal on Computing 47 (2018) 456–

http://www.cambridge.org/gb/knowledge/isbn/item6222210/?site_locale=en_GB
https://doi.org/10.1137/S009753970240639X
http://dx.doi.org/10.1137/S009753970240639X
http://arxiv.org/abs/https://doi.org/10.1137/S009753970240639X
https://doi.org/10.1137/S0097539793250299
http://dx.doi.org/10.1137/S0097539793250299
http://arxiv.org/abs/https://doi.org/10.1137/S0097539793250299
https://doi.org/10.1016/j.dam.2007.04.017
https://doi.org/10.1016/j.dam.2007.04.017
http://dx.doi.org/10.1016/j.dam.2007.04.017
https://doi.org/10.1137/S0097539700370072
http://dx.doi.org/10.1137/S0097539700370072
http://dx.doi.org/10.1137/S0097539700370072
http://arxiv.org/abs/https://doi.org/10.1137/S0097539700370072
https://doi.org/10.1023/A:1007627028578
https://doi.org/10.1023/A:1007627028578
http://dx.doi.org/10.1023/A:1007627028578


492. URL: https://doi.org/10.1137/15M1027267. doi:10.1137/15M1027267.
arXiv:https://doi.org/10.1137/15M1027267.

[14] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computation, Proceedings of
the Royal Society of London. Series A: Mathematical and Physical Sciences 439 (1992) 553
– 558. URL: https://api.semanticscholar.org/CorpusID:121702767.

[15] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, 2000.

https://doi.org/10.1137/15M1027267
http://dx.doi.org/10.1137/15M1027267
http://arxiv.org/abs/https://doi.org/10.1137/15M1027267
https://api.semanticscholar.org/CorpusID:121702767

	1 Introduction
	2 Methods
	2.1 The quantum computing approach
	2.1.1 Deutsch-Jozsa approach
	2.1.2 Quantum counting approach
	2.1.3 Grover algorithm approach
	2.1.4 Merging all the approaches


	3 Conclusions

