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Abstract
The compilation of quantum circuits on a given quantum architecture is one of the critical issues when
developing quantum algorithms. The related problem is known as the Quantum Circuit Compilation
Problem (QCCP). It is known that the current quantum chip technology (Noisy Intermediate-Scale
Quantum) is affected by noise that can be originated by different sources and significantly limits the
circuit’s usability. Generally, one important source of noise is the onset of decoherence during the
quantum circuit’s execution. Decoherence can be described as the difficulty of a quantum state to hold
its superposition in time; therefore, quantum circuits should be characterized by a limited depth (i.e.,
makespan) in order to terminate their execution before qubits start to decohere. The other important
source of noise is due to the presence of quantum binary gates (e.g., CNOTs); it is in fact known that
the noise produced by binary gates is an order of magnitude greater than the noise produced by unary
gates. Hence, trying to minimize the number of the circuit’s binary gates can also positively affect the
stability of the circuit. In this work, we analyze how a multiobjective approach can be useful to reduce the
circuit’s noise thus improving its stability, focusing on the minimization of both the circuit’s makespan
and the number of swap gates that are synthesized as a product of the compilation process, as every swap
gate is a binary gate composed of a sequence of three CNOT gates. In particular, we tackle instances of
the Quantum Approximate Optimization Algorithm (QAOA) for the resolution of the MaxCut problem,
and provide some preliminary results combining an existing genetic algorithm with two well-known
multiobjective approaches.
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1. Introduction and problem definition

In the paradigm of gate-based model, a quantum algorithm is expressed in terms of a set of
quantum gates that must be executed on a quantum hardware, fulfilling some constraints.
This gives rise to the Quantum Circuit Compilation Problem (QCCP). We consider the model
presented in [1], characterized by: (i) the class of Quantum Approximate Optimization Algorithm
(QAOA) applied to the MaxCut problem [2], and (ii) the specific hardware architectures depicted
in Figure 1, which shows four quantum chip designs inspired by Rigetti Computing Inc. [3] with
different number of qubits (𝑁 = 4, 8, 21, 40) distributed in weighted and undirected graphs.
We also consider larger quantum chips with 𝑁 = 72 (Google Bristlecone) and 𝑁 = 127 (IBM
Eagle).
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Figure 1: Six quantum chip designs with different number of qubits.

In the QAOA model, the same set of gates must be applied over a number of 𝑝 rounds to obtain
a near optimal solution to the MaxCut problem. Figure 2 shows a MaxCut instance and one
solution, considering a single round, compiled on the smallest of the circuits in Figure 1. In this
work we assume that each qstate 𝑞𝑖 is initially located in qubit 𝑛𝑖. The distribution of quantum
gates on qubits is subject to two constraints: (1) no two quantum gates can operate on the
same qubit simultaneously, and (2) binary quantum gates can only operate on adjacent qubits.
The first constraint requires to organize the gates in a number of steps with the objective of
minimizing the circuit depth, while the second constraint often requires introducing additional
swap gates (which exchange the qstates in two adjacent qubits and are denoted by edges with ×
symbols in both extremes) to move the quantum states of a binary gate to adjacent qubits. In
the example of Figure 2, a swap gate was introduced between qubits 𝑛2 and 𝑛4 to ensure that
the qstates 𝑞2 and 𝑞3 are adjacent, in qubits 𝑛4 and 𝑛3 respectively, before executing the last
binary gate on these qstates.

The study performed in this work is based on the currently available gate-based
quantum chip technology, known as Noisy Intermediate-Scale Quantum (NISQ) [4,
5]. NISQ chips are basically quantum processors containing up to about 1000 qubits
(https://www.ibm.com/quantum/blog/quantum-roadmap-2033) that are neither sufficiently
advanced for fault-tolerance, nor large enough to prove quantum supremacy over classical
computing. Moreover, these processors are susceptible to a phenomenon known as quantum
decoherence, as well as sensitive to their environment (i.e., they are noisy). Decoherence can be
described as the difficulty of a quantum state to hold its superposition in time; in other words,
for a quantum circuit to return reliable results, the computation should terminate before the pro-
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Figure 2: From left to right, a MaxCut instance, a quantum hardware with 4 qubits and a quantum
circuit that represents a possible solution of the instance on the quantum hardware.

cessor’s qubits start to decohere. Hence, quantum circuits should be characterized by a limited
depth (i.e., makespan) in that the shallower the circuit, the sooner the quantum computation
ends, and the smaller the decoherence effect suffered by the circuit. Another source of noise is
caused by the presence of quantum binary gates (e.g., CNOTs); it is in fact known that the noise
produced by binary gates is an order of magnitude greater than the noise produced by unary
gates. Hence, trying to minimize the number of the circuit’s binary gates also represents an
important issue to positively affect the stability of the circuit.

However, minimizing the circuit’s depth and minimizing the number of binary gates are
generally mutually conflicting objectives [6]; this is also illustrated in Figure 3, where we show
two different solutions for an instance of an 8-qubit hardware where we must execute a single
round of the following 8 𝑝−𝑠 gates: (𝑞2,𝑞3), (𝑞3,𝑞8), (𝑞4,𝑞5), (𝑞4,𝑞7), (𝑞4,𝑞8), (𝑞5,𝑞7), (𝑞6,𝑞8), (𝑞7,𝑞8).
These solutions are shown by means of Gantt charts, representing the operations on each qstate
over time. In this work it is assumed that 𝑝− 𝑠 gates take 3 time units on continuous edges and
4 time units on dashed edges, that the swap gates require 2 time units on all edges, and the mix
gates require 1 time unit.

The solution depicted in Figure 3(a) has depth 18 and requires 8 swap gates, whereas the
solution depicted in Figure 3(b) has depth 25 but only requires 5 swap gates. For this same
instance it also exists a solution with depth 19 and 6 swap gates (not pictured), which can be
considered a good compromise between both objectives, hence motivating a multiobjective
approach.

2. Solving methods

In this work, we start from the Decomposition Based Genetic Algorithm (DBGA-X) proposed
in [7]. In each iteration 𝑟 ∈ {1, . . . , 𝑝} it solves the subproblem defined by rounds 1, . . . , 𝑟,
starting from solutions to the subproblem defined by rounds 1, . . . , 𝑟−1 and inserting the 𝑝− 𝑠
and mix gates corresponding to round 𝑟, also inserting swap gates when necessary.

We keep the coding and decoding schemas and genetic operators. In particular, chromosomes
for round 𝑟 are triplets (𝑠𝑔𝑟−1, 𝑐ℎ1, 𝑐ℎ2) where 𝑠𝑔𝑟−1 is a solution graph for subproblem
1, . . . , 𝑟 − 1, 𝑐ℎ1 is a permutation of the set of 𝑝− 𝑠 gates of round 𝑟, and 𝑐ℎ2 indicates how to
insert swaps before inserting the corresponding 𝑝− 𝑠 gate of 𝑐ℎ1. In the decoding step, when
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(a) Solution with depth 18 and 8 swap gates.
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(b) Solution with depth 25 and 5 swap gates.

Figure 3: Two example solutions for an instance of an 8-qubit hardware represented with Gantt charts.

inserting a gate 𝑝−𝑠(𝑞𝑖, 𝑞𝑗), a set of swap gates are introduced to move concurrently 𝑞𝑗 towards
𝑞𝑖 and 𝑞𝑖 towards 𝑞𝑗 through one of the shortest paths on the hardware between the qubits
where they are currently located. 𝑐ℎ2 codifies in which edge of that shortest path the 𝑝 − 𝑠
gate will be inserted. We also keep using the extension of the partial mapping crossover (PMX)
operator and a mutation operator that randomly modifies the 𝑐ℎ2 part of the chromosome. We
refer the interested reader to [7] for further details of the method.

In order to extend DBGA-X to deal with two objectives at once, we consider two evolution
strategies borrowed from well-known multiobjective approaches:

• The first is the Nondominated Sorting Genetic Algorithm II (NSGA-II) [8], which differs
from a standard genetic algorithm mainly in the replacement step, in which we choose
individuals based on the concepts of dominance and crowding distance. We enhance the
diversity of the method by penalizing solutions with duplicated values of both objective
functions before the replacement step.

• The second is the Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [9], which divides the whole problem into a set of single-objective prob-
lems, each defined by a scalarization function based on different weights. A neighborhood
relation between problems is defined so that they can help each other during the evolution.



3. Experimental results

The benchmark instances are taken from [7], and the solving methods are implemented in C++
and run in a Intel Core i5-7400 CPU at 3.00GHz with 16 GB RAM. As for parameter setting, in
both multiobjective versions we choose a population size of 1000 chromosomes (so in the case
of MOEA/D we solve 1000 single-objective subproblems), a stop condition of 100 generations
without adding a new non-dominated solution to the Pareto front, a 100% crossover probability
and a 0.05% mutation probability for each position of each chromosome.

Specifically for MOEA/D, we have tried Tchebycheff and weighted sum scalarization functions
and the first one seems to perform better experimentally. Additionally, we use a neighborhood
size of 100 for each solution (i.e. the 100 solutions from the “closest” single-objective problems).
In the crossover step all solutions are mated, choosing as the other parent a solution from the
neighborhood with 95% probability, and any solution with 5% probability.

Figure 4 shows some preliminary results of the multiobjective versions of DBGA-X in three
instances with 40, 72 and 127 qubits. We show the Pareto fronts obtained by the NSGA-II version
and the MOEA/D version. For comparison reasons, we also run single-objective versions of
DBGA-X to either minimize makespan (i.e. circuit depth) or to minimize the number of swap
gates.

Each method is run 10 times, and in the figures we plot the best result from all runs in the
case of single-objective, and the Pareto front with the best hypervolume [10] from all runs in the
case of multiobjective. The average running time of the multiobjective methods is reasonable,
of about 30 seconds for instances with 40 qubits, 2 minutes for 72 qubits and 8 minutes for 127
qubits.

It can be seen that both multiobjective versions are able to reach approximate Pareto sets
with a variety of solutions that obtain a good compromise between both objectives. In these
instances, the Pareto fronts obtained by the NSGA-II version clearly outperform those of the
MOEA/D version, particularly on the larger instances. It is also interesting that neither NSGA-II
or MOEA/D are able to reach the best single-objective solutions, although this was the expected
behavior, as multiobjective approaches are efficient at obtaining good compromise solutions,
but usually less efficient at the extremes of the Pareto front.

4. Conclusions and future work

This paper is a first step in expanding our previous research in the QCCP by considering the
minimization of several objectives at once, in particular the circuit depth and the number of
added swap gates. Minimizing both objectives is useful to deal with the decoherence problem,
however we illustrated its conflicting nature and so motivated a multiobjective approach. We
combined a previous genetic algorithm from the literature with two well-known multiobjective
approaches and we have seen that a NSGA-II strategy obtains a good variety of solutions, and
better Pareto fronts than a MOEA/D strategy.

For future work, we first plan to perform an exhaustive experimental analysis using many
instances of several sizes and also considering additional rounds of QAOA (as the experiments
shown in this paper consider a single round), in order to obtain proper conclusions. However,



Figure 4: Example Pareto fronts on a 40-qubit circuit (upper left), a 72-qubit circuit (upper right) and a
127-qubit circuit (lower).

from the preliminary results it seems that the spread of solutions of the obtained Pareto fronts
can be improved, so we plan to devise some enhancements to the multiobjective procedures.
Applying QAOA to different problems, as the Minimum Vertex Cover Problem or the Graph
Coloring Problem is also an interesting avenue for future work.
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