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Abstract
Quantum computing in the NISQ era requires powerful tools to reduce the gap between simulations and
quantum hardware execution. In this work, we present a machine learning approach for reproducing
the noise of a specific quantum device during simulations. The proposed algorithm is meant to be
more flexible, in reproducing different noise conditions, than standard techniques like randomized
benchmarking or heuristic noise models. This model has been tested both with simulation and on real
superconducting qubits.

1. Introduction

Noise Intermediate Scale Quantum (NISQ) [1] devices are limited in usability and reliability
mainly because of errors due to: interactions with the environment, thermal relaxation, mea-
surement errors and cross-talk [2, 3, 4]. Hence, it is widely regarded that near-term quantum
advantage will only be achieved through advanced error mitigation techniques [5, 6, 7, 8] or
only with the future generations of fault-tolerant quantum devices [9, 10, 11, 12]. Even if no ad-
vantage has been proven on NISQ devices, many algorithms have been developed and deployed
on this hardware. In particular, machine learning inspired models have shown encouraging
results in the last few years [13, 14, 15, 16]. To study this kind of algorithms it is important to
be able to emulate their behavior when executed on imperfect quantum chips. In this work we
propose to train a machine learning model for learning a hardware specific noise and use it to
replicate NISQ’s behaviour during circuit simulations. This objective is further motivated by
the fact that very few techniques of noise modeling or noise prediction are available to this date
[17, 18, 19]. In our approach we train a reinforcement learning (RL) agent [20, 21, 22] to add
noise channels to different moments in the circuit and reproduce the noise pattern of a specific
quantum chip. In this way we reduce as much as possible the heuristic assumption on the noise
model, thus, increasing the adaptability and generalization properties of the algorithm.
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2. Background

Reinforcement Learning (RL) is a powerful paradigm in machine learning that involves the
training of an agent to make optimal decisions in a dynamic environment. It relies on the
fundamental concepts of policy and reward functions. The policy determines the behavior of the
agent, mapping the states of the environment to actions. The reward function assigns a numeric
value to state-action pairs, indicating the immediate desirability or cost associated with them.
Training the algorithm involves finding an optimal policy that maximizes the expected long-
term cumulative reward. During training, different episodes of agent-environment interaction
are executed. At the end of each episode the reward is used to update the weights of the policy,
which is often approximated by a Neural Network (NN). In recent years different optimization
methods have been developed to improve RL convergence and stability during training [23].
In our work we have obtained the best results using the proximal policy optimization (PPO) [24].

Noise is a crucial challenge faced in quantum circuits as qubits are susceptible to environment
interaction, spontaneous emission or calibration errors. Many mathematical tools have been
developed in order to describe quantum noise [25, 26, 27]. In this work we will model quantum
noise using the error channels illustrated in the following.
The local depolarizing channel is a simple model for incoherent noise. It is characterized by a
parameter 𝜆 that tends to bring the state to the maximally mixed state:

𝐷𝑒𝑝𝜆(𝜌) = (1 − 𝜆)𝜌 + 𝜆 ⋅ 𝕀/2 (1)

The amplitude damping channel models physical processes occurring on the qubits that involve
energy dissipation, such us spontaneous emission. Amplitude damping describes a decay
process where the state |0⟩ is conserved, while |1⟩ decays to |0⟩ with probability 𝛾:

𝐷𝑎𝑚𝑝(𝛾) |1⟩ = (1 − 𝛾) |1⟩ + 𝛾 |0⟩ (2)

Single-qubit coherent errors can be represented with rotation gates (𝑅𝑥, 𝑅𝑦, 𝑅𝑧). Although
these errors can be corrected once identified, in the NISQ era they are more challenging to
address since they accumulate after successive gate executions, leading to a bias in the output
of the quantum circuit. In order to obtain a simple modeling of the noise, it is possible to
use a technique called randomized benchmarking (RB) [28, 29, 30]. RB allows to estimate the
magnitude of the average error of a set of quantum gates. The noise model obtained in this
way is unrealistic as all noise sources are projected on the depolarizing channel. However, this
technique allows for estimating the average gate fidelity and can be used as a basic benchmark
for other, more sophisticated, noise characterization techniques.

3. Methodology

All the datasets used in this work are composed of ensembles of random quantum circuits with
their relative density matrices (DM). DMs are used as ground truth labels during the training
of the algorithm. They are analytically computed in simulation, whereas they are extracted
using quantum state tomography [31] when circuits are run on hardware. All the circuits in the



datasets have been generated by extracting random gates among a set of native gates. For this
work, we have used the native gates set of the Technology Innovation Institute (TII) quantum
hardware, composed of the 𝑅𝑥, 𝑅𝑧 and 𝐶𝑍 gates. In order to train the RL agent it is necessary
to translate the quantum circuit formalism to a tensor representation that can be fed to the
policy neural network. We will call this array the quantum circuit representation (QCR). In
the general case the shape of the QCR is: [𝑞𝑢𝑏𝑖𝑡𝑠, 𝑑𝑒𝑝𝑡ℎ, 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑑𝑖𝑚]. The first entrance of
the QCR identifies the circuit qubit, while the second specifies the circuit moment. The third
entrance, 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑑𝑖𝑚, defines the dimension of the latent space used to embed the information
about gates and noise channels that act on a specific qubit at a circuit moment.
For the training the following steps are performed in this order. A noiseless, quantum circuit
representation is given to the agent at the beginning of each episode. For every circuit moment
the agent performs an observation of the circuit and takes an action that consists in inserting
any combination of the aforementioned noise channels with a chosen parameter. At the end of
an episode, the DM of the circuit obtained with this process is computed (generated DM). The
generated DM is compared with the real noisy DM, produced by the noise we want to model,
and their fidelity is used to compute the final reward. After many episodes the agent should
learn, in principle, where to insert noise channels in a non-noisy circuit in order to reconstruct
the DM of the real noisy circuit. Once trained, the agent should be able to generalize to new
unseen circuits and could be used to perform realistic noisy simulations.

4. Results

We tested the proposed algorithm for learning both a simulated noise and the real noise of
a quantum superconducting chip. In the first case, we have tested the model on simulated
circuits of one and three qubits with a custom noise model. This noise model uses all the errors
introduced in section 2. In order to train the RL agent, 500 random circuits of depth 7 have
been generated: 400 circuits for the training set and 100 for the test set. Figure 1 reports the
DM fidelity and trace distance obtained during training for both a single qubit and three qubits
circuits. The standard deviation over our train and test sets is represented by error bars. In
both cases, the agent is able to learn the simulated noise, no overfit is observed. Convergence
is reached after ∼ 4 ⋅ 105 and ∼ 1.5 ⋅ 106 time steps respectively, where the standard deviation
of the fidelity begins to shrink. In order to test the generalization properties of the model, we
tested our agent on circuits with depth spanning from 3 to 30. Figure 2 reports the comparison
with the RB model under different metrics. The agent is capable of generalizing to both longer
and shorter circuits and always provides more accurate results compared to RB. This means
that, as RB considers all the noise sources as depolarizing, our algorithm is able to identify the
specific features of the noise.
To test the algorithm on real quantum hardware, we have used a single qubit superconducting
transmon [32] chip available at the Technology Innovation Institute (TII) of Abu Dhabi. Figure
3 reports the average DM fidelity and trace distance obtained during the training. Even though
the noise of a real quantum chip is far more complex, the agent is still able to learn the noise.
We are currently working on testing the algorithm on real three qubits chips.



Figure 1: Average DM fidelity and trace distance, obtained during training for single qubit circuits
(left) and three qubit circuits (right) with a custom noise model in simulations.

Figure 2: Performance comparison of the single qubit RL agent (yellow) with respect to the RB (blue)
and the result obtained without adding any noise channel (green). The performance have been computed
using different metrics and for circuits of different depth.

Figure 3: Training metrics of the RL algorithm for the single qubit TII quantum chip.

5. Conclusions and future work

We presented a RL algorithm to replicate, both, a simulated and a real quantum chip noise,
which provided better results than RB. The applications of the proposed algorithm extends
beyond noise characterization. By learning the error pattern associated to specific qubit-gate
combinations, the model could be used to optimize the transpiling process [33], preferring the
execution of gates on less noisy qubits during circuit routing. Moreover, we aim at investigating
if a similar, but inverse, strategy could be used to perform error mitigation. The scaling of the
model to circuits with many qubits is the current biggest limitation as state tomography is
unfeasible for many qubits. A potential solution could be training the model to approximate
the statistics of measurement outcomes, or using classical shadow state reconstruction [34, 35].
The neural networks used in this work do not require high computational power, a single policy
NN has about 104 parameters. This opens the possibility of training an ensemble of networks
that operate in parallel on subsets of qubits from a larger chip.
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