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Abstract
We investigate the satisfiability problem for an elementary fragment of set theory denoted BSTC, which
includes a choice operator along with Boolean set operators, singleton, membership, equality, inclusion,
and propositional connectives. The intended interpretation of the choice operator is as a rationalizable
choice within the framework of Rational choice theory (a model of social and economic behavior), namely
a contractive map defined on nonempty subsets of a universe 𝑈 that can be derived from a binary relation
on 𝑈 by selecting the maximal elements of each set. We establish a small model property for BSTC
under the interpretation of the choice operator as a rationalizable choice. This property enables us to
develop an algorithmic solution to the satisfiability problem for BSTC, which allows us to prove that the
latter falls under the complexity classes NP-hard and NEXPTIME. By investigating the implications and
characteristics of rational decision-making within this fragment of set theory, our research contributes
to a better understanding of the interplay between rational choice theory and set theory.

1. Introduction

We continue our investigation of the satisfiability problem connected to fragments of set theory
involving a choice operator within the framework of Rational choice theory, a model of social
and economic behavior. A choice on a set 𝑈 of alternatives is a correspondence 𝐵 ↦→ 𝑐(𝐵)
associating to “feasible menus" 𝐵 ⊆ 𝑈 nonempty “choice sets" 𝑐(𝐵) ⊆ 𝐵. A choice can be
either total – i.e., defined for all nonempty subsets of the ground set 𝑈 of alternatives – or
partial – i.e., defined only for suitable subsets of 𝑈 .

According to the Theory of Revealed Preferences initially explored by the economist Paul
Samuelson [1], preferences of consumers can be inferred from their purchasing habits. In a
nutshell, choice on menus is observed, and preferences – as summarized by a binary relation on
𝑈 – are revealed. Technically, given a choice 𝑐 on 𝑈 , the “relation of revealed preference” ≾ is
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defined by 𝑥 ≾ 𝑦 if there is a menu 𝐵 ⊆ 𝑈 such that 𝑥 ∈ 𝑐(𝐵).1

Classically, a choice is considered rationalizable if the observed behavior can be univocally
recovered by maximizing this relation of revealed preference: that is, 𝑐(𝐵) = max(𝐵,≾) for
any feasible menu𝐵.2 This encoding of the concept of rationality yields a notable simplification
of the observed behavior: in fact, rationalizability is equivalent to the possibility to represent
a map from pow(𝑈) into pow(𝑈), which requires 𝒪(|𝑈 | · 2|𝑈 |) space, by a subset of 𝑈 × 𝑈 ,
which requires 𝒪(|𝑈 |2) space (here pow(𝑈) denotes the powerset of 𝑈 ).

Since Samuelson’s groundbreaking paper, a significant amount of attention has been devoted
to exploring various concepts of rationality within the framework of choice theory. The
literature includes several influential contributions such as the classical works by authors like
Houthakker [3], Arrow [4], Richter [5], Hansson [6], and Sen [7]. To delve deeper into the
connections between choice, preference, and utility theories, one can refer to the book [8]
and the quite recent paper [9]. Traditionally, the rationality of observed choice behavior is
associated with the fulfillment of suitable axioms of choice consistency. These axioms establish
rules for selecting items within menus and are expressed using second-order logic formulas
universally quantified over menus. Noteworthy axioms introduced in the specialized literature
include:
∙ standard contraction consistency (𝛼), introduced by Chernoff [10];
∙ standard expansion consistency (𝛾) and binary expansion consistency (𝛽), both proposed by

Nobel Laureate Amartya Sen [7];
∙ the weak axiom of revealed preference (WARP), originally put forth by Samuelson [1].
It is well-known that, under appropriate assumptions on the domain, a choice can be consid-

ered rationalizable if and only if it satisfies the two standard consistency axioms (𝛼) and (𝛾)
(refer to Sen [7] for more details). Furthermore, the (complete) rationalizing preference exhibits
transitivity if and only if axioms (𝛼) and (𝛽) are satisfied, which is equivalent to the WARP
property. In such cases, the choice is referred to as transitively rationalizable. Section 2 provides
the necessary background to choice theory.

In this paper, we focus on the satisfiability problem for unquantified formulae in an elementary
fragment of set theory denoted as BSTC. This fragment includes essential elements such as the
choice function symbol c, Boolean set operators like union ∪, intersection ∩, set difference ∖,
the singleton operator { }, predicates for membership ∈, equality =, and inclusion ⊆, as well as
propositional connectives such as conjunction ∧, disjunction ∨, negation ¬, implication =⇒ ,
etc.

In a previous work [11], we examined cases where the interpretation of the choice operator
c was subject to combinations of consistency axioms, namely (𝛼) and (𝛽), whose conjunction
is equivalent to the WARP property. In this paper, we focus on a different scenario where the
choice operator c is interpreted as a rational choice. Specifically, we establish our decidability
result by demonstrating that BSTC under rationalizability exhibits a small model property. The
current approach contrasts with that used in [11], which relied on reduction techniques and
various lifting results.

1For our purposes, it will suffice to consider the asymmetric part ≺ of ≾, defined by 𝑥 ≺ 𝑦 if 𝑥 ≾ 𝑦 and ¬(𝑦 ≾ 𝑥).
2In this case, “levels of rationality” are associated to the properties satisfied by the relation of reveled preference,
e.g., transitivity: see [2].



By considering the interpretation of c as a rational choice, we aim to explore the implications
and characteristics of rational decision-making within the framework of BSTC.

By depriving the BSTC-language of the choice function symbol c, we obtain the fragment
2LSS (here denoted BSTC−) whose decidability was known since the birth of Computable Set
Theory in the late 70’s. The reader can find extensive information on Computable Set Theory in
the monographs [12, 13, 14, 15].

The paper is organized as follows. Section 2 is devoted to the basis of choice theory, while the
syntax and semantics of the BSTC-language are presented in Section 3. Then, in Section 4, we
prove that the satisfiability problem for BSTC under rationalizability is decidable and belongs to
the complexity classes NP-hard and NEXPTIME. Finally, in Section 5, we draw our conclusions
and hint at future developments.

2. Preliminaries on choice theory

Hereafter, we fix a nonempty set 𝑈 (the “universe"). Let pow(𝑈) be the family of all subsets of
𝑈 , and pow+(𝑈) the subfamily pow(𝑈) ∖ {∅}. The next definition collects some basic notions
in choice theory.

Definition 1. Let Ω ⊆ pow+(𝑈) be nonempty. A choice correspondence on 𝑈 is a contractive
map 𝑐 : Ω → pow+(𝑈) that is never empty-valued, namely such that ∅ ≠ 𝑐(𝐵) ⊆ 𝐵, for every
𝐵 ∈ Ω.

In this paper, we denote a choice correspondence on 𝑈 by 𝑐 : Ω ⇒ 𝑈 , and simply refer to it
as a choice. The set Ω is the choice domain of 𝑐, sets in Ω are (feasible) menus, and elements of a
menu are items. Further, we say that 𝑐 : Ω ⇒ 𝑈 is total if Ω = pow+(𝑈), and partial otherwise.

Given a choice 𝑐 : Ω ⇒ 𝑈 , the choice set 𝑐(𝐵) of a menu 𝐵 collects the elements of 𝐵
that are deemed selectable by an economic agent. Thus, in case 𝑐(𝐵) contains more than one
element, the selection of a single element of𝐵 is deferred to a later time, usually with a different
procedure (according to additional information or “subjective randomization", e.g., flipping a
coin).

The next definition recalls the classical notion of rationalizable choices.

Definition 2. A choice 𝑐 : Ω ⇒ 𝑈 is rationalizable if there exists a binary relation ≾ over 𝑈
such that, for all menus 𝐵 ∈ Ω, 𝑐(𝐵) is the set

max(𝐵,≾) :=
{︀
𝑎 ∈ 𝐵 : (∀𝑏 ∈ 𝐵)(𝑎 ≾ 𝑏 =⇒ 𝑏 ≾ 𝑎)

}︀
of the strictly ≾-maximal members of 𝐵.

Rationalizable choices can also be characterized in terms of asymmetric relations, namely
relations that contain no pair of elements that are mutually related to each other.

Lemma 1. A choice is rationalizable if and only if it is induced by an asymmetric relation. In fact,
a rationalizable total choice is induced by exactly one asymmetric relation.



Proof. First assume that 𝑐 is a choice rationalized by the binary relation ≾ over 𝑈 . Let ≺ be the
asymmetric part of ≾, thus:

𝑥 ≺ 𝑦 ⇐⇒ 𝑥 ≾ 𝑦 ∧ 𝑦 ̸≾ 𝑥.

Notice that max(𝐴,≾) = max(𝐴,≺) for all subset 𝐴 ⊆ 𝑈 , thus ≺ rationalizes 𝑐. On the
counter-side plainly if 𝑐 is induced by an asymmetric relation then 𝑐 is rationalizable.

By contradiction, let us assume that a total choice 𝑐 : pow+(𝑈) ⇒ 𝑈 is rationalized by two
distinct asymmetric relations ≺ and ≺′ over 𝑈 . Thus, there exist 𝑥, 𝑦 ∈ 𝑈 such that

𝑥 ≺ 𝑦 ⇐⇒ 𝑥 ̸≺′ 𝑦.

Let us assume, without loss of generality, that 𝑥 ≺ 𝑦 and 𝑥 ̸≺′ 𝑦. Then, we have

𝑥 /∈ max({𝑥, 𝑦},≺) and 𝑥 ∈ max({𝑥, 𝑦},≺′),

which contradicts that ≺ and ≺′ rationalize the same choice.

For the rest of the paper, we will rely on the characterization of rationalizable choices in
terms of asymmetric relations.

The rationalizability of choice is traditionally connected to the satisfaction of suitable axioms
of choice consistency. These axioms codify rules of coherent behavior of an economic agent.
Among the several axioms that are considered in the literature, the following are relevant to
our analysis (a universal quantification on all the involved menus is implicit):

axiom (𝛼) [standard contraction]: 𝐴 ⊆ 𝐵 =⇒ 𝐴 ∩ 𝑐(𝐵) ⊆ 𝑐(𝐴)

axiom (𝛾) [standard expansion]: 𝑐(𝐴) ∩ 𝑐(𝐵) ⊆ 𝑐(𝐴 ∪𝐵)

axiom (𝛽) [symmetric expansion]:
(︀
𝐴 ⊆ 𝐵 ∧ 𝑐(𝐴) ∩ 𝑐(𝐵) ̸= ∅

)︀
=⇒ 𝑐(𝐴) ⊆ 𝑐(𝐵)

Axiom (𝛼) was studied by Chernoff [10], whereas axioms (𝛾) and (𝛽) are due to Sen [7].
Upon reformulating these properties in terms of items, their semantics becomes clear. Cher-

noff’s axiom (𝛼) states that any item selected from a menu 𝐵 is still selected from any submenu
𝐴 ⊆ 𝐵 containing it. Sen’s axiom (𝛾) says that any item selected from two menus 𝐴 and 𝐵 is
also selected from the menu 𝐴 ∪𝐵 (if feasible). The expansion axiom (𝛽) can be equivalently
written as follows: if 𝐴 ⊆ 𝐵, 𝑥, 𝑦 ∈ 𝑐(𝐴) and 𝑦 ∈ 𝑐(𝐵), then 𝑥 ∈ 𝑐(𝐵). In this form, (𝛽) says
that if two items are selected from a menu 𝐴, then they are simultaneously either selected or
rejected in any larger menu 𝐵.

Razionalizability is hereditary, as stated in the following lemma.

Lemma 2. Let Ω ⊆ pow+(𝑈). If a choice 𝑐 : Ω ⇒ 𝑈 is rationalizable, then so is any of its
restrictions 𝑐|Ω′ , for ∅ ≠ Ω′ ⊆ Ω.

Proof. Trivially any relation ≺ that rationalizes 𝑐 is such that max(𝐴,≺) = 𝑐(𝐴) = 𝑐|Ω′(𝐴),
for all 𝐴 ∈ Ω′, thus ≺ rationalizes 𝑐|Ω′ .



Another useful preliminary result is that a rationalizable partial choice correspondence can be
lifted to a rationalizable total choice if and only if each asymmetric relation ≺ that rationalizes it
is devoid of infinite ascending ≺-sequences , namely there is no infinite sequence 𝑎0, 𝑎1, 𝑎2, . . .
of items such that

𝑎0 ≺ 𝑎1 ≺ 𝑎2 ≺ · · · .

This is proved in the following lemma.

Lemma 3 (Lifting rationalizability). A (rationalizable) partial choice 𝑐 can be extended to a
rationalizable total choice if and only if 𝑐 is rationalizable by an asymmetric relation devoid of
infinite ascending sequences.

Proof. Let 𝑐 : Ω ⇒ 𝑈 be a partial choice correspondence, with Ω ⊆ pow+(𝑈). Let us assume
that 𝑐 can be extended to a rationalizable total choice 𝑐′ : pow+(𝑈) ⇒ 𝑈 , and let ≺′ be the
asymmetric relation over 𝑈 that rationalizes 𝑐′, namely such that 𝑐′(𝐴) = max(𝐴,≺′) for every
𝐴 ∈ pow+(𝑈). We claim that ≺′ is devoid of infinite ascending sequences. Indeed, if this were
not the case, letting

𝑎0 ≺′ 𝑎1 ≺′ 𝑎2 ≺′ · · ·

be an infinite ascending chain in 𝑈 , the related menu 𝐴 := {𝑎0, 𝑎1, 𝑎2, . . .} would have no
≺′-maximal item and therefore 𝑐′(𝐴) = max(𝐴,≺′) = ∅, which is impossible, as 𝑐′ is a total
choice. By Lemma 2, the choice correspondence 𝑐 is rationalized by ≺′ as well.

Conversely, let us assume that our partial choice correspondence 𝑐 can be rationalized by
an asymmetric relation ≺ over 𝑈 that is devoid of infinite ascending sequance. We claim that
for every 𝐴 ∈ pow+(𝑈) (not necessarily in Ω), the menu 𝐴 must have some ≺-maximal item,
namely max(𝐴,≺) ̸= ∅. Indeed, if not, then for every 𝑎 ∈ 𝐴, there would be another item
𝑎′ ∈ 𝐴 such that 𝑎 ≺ 𝑎′. Consequently, any finite ≺-sequence in 𝐴 of length 𝑛 could be
extended to a ≺-sequence of length 𝑛+ 1, for every 𝑛 ≥ 1. Since 𝐴 is nonempty, this would
imply the existence of infinite ascending ≺-sequences in𝐴 ⊆ 𝑈 , leading to a contradiction.

3. The Satisfiability Problem in the Presence of a Choice Pperator

We specify the syntax and semantics of the Boolean set-theoretic language extended with a
choice correspondence, denoted by BSTC, of which we will study the satisfiability problem,
under rationalizability.

3.1. Syntax of BSTC

Following [11], the language BSTC involves

• two disjoint denumerable collections 𝒱0 and 𝒱1 of individual variables (denoted by small
final letters, such as 𝑥) and set variables (denoted by capital final letters, such as 𝑋),
respectively;

• the constant ∅ (empty set);

• operation symbols: ∪ , ∩ , ∖ , { }, c( ) (choice map);



• predicate symbols: = , ⊆ , ∈ .

Set terms of BSTC are recursively defined as follows:

• set variables and the constant ∅ are set terms;

• {𝑥} is a set term, for every individual variable 𝑥;

• if 𝑇, 𝑇1, 𝑇2 are set terms, then 𝑇1 ∪ 𝑇2, 𝑇1 ∩ 𝑇2, 𝑇1 ∖ 𝑇2, c(𝑇 ) are set terms.

The atomic formulae (or atoms) of BSTC have one of the following forms 𝑥 = 𝑦, 𝑥 ∈ 𝑇, 𝑇1 =
𝑇2, 𝑇1 ⊆ 𝑇2, where 𝑇1, 𝑇2 are set terms.

Finally, BSTC-formulae are propositional combinations of BSTC-atoms by means of the usual
logical connectives ∧, ∨, ¬, =⇒ , ⇐⇒ .

We regard {𝑥1, . . . , 𝑥𝑘} as a shorthand for the set term {𝑥1} ∪ . . . ∪ {𝑥𝑘}.
Choice terms are BSTC-terms of type c(𝑇 ), whereas choice-free terms are BSTC-terms which

do not involve the choice map c (at any level of nesting). We refer to BSTC-formulae containing
only choice-free terms as BSTC−-formulae. With slight variations in syntax, BSTC−-formulae
are essentially equivalent to 2LSS-formulae, which is known to have a decidable satisfiability
problem (refer, for example, to [13, Exercise 10.5]).

We define the size (or length) |𝜙| of a BSTC-formula 𝜙 as the number of the symbol occur-
rences (individual and set variables, set operators, propositional connectives) used to represent
𝜙.

3.2. Semantics of BSTC under rationalizability

A set assignment is a pair ℳ = (𝑈,𝑀), where 𝑈 is any nonempty collection of objects, called
the domain or universe of ℳ, and 𝑀 is an interpretation over the variables and the choice map
of BSTC such that

• 𝑥𝑀 ∈ 𝑈 , for each individual variable 𝑥 ∈ 𝒱0;

• ∅𝑀 := ∅ and 𝑋𝑀 ⊆ 𝑈 , for each set variable 𝑋 ∈ 𝒱1;

• c𝑀 is a rationalizable total choice over 𝑈 .

Then, we extend 𝑀 over the terms by putting recursively:

• (𝑇1 ⊗ 𝑇2)
𝑀 := 𝑇𝑀

1 ⊗ 𝑇𝑀
2 , where ⊗ ∈ {∪,∩, ∖};

• {𝑥}𝑀 := {𝑥𝑀};

• (c(𝑇 ))𝑀 := c𝑀(𝑇𝑀).

The size of a set assignment is the cardinality of its domain.
Satisfiability under rationalizability (Rtl-satisfiability, for short) of any BSTC-formula 𝜙 by

ℳ (written ℳ |=Rtl 𝜙) is defined as follows:

ℳ |=Rtl 𝑇1 ⋆ 𝑇2 iff 𝑇𝑀
1 ⋆ 𝑇𝑀

2 ,
ℳ |=Rtl 𝑥 ∈ 𝑇 iff 𝑥𝑀 ∈ 𝑇𝑀 ,
ℳ |=Rtl 𝑥1 = 𝑥2 iff 𝑥𝑀

1 = 𝑥𝑀
2 ,



for all BSTC-atoms 𝑇1 ⋆ 𝑇2, 𝑥 ∈ 𝑇 , and 𝑥 = 𝑦, where ⋆ ∈ {=,⊆}. Finally, the logical
connectives are interpreted according to their classical meaning.

For a BSTC-formula 𝜙, if ℳ |=Rtl 𝜙 (i.e., ℳ Rtl-satisfies 𝜙), then ℳ is an Rtl-model for
𝜙. A BSTC-formula is Rtl-satisfiable if it has an Rtl-model. Two BSTC-formulae 𝜙 and 𝜓 are
Rtl-equivalent if they share exactly the same Rtl-models; they are Rtl-equisatisfiable if one is
Rtl-satisfiable if and only if so is the other (possibly by different models).

The Rtl-satisfiability problem (or Rtl-decision problem) forBSTC asks for an effective procedure
(or decision procedure) to establish whether any given BSTC-formula is Rtl-satisfiable or not.3

The satisfiability problem for BSTC has been addressed also under other semantics (see [11]):
specifically, the (𝛼)-semantics, the (𝛽)-semantics, the WARP-semantics, and the unrestricted
semantics (whose satisfiability relations are denoted by |=𝛼, |=𝛽 , |=WARP, and |=, respectively).
These differ from the Rtl-semantics in that the interpreted choice map c𝑀 is required to satisfy
axiom (𝛼) in the first case, axiom (𝛽) in the second case, axioms (𝛼) and (𝛽) conjunctively
(namely WARP) in the third case, and no particular consistency axiom in the latter case.

4. The Satisfiability Problem for BSTC under Rationalizability

In this section, we demonstrate that the satisfiability problem for the theory BSTC under
rationalizability is decidable. We will prove this result by establishing a small model property
for BSTC, which allows one to test the satisfiability of any BSTC-formula 𝜙 by verifying if
it is satisfied by some set assignment whose ‘size’ is bounded by an exponential function of
the size of 𝜙. Since such bounded sets assignment can be generated effectively, their number
is bounded, and it can be effectively checked whether any of them actually satisfies a given
BSTC-formula 𝜙, the decidability of the Rtl-satisfiability problem for BSTC follows.

We recall that the decidability results presented in [11] for the four previously mentioned
semantics are based instead on a reduction technique. Such technique involves enriching a
given BSTC-formula 𝜙 that needs to be tested for satisfiability by adding appropriate clauses,
resulting in an extended BSTC-formula 𝜙1. Then, by systematically replacing the choice terms
in 𝜙1 with newly introduced set variables, one obtains a (choice-free) BSTC−-formula 𝜙1 that
is equisatisfiable with 𝜙. As a consequence, the decidability of the satisfiability problems for
BSTC under the various four semantics follows from the known decidability of the satisfiability
problem for BSTC− (see [13, Exercise 10.5]).

Without compromising the expressivity of BSTC, we can limit ourselves to BSTC-formulae
that consist solely of equality atoms 𝑇1 = 𝑇2, where 𝑇1 and 𝑇2 are set terms constructed using
only the set difference operator ‘∖’ and the singleton operator { }. Indeed, atoms of the form
𝑥 = 𝑦, 𝑥 ∈ 𝑇 , and 𝑇1 ⊆ 𝑇2 can be just replaced by the equivalent atoms {𝑥} = {𝑦}, {𝑥} ⊆ 𝑇 ,
and 𝑇1 ∪ 𝑇2 = 𝑇2, respectively. Additionally, terms of the form 𝑇1 ∩ 𝑇2 can be replaced by
the equivalent term 𝑇1 ∖ (𝑇1 ∖ 𝑇2). Finally, every term of the form 𝑇1 ∪ 𝑇2 can be eliminated
from a given BSTC-formula 𝜙 by replacing it by a newly introduced set variable 𝑋𝑇1∪𝑇2 and
by adding to 𝜙 the atoms 𝑋𝑇1∪𝑇2

∖ 𝑇1 = 𝑇2 ∖ 𝑇1 and 𝑇1 ∖𝑋𝑇1∪𝑇2
= ∅ as conjuncts, since, as

3Since in this paper we are dealing we just one semantics for choice terms, we may occasionally omit the use of the
shorthand Rtl when referring to expressions such as model, satisfiability, and so on.



observed in [16], it holds that

|= 𝑋𝑇1∪𝑇2
= 𝑇1 ∪ 𝑇2 ⇐⇒ (𝑋𝑇1∪𝑇2

∖ 𝑇1 = 𝑇2 ∖ 𝑇1 ∧ 𝑇1 ∖𝑋𝑇1∪𝑇2
= ∅).

Likewise, the set constant ∅ can be eliminated from a BSTC-formula 𝜙 by replacing each of its
occurrences by a fresh set variable 𝑋∅ characterized by the atom 𝑋∅ = 𝑋∅ ∖𝑋∅.

It is important to note that the elimination of terms of type 𝑇1 ∪ 𝑇2 and ∅ produces an
equisatisfiable formula, rather than an equivalent formula as in the other cases considered,
due to the introduction of new variables. However, this does not pose any problem for our
satisfiability objectives. Note also that the size of the resulting formula is linear in the size of
the initial formula.

Thus, let 𝜙 be an Rtl-satisfiable propositional combination of equality atoms of the form
𝑇1 = 𝑇2, where 𝑇1 and 𝑇2 are BSTC-terms, and let ℳ = (𝑈,𝑀) be a set model for 𝜙 under
rationalizability, namely such that ℳ |=Rtl 𝜙.

Our aim is to demonstrate the possibility of ‘extracting’ from ℳ another set model for 𝜙,
denoted as ℳ, with a universe 𝑈 ⊆ 𝑈 of size 𝒪(2|𝜙|). This establishes a small model property
for BSTC under rationalization, leading to the decidability of the Rtl-satisfiability problem for
BSTC, as previously argued.

To this purpose, we will apply the following straightforward fact.

Lemma 4. Given a BSTC-formula 𝜙 and two set assignments ℳ and ℳ over the variables of 𝜙
that Rtl-satisfy the same equality atoms in 𝜙, ℳ Rtl-satisfies 𝜙 if and only if ℳ Rtl-satisfies 𝜙.

Thus, let V0 ⊆ 𝒱0 and V1 ⊆ 𝒱1 be the collections of the individual and set variables
occurring in 𝜙, respectively, and let 𝒯𝜙 be the collection of the set terms occurring in 𝜙. Plainly,
|𝒯𝜙| = 𝒪(|𝜙|). We intend to show that the formula 𝜙 admits an Rtl-model over a universe of
size 𝒪(2|𝜙|).

Let 𝒯 𝑀
𝜙 := {𝑇𝑀 : 𝑇 ∈ 𝒯𝜙} and let ℛ𝑀

𝜙 denote the Euler-Venn partition of 𝒯 𝑀
𝜙 , namely the

partition
ℛ𝑀

𝜙 :=
{︀⋂︀

𝑄 ∖
⋃︀
(𝒯 𝑀

𝜙 ∖𝑄) : ∅ ≠ 𝑄 ⊆ 𝒯 𝑀
𝜙

}︀
∖ {∅}

of
⋃︀
𝒯 𝑀
𝜙 , where

⋂︀
𝑄 is the intersection of all the members of 𝑄. Equivalently, the partition

ℛ𝑀
𝜙 can be defined as the collection of the ⊆-maximal nonempty subsets 𝜌 of

⋃︀
𝒯 𝑀
𝜙 such that,

for every term 𝑇 ∈ 𝒯𝜙, either 𝜌 ⊆ 𝑇𝑀 or 𝜌 ∩ 𝑇𝑀 = ∅.
Without loss of generality, we may assume that 𝑈 =

⋃︀
𝒯 𝑀
𝜙 , since otherwise we could replace

ℳ by the set assignment ℳ′ = (𝑈 ′,𝑀 ′) in our analysis, where 𝑈 ′ =
⋃︀
𝒯 𝑀
𝜙 , 𝑥𝑀′

= 𝑥𝑀 for
all 𝑥 ∈ V0, 𝑋𝑀′

= 𝑋𝑀 for all 𝑋 ∈ V1, and c𝑀′
= c𝑀 |𝑈 ′ . Indeed, by Lemma 2, c𝑀′

is plainly a
rationalizable total choice over 𝑈 ′, and so ℳ′ |=Rtl 𝜙.

A promising approach to define the universe𝑈 ⊆ 𝑈 , over which the sought-for set assignment
ℳ can be constructed, involves selecting an item from each block in ℛ𝑀

𝜙 . It is natural then to
define the interpretation 𝑀 over the variables V0 ∪ V1 occurring in 𝜙 by setting 𝑥𝑀 := 𝑥𝑀 for
each 𝑥 ∈ V0 and 𝑋𝑀 := 𝑋𝑀 ∩ 𝑈 for each 𝑋 ∈ V1. Notably, as {𝑥}𝑀 ∈ ℛ𝑀

𝜙 for every 𝑥 ∈ V0,
we then have 𝑥𝑀 ∈ 𝑈 , enabling us to define 𝑥𝑀 as 𝑥𝑀 .

For the time being, we will not be specific on the interpretation by ℳ of the choice map c.
Under the hypothesis that 𝜙 is choice-free, meaning that it does not contain any choice term,



we can readily prove that the set assignment ℳ = (𝑈,𝑀) just defined is indeed a model for
𝜙. In view of Lemma 4, it is enough to prove that, for every atom 𝑇1 = 𝑇2 in 𝜙, we have

𝑇𝑀
1 = 𝑇𝑀

2 ⇐⇒ 𝑇𝑀
1 = 𝑇𝑀

2 .

In its turn, to prove the latter biconditional it suffices to show that 𝑇𝑀 = 𝑇𝑀 ∩ 𝑈 holds for all
set terms 𝑇 occurring in 𝜙, as proved in the following lemma.

Lemma 5. If 𝑇𝑀 = 𝑇𝑀 ∩ 𝑈 holds for all set terms 𝑇 occurring in a BSTC-formula 𝜙 (not
necessarily choice-free), then the biconditional

𝑇𝑀
1 = 𝑇𝑀

2 ⇐⇒ 𝑇𝑀
1 = 𝑇𝑀

2 (1)

holds for all set terms 𝑇1 and 𝑇2 occurring in 𝜙.

Proof. Let 𝑇1 and 𝑇2 be any two terms in 𝜙. The forward implication in (1) is straightforward,
since if 𝑇𝑀

1 = 𝑇𝑀
2 holds then

𝑇𝑀
1 = 𝑇𝑀

1 ∩ 𝑈 = 𝑇𝑀
2 ∩ 𝑈 = 𝑇𝑀

2 .

As for the backward implication, let us assume, for the sake of contradiction, that 𝑇𝑀
1 ∩ 𝑈 =

𝑇𝑀
2 ∩ 𝑈 , but 𝑇𝑀

1 ̸= 𝑇𝑀
2 . Since both 𝑇𝑀

1 and 𝑇𝑀
2 are unions of blocks in ℛ𝑀

𝜙 , there must exist a
block 𝜌 ∈ ℛ𝑀

𝜙 such that
𝜌 ∩ 𝑇𝑀

1 ̸= ∅ ⇐⇒ 𝜌 ∩ 𝑇𝑀
2 = ∅.

For definiteness, let us assume that 𝜌∩ 𝑇𝑀
1 ̸= ∅ and 𝜌∩ 𝑇𝑀

2 = ∅. Hence, we have 𝜌 ⊆ 𝑇𝑀
1 , and

therefore:
∅ ≠ 𝜌 ∩ 𝑇𝑀

1 ∩ 𝑈 = 𝜌 ∩ 𝑇𝑀
2 ∩ 𝑈 = ∅,

which is a contradiction. Thus, even the backward implication in (1) is true, and so the bi-
conditional (1) holds, provided that 𝑇𝑀 = 𝑇𝑀 ∩ 𝑈 is true for all set terms 𝑇 occurring in 𝜙.

Thus, we are left with establishing the truth of the condition 𝑇𝑀 = 𝑇𝑀 ∩𝑈 , for all set terms
𝑇 occurring in 𝜙.

The case in which 𝜙 is choice-free can be handled quite straightforwardly by the following
lemma.

Lemma 6. If 𝜙 is choice-free, then the condition 𝑇𝑀 = 𝑇𝑀 ∩𝑈 holds for all set terms 𝑇 occurring
in 𝜙.

Proof. We proceed by structural induction on 𝑇 .
For the base case, when 𝑇 is a set variable 𝑋 ∈ V1, we can directly apply the definition of 𝑀

to obtain:
𝑇𝑀 = 𝑋𝑀 = 𝑋𝑀 ∩ 𝑈 = 𝑇𝑀 ∩ 𝑈.

For the inductive step, we consider the following cases:



1. if 𝑇 has the form {𝑥}, where 𝑥 ∈ V0, by recalling that 𝑥𝑀 = 𝑥𝑀 by definition, then we have:

𝑇𝑀 = {𝑥}𝑀 = {𝑥𝑀} = {𝑥𝑀} = {𝑥}𝑀 = 𝑇𝑀 ;

2. if 𝑇 has the form 𝑇1 ∖ 𝑇2, we have:

𝑇𝑀 = (𝑇1 ∖ 𝑇2)𝑀 = 𝑇𝑀
1 ∖ 𝑇𝑀

2 = (𝑇𝑀
1 ∩ 𝑈) ∖ (𝑇𝑀

2 ∩ 𝑈)

= (𝑇𝑀
1 ∖ 𝑇𝑀

2 ) ∩ 𝑈 = (𝑇1 ∖ 𝑇2)𝑀 ∩ 𝑈 = 𝑇𝑀 ∩ 𝑈,

where we used the inductive hypotheses 𝑇𝑀
𝑖 = 𝑇𝑀

𝑖 ∩ 𝑈 , for 𝑖 = 1, 2, and the identity

(𝑇𝑀
1 ∩ 𝑈) ∖ (𝑇𝑀

2 ∩ 𝑈) = (𝑇𝑀
1 ∖ 𝑇𝑀

2 ) ∩ 𝑈.

The latter is a direct consequence of the fact that for any set 𝑠:

𝑠 ∈ (𝑇𝑀
1 ∩ 𝑈) ∖ (𝑇𝑀

2 ∩ 𝑈) ⇐⇒ 𝑠 ∈ 𝑇𝑀
1 ∩ 𝑈 ∧ 𝑠 /∈ 𝑇𝑀

2 ∩ 𝑈
⇐⇒ 𝑠 ∈ 𝑇𝑀

1 ∧ 𝑠 ∈ 𝑈 ∧ 𝑠 /∈ 𝑇𝑀
2

⇐⇒ 𝑠 ∈ 𝑇𝑀
1 ∖ 𝑇𝑀

2 ∧ 𝑠 ∈ 𝑈

⇐⇒ 𝑠 ∈ (𝑇𝑀
1 ∖ 𝑇𝑀

2 ) ∩ 𝑈.

Remark 1. We observe that Lemmas 4, 5, and 6 enable us to rediscover the decidability of the
satisfiability problem for BSTC−. It is noteworthy that, in the case of BSTC−-formulae, one can
significantly reduce the number of items needed to construct the universe 𝑈 ⊆ 𝑈 . As demonstrated
in [17, 18], the construction of 𝑈 in this case only requires selecting one item from each block in a
carefully chosen set of at most 𝑚− 1 blocks within ℛ𝑀

𝜙 , where 𝑚 represents the number of distinct
terms occurring in 𝜙. This observation is at the base of the NP-completeness of the decision problem
for BSTC−.

If we drop from the statement of Lemma 6 the hypothesis that the formula 𝜙 is choice-free,
another case must be taken into account in its inductive proof: the case in which the term 𝑇 is of
the form c(𝑇1). This would require us to prove, under the inductive hypothesis 𝑇𝑀

1 = 𝑇𝑀
1 ∩𝑈 ,

that (c(𝑇1))𝑀 = (c(𝑇1))
𝑀 ∩ 𝑈 , namely:

c𝑀(𝑇𝑀
1 ∩ 𝑈) = c𝑀(𝑇𝑀

1 ) ∩ 𝑈. (2)

Hence, special care must be taken in the definition of c𝑀 in order that the identity (2) holds.
The following example shows that we cannot simply define c𝑀 as the restriction to pow+(𝑈) of
the choice c𝑀 .

Example 1. Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} and consider the asymmetric relation ≺ over 𝑈 , where 𝑎 ≺ 𝑐
and 𝑏 ≺ 𝑑. We define the interpretation 𝑀 over {𝑋,𝑌 } as 𝑋𝑀 = {𝑎, 𝑏} and 𝑌 𝑀 = {𝑐, 𝑑}.
Furthermore, let c𝑀 be the choice function over the universe 𝑈 , rationalized by ≺.

For the restricted interpretation, let𝑈 = {𝑎, 𝑑}. We define the interpretation𝑀 over the universe
𝑈 as 𝑋𝑀 = 𝑋𝑀 ∩ 𝑈 = {𝑎} and 𝑌 𝑀 = 𝑌 𝑀 ∩ 𝑈 = {𝑑}. Assume that we define the choice



function c𝑀 simply as c𝑀 = c𝑀 |pow+(𝑈)
, and consider the choice term 𝑇 equal to c(𝑋 ∪𝑌 ). Then

we have:

𝑇𝑀 = (c(𝑋 ∪ 𝑌 ))𝑀 = c𝑀(𝑋𝑀 ∪ 𝑌 𝑀) = c𝑀({𝑎, 𝑏, 𝑐, 𝑑}) = {𝑐, 𝑑}
𝑇𝑀 = (c(𝑋 ∪ 𝑌 ))𝑀 = c𝑀(𝑋𝑀 ∪ 𝑌 𝑀) = c𝑀({𝑎, 𝑑}) = {𝑎, 𝑑}.

Comparing the results, we find that 𝑇𝑀 = {𝑎, 𝑑}, which is not equal to the intersection of 𝑇𝑀

with 𝑈 , i.e., {𝑑}. ▷

Note that since 𝑇1 and c(𝑇1) are terms in 𝒯𝜙, then 𝑇𝑀
1 and (c(𝑇1))

𝑀 are unions of blocks in
the Euler-Venn partition ℛ𝑀

𝜙 . By defining Γ𝑀
𝑇1

as the set of the blocks of ℛ𝑀
𝜙 contained in 𝑇𝑀

1 ,
and similarly for Γ𝑀

c(𝑇1)
, namely

Γ𝑀
𝑇1

:= {𝜌 ∈ ℛ𝑀
𝜙 : 𝜌 ⊆ 𝑇𝑀

1 } and Γ𝑀

c(𝑇1)
:= {𝜌 ∈ ℛ𝑀

𝜙 : 𝜌 ⊆ (c(𝑇1))
𝑀}, (3)

we have
⋃︀
Γ𝑀
𝑇1

= 𝑇𝑀
1 and

⋃︀
Γ𝑀

c(𝑇1)
= (c(𝑇1))

𝑀 = c𝑀(𝑇𝑀
1 ). Therefore, we have c𝑀(

⋃︀
Γ𝑀
𝑇1
) =⋃︀

Γ𝑀

c(𝑇1)
. It would therefore be sufficient that there existed a rationalizable choice 𝑐 over the

universe 𝑈 such that 𝑐
(︀
(
⋃︀
Γ) ∩ 𝑈

)︀
=

⋃︀
Γ′ ∩ 𝑈 held, for all nonempty subsets Γ,Γ′ of ℛ𝑀

𝜙

satisfying an identity of the form c𝑀(
⋃︀
Γ) =

⋃︀
Γ′.

This is guaranteed by the following technical lemma, whose rather intricate and lengthy
proof is omitted due to space limits.

Lemma 7. Let 𝑐 : pow+(𝑈) ⇒ 𝑈 be a rationalizable total choice correspondence and Σ :=
{𝐵1, 𝐵2, . . . , 𝐵𝑛} be an𝑛-partition of𝑈 , for some𝑛 ≥ 1. Then for every subset𝑈⋆ = {𝑏⋆1, 𝑏⋆2, . . . , 𝑏⋆𝑛}
of 𝑈 with 𝑛 elements such that 𝑏⋆𝑖 ∈ 𝐵𝑖 for 𝑖 = 1, 2, . . . , 𝑛, there exists a rationalizable total
choice 𝑐⋆ over 𝑈⋆ such that the following implication holds for all nonempty subsets Γ,Γ′ of Σ:

𝑐(
⋃︀
Γ) =

⋃︀
Γ′ =⇒ 𝑐⋆

(︀
(
⋃︀
Γ) ∩ 𝑈⋆

)︀
= (

⋃︀
Γ′) ∩ 𝑈⋆. (4)

Thus, for the rest of the section, we will assume that c𝑀 is any choice over 𝑈 such that the
implication

c𝑀(
⋃︀
Γ) =

⋃︀
Γ′ =⇒ c𝑀

(︀
(
⋃︀
Γ) ∩ 𝑈

)︀
= (

⋃︀
Γ′) ∩ 𝑈 (5)

holds for all ∅ ≠ Γ,Γ′ ⊆ ℛ𝑀
𝜙 , whose existence is guaranteed by Lemma 7, so that can prove the

identity (2) concerning terms of the form c(𝑇1).
The preceding discussion allows us to state the following strengthening of Lemma 6.

Lemma 8. Assuming that c𝑀(𝑇𝑀
1 ∩ 𝑈) = c𝑀(𝑇𝑀

1 ) ∩ 𝑈 for every choice term c(𝑇1) in 𝜙, then
the condition 𝑇𝑀 = 𝑇𝑀 ∩ 𝑈 holds for all set terms 𝑇 in 𝜙.

We claim that ℳ = (𝑈,𝑀) is an Rtl-model for our BSTC-formula 𝜙.
In view of Lemma 4, it suffices to show that, for each atomic subformula 𝑇1 = 𝑇2 occurring

in 𝜙, we have
ℳ |=Rtl 𝑇1 = 𝑇2 ⇐⇒ ℳ |=Rtl 𝑇1 = 𝑇2.

Since

ℳ |=Rtl 𝑇1 = 𝑇2 ⇐⇒ 𝑇𝑀
1 = 𝑇𝑀

2 (by definition)



⇐⇒ 𝑇𝑀
1 = 𝑇𝑀

2 (by Lemmas 5 and 8)

⇐⇒ ℳ |=Rtl 𝑇1 = 𝑇2 (by definition),

for every atomic equality 𝑇1 = 𝑇2 in 𝜙, from Lemma 4 and the hypothesis ℳ |=Rtl 𝜙 it follows
that ℳ is an Rtl-model for 𝜙, as claimed. In addition, we have that the universe 𝑈 of ℳ has
size |ℛ𝑀

𝜙 | < 2|𝒯𝜙| ≤ 2|𝜙|, where |𝜙| is the size of 𝜙.
Summing up, we have the following result:

Theorem 1 (Small model property). A BSTC-formula 𝜙 is Rtl-satisfiable if and only if it admits
an Rtl-model over a universe of size 𝒪(2|𝜙|).

The preceding theorem yields the following trivial decision procedure for the Rtl-satisfiability
problem of BSTC.

procedure BSTC-Rtl-test(𝜙);
1. let 𝑛 := |𝒯𝜙| and let 𝑈 be any universe of size 2𝑛;
2. for each set assignment ℳ = (𝑈,𝑀) under rationalizability do
3. if ℳ |=Rtl 𝜙 then
4. return “𝜙 is Rtl-satisfiable by ℳ = (𝑈,𝑀)”;
5. return “𝜙 is not Rtl-satisfiable”;

end procedure;

Regarding the complexity of the procedure BSTC-Rtl-test, we make the following observa-
tions. Given a set assignment ℳ = (𝑈,𝑀) under rationalizability over a finite universe 𝑈 of
size 𝑚, and a collection V0 ∪ V1 of size 𝑣 of individual and set variables:

1. The interpretation 𝑀 takes 𝒪(𝑣𝑚) space. This is because the interpretation 𝑀 assigns
values to variables from the collection, and since there are 𝑣 variables and each variable can
be assigned a value from a universe of size 𝑚, the total space required is proportional to 𝑣𝑚.

2. The relation over 𝑈 that rationalizes c𝑀 can be represented in 𝒪(𝑚2) space. Here, c𝑀

refers to the rational choice associated with the set assignment ℳ. The relation represents
preferences among elements in the universe, and since the universe has size 𝑚, storing it
requires space proportional to 𝑚2.

Therefore, the total space complexity to store the interpretation 𝑀 and the relation over 𝑈 that
rationalizes c𝑀 is 𝒪(𝑣𝑚+𝑚2).

Also, the time needed to check a purported set assignment ℳ = (𝑈,𝑀) under the same
aforementioned conditions is linear in its size 𝒪(𝑣𝑚 + 𝑚2) (for instance, when verifying
whether the rationalizing relation is indeed devoid of infinite ascending sequences, it suffices to
check it for acyclicity, a task that can be accomplished in linear time with respect to its size,
which is 𝒪(𝑚2)).

For a given Rtl-satisfiable BSTC-formula 𝜙 of size 𝑛, we can therefore generate a satisfying
Rtl-model ℳ = (𝑈,𝑀) with a universe of size 𝑚 = 2𝑛, over a collection of size 𝒪(𝑛) of
individual and set variables, in 𝒪(2𝑛

2
) time and space. In addition, we can check that ℳ is

indeed an Rtl-model for 𝜙 in deterministic 𝒪(2𝑛
2
) time.

Furthermore, the satisfiability problem for BSTC is NP-hard, as the satisfiability problem for
propositional logic can readily be reduced to it (in linear time).

To summarize, we can state the following complexity result:



Theorem 2. The satisfiability problem for BSTC-formulae under rationalizability belongs to the
complexity classes NP-hard and NEXPTIME.

5. Conclusions

In this paper, we have explored the implications and characteristics of rational decision-making
within the quantifier-free elementary fragment of set theory denoted as BSTC (Boolean Set
Theory with a Choice operator). Our primary focus was on the satisfiability problem for
BSTC-formulae. By interpreting the choice operator c as a rational choice, we have established
that BSTC under rationalizability exhibits a small model property. This significant property
has enabled us to demonstrate the decidability of the satisfiability problem for BSTC under
rationalizability, classifying it as belonging to the complexity classes NP-hard and NEXPTIME.
These findings represent an extension of previous work on the satisfiability problem in the
presence of a choice operator.

For future research, it would be worthwhile to explore extensions of BSTC with a predicate
Finite( ), which expresses that its argument is a finite set (thus, ¬Finite(𝑋) denotes that the
set 𝑋 is infinite). Additionally, further investigations can be carried out under alternative
axiomatizations of the choice operator, such as those associated with (𝑚,𝑛)-rationalizable
choices, which have been extensively studied in [2].

Furthermore, we intend to strengthen the small model property, if possible, along lines
similar to those that allowed us to prove the NP-completeness of the theory BSTC− as hinted
in Remark 1, thereby establishing the NP-completeness of BSTC under rationalizability.

By pursuing these research directions, we can deepen our understanding of the relation-
ship between rational decision-making and set theory, paving the way for new insights and
advancements in this interdisciplinary field.
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