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Abstract
This paper summarizes our first discoveries in encoding Abstract Argumentation problems as Quadratic
Unconstrained Binary Optimization problems. Classical and quantum annealers can then solve such for-
mulations. In particular, we focus here on an optimization approach to extension enforcement, where
a set of arguments is requested to satisfy a given semantics through possible changes of the considered
Abstract Argumentation framework.
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1. Introduction

Abstract Argumentation [1] is powerful enough to model a whole range of formalisms in logics
and nonmonotonic reasoning [2] in particular. In its original formulation, an Argumentation
Framework (AF ) [1] is simply a directed graph in which the arguments are represented as nodes,
and the arrows represent an attack relation. Arguments are “abstract” in that their structure
- usually in the form of some premises leading to a claim - is not considered: for example,
“[claim] The death penalty should be abolished since [premise] it legitimizes an irreversible
act of violence” is condensed to a simple graph node attacking, for example, “The US Supreme
Court has upheld the death penalty as constitutional” (here the claim is implied).

An extension is a set of arguments in an AF that can survive the conflict together and
thus collectively represent a reasonable position to be taken during an e.g., decision-making
process involving those arguments. Several problems in the literature consider extension-related
problems that are computationally hard to solve and are consequently of interest to Artificial
Intelligence. The Quadratic Unconstrained Binary Optimization problem (QUBO) [3] has become
a unifying model for representing a wide range of combinatorial optimization problems and
linking various disciplines that face these problems. QUBO problems are NP-complete, and
a vast literature is dedicated to approximate solvers based on heuristics or meta-heuristics,
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such as simulated annealing approaches (SA), tabu-serch, genetic algorithms or evolutionary
computing [4]. Quantum annealers and Fujitsu’s digital annealers1 can be used to find global
minima by using quantum fluctuations. QUBO models are at the heart of experimentation with
quantum computers built by D-Wave Systems.2

In this paper, we focus on the problem of enforcing an extension: an agent may be interested
in determining arguments to be added to enforce the set of arguments they prefer. Such
enforcement is helpful in many scenarios, particularly when considering an argumentative
debate between several agents because the arrival of new arguments in the debate typically
questions the existing extensions. However, in many other situations, no new arguments are
available to explain the change, and one is forced to evaluate the arguments’ attacks on one
another. Several of these problems have been proven NP-complete [5]; hence, they represent a
perfect setting for proposing an encoding to QUBO as we advance in this work.

Some preliminary results on Abstract Argumentation and QUBO have been proposed in [6].
Section 2 reports necessary background information on Argumentation and QUBO, then Sect. 3
describes the encoding of extension-enforcing into QUBO. Section 4 highlights the interest
in approximate solvers in Abstract Argumentation by introducing a dedicated international
competition. While QUBO problems can also be solved with classical annealers, our ultimate
interest is represented by using quantum annealers (as tested in [6]), or more in general, to
bring Argumentation-related problems to the quantum world. Finally, Sect. 5 wraps up the
paper with final thoughts and ideas about possible future work.

2. Background

This section summarizes the necessary background information regarding Abstract Argumenta-
tion and QUBO.

2.1. Abstract Argumentation

An Abstract Argumentation Framework (AF, for short) [1] is a tuple ℱ = (A, 𝑅) where A is a
set of arguments and 𝑅 is a relation 𝑅 ⊆ A× A. For two arguments 𝑎, 𝑏 ∈ A, the relation 𝑎𝑅𝑏
means that argument 𝑎 attacks argument 𝑏. An argument 𝑎 ∈ A is defended by 𝑆 ⊆ A (in ℱ ) if
for each 𝑏 ∈ A such that 𝑏𝑅𝑎 there is some 𝑐 ∈ 𝑆 such that 𝑐𝑅𝑏. A set 𝐸 ⊆ A is conflict-free (cf
in ℱ ) if and only if there are no 𝑎, 𝑏 ∈ 𝐸 with 𝑎𝑅𝑏. 𝐸 is admissible (ad in ℱ ) if and only if it is
conflict-free and each 𝑎 ∈ 𝐸 is defended by 𝐸. Finally, the range of 𝐸 in ℱ , i.e., 𝐸+

ℱ , collects
the same 𝐸 and the set of arguments attacked by 𝐸: 𝐸+

ℱ = 𝐸 ∪ {𝑎 ∈ A | ∃𝑏 ∈ 𝐸 : 𝑏𝑅𝑎}.
The collective acceptability of arguments depends on the definition of different semantics [1].

Semantics determine sets of jointly acceptable arguments, called extensions, by mapping each
ℱ = (A, 𝑅) to a set 𝜎(ℱ) ⊆ 2A, where 2A is the power set of A, and 𝜎 parametrically stands
for any of the considered semantics. The extensions under complete (co), preferred (pr), semi-
stable (sst), stable (st), and grounded (gr) semantics are defined as follows; given ℱ = (A, 𝑅)
and a set 𝐸 ⊆ A:

1Fujitsu’s digital annealer: https://www.fujitsu.com/global/services/business-services/digital-annealer/.
2D-Wave website: https://www.dwavesys.com.
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Figure 1: An example of WAAF.

Ver-𝜎 DC-𝜎 DS-𝜎 Ex-𝜎 NE-𝜎
Conflict-free in L in L triv. triv. in L
Admissible in L NP-c triv. triv. NP-c
Complete in L NP-c P-c triv. NP-c
Preferred coNP-c NP-c

∏︀𝑃
2 -c triv. NP-c

Semi-stable coNP-c
∑︀𝑃

2 -c
∏︀𝑃

2 -c triv. NP-c
Stable in L NP-c coNP-c NP-c NP-c

Grounded P-c P-c P-c triv. P-c

Table 1
The complexity of some problems in Abstract Argumentation.

• 𝐸 ∈ co(ℱ) iff 𝐸 is admissible in ℱ and if 𝑎 ∈ A is defended by 𝐸 in ℱ then 𝑎 ∈ 𝐸,
• 𝐸 ∈ pr(ℱ) iff 𝐸 ∈ co(ℱ) and there is no 𝐸′ ∈ co(ℱ) s.t. 𝐸′ ⊃ 𝐸,
• 𝐸 ∈ sst(ℱ) iff 𝐸 ∈ co(ℱ) and there is no 𝐸′ ∈ co(ℱ) s.t. 𝐸′+

ℱ ⊃ 𝐸+
ℱ ,

• 𝐸 ∈ st(ℱ) iff 𝐸 ∈ co(ℱ) and 𝐸+
ℱ = A,

• 𝐸 ∈ gr(ℱ) iff 𝐸 ∈ co(ℱ) and there is no 𝐸′ ∈ co(ℱ) s.t. 𝐸′ ⊂ 𝐸.

Figure 1 shows an AF with five arguments and five attacks. Given ℱ , the set of complete
extensions is co(ℱ) = {{𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑒}}, while st(ℱ) = {{𝑎, 𝑑}, {𝑎, 𝑐, 𝑒}} is the set of
stable extensions, for example.

We now report the definition of five well-known decision problems in Abstract Argumentation,
whose complexity parametrized for a given semantics is shown in Tab. 1.

• Verification of an extension (VER-𝜎): given ℱ = (A, 𝑅) and a set of arguments 𝐸 ⊆ A, is
𝐸 ∈ 𝜎(ℱ)?

• Credulous acceptance of an argument (DC-𝜎): given ℱ = (A, 𝑅) and an argument 𝑎 ∈ A,
is 𝑎 contained in some 𝐸 ∈ 𝜎(ℱ)?

• Skeptical acceptance of an argument (DS-𝜎): given ℱ = (A, 𝑅) and an argument 𝑎 ∈ A,
is 𝑎 contained in all 𝐸 ∈ 𝜎(ℱ)?

• Existence of an extension (EX-𝜎): given ℱ = (A, 𝑅), is 𝜎(ℱ) ̸= ∅?
• Existence of non-empty extension (NE-𝜎): given ℱ = (A, 𝑅), does there exist 𝐸 ̸= ∅

such that 𝐸 ∈ 𝜎(ℱ)?

In addition, the work in [7] presents the task of extension enforcement: we consider the
objective to change the attack relationship 𝑅 of a framework ℱ = (A, 𝑅) such that a given
set 𝑇 ⊆ A becomes (a subset of) an extension under a given semantics 𝜎. In this case, the
enforcement is argument-fixed, since only the attack relationship can be modified. Strict en-
forcement is satisfied if 𝑇 is a 𝜎-extension, while in non-strict enforcement 𝑇 is only required
to be a subset of a 𝜎-extension. If we consider the Hamming distance of the changes, i.e.,
|𝑅∆𝑅′| = |𝑅 ∖𝑅′|+ |𝑅′ ∖𝑅|, in [7] the authors impose a threshold |𝑅∆𝑅′| ≤ 𝑘 as a further
parameter of these problems. The complexity of some of these problems is reported in Tab. 2.



𝜎 strict non-strict
Admissible P NP-c
Complete NP-c NP-c
Preferred

∑︀𝑃
2 -c NP-c

Stable P NP-c
Grounded NP-c NP-c

Table 2
The complexity of extension enforcement [5].

In this paper, as proposed in [5], we look at the problem from an optimization point of view:

Definition 1 ([5]). Given ℱ = (A, 𝑅), 𝑇 ⊆ A, and semantics 𝜎, strict extension enforcement is
an optimization problem where the goal is to find ℱ* = (A, 𝑅*) s.t.:

𝑅* ∈ argmin
𝑅′∈enfst(ℱ ,𝑇,𝜎)

|𝑅∆𝑅′|

where enfst(ℱ , 𝑇, 𝜎) = {𝑅′|ℱ ′ = (A, 𝑅′), 𝑇 ∈ 𝜎(ℱ ′)}. Similarly, we can define the same
problem by considering non-strict enforcement (by defining enfnst ).

2.2. Quadratic Unconstrained Binary Optimization

Quadratic Unconstrained Binary Optimization (in short, QUBO) [8] is an important form of
optimization problems which has recently gained great popularity because of fast solvers
and dedicated computing devices, such as quantum and digital annealers. Hence, several
optimization problems, in a large range of application domains, have been formulated as QUBO
problems, to be solved by these new methods [8, 9].

QUBO has been intensively investigated and is used to characterize and solve many optimiza-
tion problems. For example, it encompasses SAT Problems, Constraint Satisfaction Problems,
Maximum Cut Problems, Graph Coloring Problems, Maximum Clique Problems, General 0/1
Programming Problems and many more [8]. There exist QUBO embeddings also for Support
Vector Machines, Clustering algorithms, and Markov Random Fields [10].

A QUBO problem is defined in terms of 𝑛 binary variables 𝑥1, . . . , 𝑥𝑛 and a 𝑛 × 𝑛 upper-
diagonal matrix 𝒬 and consists in minimizing the function

𝑓(𝑥) =
𝑛∑︁

𝑖=1

𝑄𝑖,𝑖𝑥𝑖 +
𝑛∑︁

𝑖<𝑗

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 .

The diagonal terms 𝑄𝑖,𝑖 are the linear coefficients and the non-zero off-diagonal terms 𝑄𝑖,𝑗

are the quadratic coefficients. This can be expressed more concisely as

min
𝑥∈{0,1}𝑛

𝑥𝑇𝑄𝑥

where 𝑥𝑇 denotes the transpose of the vector 𝑥.
The formulation of a discrete constrained optimization problem as QUBO requires the fol-

lowing steps: i) find a binary representation for the solutions, ii) define a penalization function,
which penalizes unfeasible solutions (i.e., violating a constraint).



3. QUBO Encodings

In [6], we proposed for the first time an encoding of two well-known NP-complete problems
in Abstract Argumentation as QUBO problems: DC-𝜎 and Exists-𝜎¬∅, while the considered
semantics was only co. Moreover, in [6], we solved this problem on some frameworks by
directly implementing them using the D-Wave Ocean SDK. We used a SA algorithm and a real
quantum annealer provided by the LeapTM Quantum Cloud Service.3

Concerning [6], by continuing on this research line, we have extended the encoding to all
classical NP-complete problems highlighted in bold in Tab. 1. Moreover, we have empirically
validated all the encodings by comparing the obtained results with the simulated annealing
algorithm against ConArg [11], an exact solver using Constraint Programming.

3.1. Encoding Complete Extensions in QUBO

In this section, we describe the basics of the encodings that lead to the model of the complete
semantics, which will be at the core of enforcing complete extensions in Sect. 3.2.

We first assign to each argument an index, hence A = {𝑎1, . . . , 𝑎𝑛}, where 𝑛 is the number
of arguments. We use a set of 𝑛 binary variables 𝑥1, . . . , 𝑥𝑛 to represent a set 𝐸 of arguments:
𝑎𝑖 ∈ 𝐸 if and only if 𝑥𝑖 = 1. We denote by x the tuple (𝑥1, . . . , 𝑥𝑛) and by x ∈ {0, 1}𝑛 a
vector of possible values for 𝑥1, . . . , 𝑥𝑛. Each semantics 𝜎 will be associated with a quadratic
penalization function (or Pfunction for short) 𝑃𝜎 such that 𝑃𝜎 assumes its minimum value at x
if and only if the corresponding set 𝐸 = {𝑎𝑖 ∈ A : 𝑥𝑖 = 1} is an extension valid for 𝜎.

Most of the argumentation semantics require admissible sets. Hence, we define a Pfunction
𝑃𝑎𝑑𝑚, which enforces this property. 𝑃𝑎𝑑𝑚 is the sum of four terms and contains new additional
variables. The first term forces the set 𝐸 to be conflict-free: 𝑃𝑐𝑓 =

∑︀
𝑖𝑅𝑗 or 𝑗𝑅𝑖 𝑥𝑖𝑥𝑗 . In fact,

the value of 𝑃𝑐𝑓 corresponds to the number of self attacks in 𝐸 and its value is 0 if and only if
𝐸 is conflict-free.

The constraints to model the notion of defense are more complicated: we use a first set
of additional variables 𝑡1, . . . , 𝑡𝑛, denoting which arguments are attacked by 𝐸: 𝑡𝑖 = 1 if and
only if some argument of 𝐸 attacks 𝑎𝑖. The variables 𝑑1, . . . , 𝑑𝑛 of the second set denote which
arguments are defended by 𝐸: 𝑑𝑖 = 1 if and only if 𝑎𝑖 is defended (from all the possible attacks)
by some arguments of 𝐸. For each argument 𝑎𝑖, the Pfunction 𝑃 𝑖

𝑡 forces 𝑡𝑖 to be 1 if and only if
𝑎𝑖 is attacked by 𝐸, i.e., 𝑡𝑖 =

⋁︀
𝑗𝑅𝑖 𝑥𝑗 .

Let ℎ𝑖 be the number of attackers of 𝑎𝑖 and let 𝑖1, . . . , 𝑖ℎ𝑖
be their indices. If ℎ𝑖 = 0, then

𝑡𝑖 is simply 0, while if ℎ𝑖 = 1, then 𝑡𝑖 = 𝑥ℎ1 : in these cases, we set 𝑃 𝑖
𝑡 = 0. If ℎ𝑖 = 2, then

𝑃 𝑖
𝑡 = 𝑂𝑅(𝑡𝑖, 𝑥[𝑖1], 𝑥[𝑖2]), where 𝑂𝑅(𝑍,𝑋, 𝑌 ) = 𝑊+𝑋+𝑌 +𝑋𝑌 −2𝑍(𝑋+𝑌 ) is the way of

expressing as a quadratic function the constraint that the binary variable 𝑍 is the disjunction of
the binary variables 𝑋 and 𝑌 , as shown in [12]. Finally, if ℎ𝑖 > 2, then 𝑃 𝑖

𝑡 = 𝑂𝑅(𝑡𝑖, 𝑥[𝑖1], 𝛼
1
𝑖 )+

𝑂𝑅(𝛼1
𝑖 , 𝑥[𝑖2], 𝛼

2
𝑖 ) + . . . +𝑂𝑅(𝛼ℎ𝑖−3

𝑖 , 𝑥[𝑖ℎ𝑖−2], 𝛼
ℎ𝑖−2
𝑖 ) + 𝑂𝑅(𝛼ℎ𝑖−2

𝑖 , 𝑥[𝑖ℎ𝑖−1], 𝑥[𝑖ℎ𝑖
]),, where

𝛼1
𝑖 , . . . , 𝛼

ℎ𝑖−2
𝑖 are ℎ𝑖 − 2 auxiliary binary variables.

The other Pfunction 𝑃 𝑖
𝑑 forces 𝑑𝑖 to be 1 if and only if 𝑎𝑖 is defended by 𝐸, i.e., 𝑑𝑖 =

⋀︀
𝑗𝑅𝑖 𝑡𝑗 .

If ℎ𝑖 = 0, then 𝑑𝑖 is simply 1, while if ℎ𝑖 = 1, then 𝑑𝑖 = 𝑡ℎ1 : in these cases, 𝑃 𝑖
𝑑 = 0. If ℎ𝑖 = 2,

3D-Wave Ocean SDK: https://github.com/dwavesystems/dwave-ocean-sdk.
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then 𝑃 𝑖
𝑑 = 𝐴𝑁𝐷(𝑑𝑖, 𝑡[𝑖1], 𝑡[𝑖2]), where 𝐴𝑁𝐷(𝑍,𝑋, 𝑌 ) = 3𝑍 +𝑋𝑌 − 2𝑍(𝑋 +𝑌 ) is the way

of expressing the conjunction 𝑍 = 𝑋 and 𝑌 as a quadratic function [12]. Otherwise, if ℎ𝑖 > 2
then 𝑃 𝑖

𝑑 = 𝐴𝑁𝐷(𝑑𝑖, 𝑡[𝑖1], 𝛿
1
𝑖 ) + 𝐴𝑁𝐷(𝛿1𝑖 , 𝑡[𝑖2], 𝛿

2
𝑖 ) + . . . +𝐴𝑁𝐷(𝛿ℎ𝑖−3

𝑖 , 𝑡[𝑖ℎ𝑖−2], 𝛿
ℎ𝑖−2
𝑖 ) +

𝐴𝑁𝐷(𝛿ℎ𝑖−2
𝑖 , 𝑡[𝑖ℎ𝑖−1], 𝑡[𝑖ℎ𝑖

]), where 𝛿1𝑖 , . . . , 𝛿
ℎ𝑖−2
𝑖 are new ℎ𝑖 − 2 auxiliary binary variables.

The number of auxiliary variables needed for this encoding is 𝑁 = 2𝑛+ 2
∑︀𝑛

𝑖=1max(ℎ𝑖 −
2, 0), excluding the 𝑛 variables 𝑥1, . . . , 𝑥𝑛. Note that, if ℎ = maxℎ𝑖, then 𝑁 = 𝑂(𝑛ℎ). The
final term 𝑃𝑑𝑒𝑓 =

∑︀𝑛
𝑖=1 𝑥𝑖(1− 𝑑𝑖) forces each argument in 𝐸 to be defended by 𝐸. Summing

up, the Pfunction for admissible sets is 𝑃𝑎𝑑𝑚 = 𝑃𝑐𝑓 +
∑︀𝑛

𝑖=1 𝑃
𝑖
𝑡 +

∑︀𝑛
𝑖=1 𝑃

𝑖
𝑑+𝑃𝑑𝑒𝑓 . It is easy to

prove that the minimum value of 𝑃𝑎𝑑𝑚 is 0, and the related values for x correspond to admissible
sets. For the complete semantics, we need to add term to 𝑃𝑎𝑑𝑚 which forces all the arguments
defended by 𝐸 to be elements of 𝐸: 𝑃𝑐𝑜 = 𝑃𝑎𝑑𝑚 +

∑︀𝑛
𝑖=1(1− 𝑥𝑖)𝑑𝑖.

3.2. Extension Enforcement in QUBO

An important subject that emerged in the literature in the last years concerns changes in AFs.
In particular, attention has been paid to the problem of enforcing a set 𝐸 of arguments, i.e.,
ensuring that 𝐸 is an extension (or a subset of an extension) of a given framework ℱ .

The task of extension enforcement can be formulated with similar techniques. Let us focus on
the strict version of this problem, concerning the complete semantics (see Tab. 2). To simplify
the notation, the arguments in the set 𝑇 are the first 𝑘 arguments 𝑎1, . . . , 𝑎𝑘 in A.

We use a first set of binary variables 𝑟𝑖𝑗 , for 𝑖, 𝑗 = 1, . . . , 𝑛. Each variable 𝑟𝑖𝑗 is 1 whether
in the new attack relationship 𝑅′, 𝑎𝑖 attacks 𝑎𝑗 . Moreover, we use the binary variables 𝑡𝑖, for
𝑖 = 1, . . . , 𝑛, and 𝑑𝑖, for 𝑖 = 1, . . . , 𝑘, as in the encoding of the acceptance.

We define a Penalty function 𝑃 𝑟
𝑐𝑜, which is zero if and only if 𝑇 is a complete extension under

the attack relationship described by 𝑟𝑖𝑗 . 𝑃 𝑟
𝑐𝑜 is the sum of 5 terms.

The first term 𝑃 𝑟
𝑐𝑓 =

∑︀𝑘
𝑖,𝑗=1 𝑟𝑖𝑗 . enforces the set 𝑇 to be conflict-free, in fact when 𝑟𝑖𝑗 = 1,

with 𝑖, 𝑗 ≤ 𝑘, we have a self attack in 𝑇 .
The second term is𝑃 𝑟

𝑡 =
∑︀𝑛

𝑖=1 𝑃
𝑟,𝑖
𝑡 , where𝑃 𝑟,𝑖

𝑡 , for each 𝑖 = 1, . . . , 𝑛, enforces the constraint
𝑡𝑖 =

⋁︀𝑘
𝑗=1 𝑟𝑗𝑖, which means that 𝑡𝑖 = 1 if and only if the argument 𝑎𝑖 is attacked by some

argument 𝑎𝑗 ∈ 𝑇 . This term is encoded in QUBO using auxiliary binary variables, similar to
what is done for 𝑃 𝑖

𝑡 .
The third term is 𝑃 𝑟

𝑑 =
∑︀𝑘

𝑖=1 𝑃
𝑟,𝑖
𝑑 , where 𝑃 𝑟,𝑖

𝑑 , for each 𝑖 = 1, . . . , 𝑘, enforces the constraint
𝑑𝑖 =

⋀︀𝑛
𝑗=1(𝑟𝑗𝑖 =⇒ 𝑡𝑗), which means that 𝑑𝑖 = 1 if and only if the argument 𝑎𝑖 ∈ 𝑇 is

defended against all its attackers by some elements of 𝑇 . This term is encoded in QUBO using a
new set of auxiliary variables to represent the implication (𝑟𝑗𝑖 =⇒ 𝑡𝑗), other than the same
auxiliary variables used for 𝑃 𝑖

𝑑.
The fourth term is simply

∑︀𝑘
𝑖=1(1−𝑑𝑖), which requires that all arguments in 𝑇 are defended,

while the last term is
∑︀𝑛

𝑖=𝑘+1 𝑑𝑖, which add a penality for each argument defended by 𝑇 , but
not belonging to 𝑇 .

The overall objective function to be minimized is 𝑓 =
∑︀

𝑎𝑖𝑅𝑎𝑗
(1−𝑟𝑖𝑗)+

∑︀
¬𝑎𝑖𝑅𝑎𝑗

𝑟𝑖𝑗+𝜆𝑃 𝑟
𝑐𝑜,

where 𝜆 is a constant large, such that the minimum of 𝑓 is obtained for 𝑃 𝑟
𝑐𝑜 = 0.



4. Related Work

In the literature, we find many computational techniques and practical implementations for
solving problems related to formal argumentation in AI. We point the interested reader to the
survey of participants and results achieved in ICCMA15 [13], ICCMA17 [14], and ICCMA19 [15].
ICCMA21 included a track for approximate approaches: only decision problems DC-𝜎 and DS-
𝜎 were considered different sub-tracks, such as 𝜎 ∈ {co,pr, st, sst}. Solvers were evaluated for
accuracy, i.e., the ratio of correctly solved instances. The main motivation behind approximate
algorithms over exact algorithms was their (potentially) lower execution time.

An approximate solver from ICCMA21 is HARPER++ by M. Thimm: such a solver can only
determine the grounded extension of an input framework and then uses that to approximate
results for DC and DS tasks. A positive answer to DS-gr implies a positive response to DC
and DS for the other semantics. On the contrary, if an argument in the grounded extension
attacks an argument, the answer to DC and DS is negative. According to [16], skeptical
reasoning with any semantics generally overlaps with reasoning with the grounded semantics
in many practical cases.

AFGCN, by Lars Malmqvist, competed in ICCMA21 as well. It uses a Graph Convolutional
Network [17] to compute approximate solutions to DC and DS tasks for several semantics 𝜎.
The model is trained using a randomized training process using a dataset of AFs from previous
ICCMA competitions to maximize generalization from the input frameworks. To speed up
calculation and improve accuracy, the solver uses the pre-computed grounded extension as an
input feature to the neural network.

5. Conclusion

As introduced in Section 1, our general goal is to study computational problems in Abstract
Argumentation in the quantum world. QUBO represents the first approach to encoding and
solving NP-complete problems on quantum annealers, as first accomplished in [6] on D-Wave
annealers.

However, the optimization behind mapping QUBO models derived from an Argumentation
problem to the architecture of quantum machines is still unexplored and challenging: several
parameters need further investigation to exploit better the hardware and the connections among
qubits, which are limited on D-Wave’s architectures. We need to leave this to future work.

We also would like to try encodings different from QUBO and compare other quantum
platforms and their Python API, such as IBM Q and Google quantum, where qubits are differently
connected (less sparsely than D-Wave annealers).
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