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Abstract

The Krohn-Rhodes Decomposition Theorem (KRDT) is a central result in automata and semigroup
theories: it states that any (deterministic) finite-state automaton can be disassembled into a collection
of automata of two simple types, that can be arranged into a combination - cascade — that simulates
the original automaton. The elementary building blocks of the decomposition are either resets or
permutations.

The full-fledged theorem features two orthogonal dimensions of complexity: the type and the number
of building blocks appearing in the cascade, and a deep step in the proof is the characterization of the
permutations appearing in the decomposition. This characterization implies, in the case of counter-free
automata, that the resulting cascade contains no permutations.

In this paper we start analysing KRDT for two compression-oriented classes of automata: (i) path—
coherent: state-ordered automata mapping state-intervals to state-intervals; (ii) Wheeler: a subclass of
path-coherent automata whose order is the one induced by the co-lexicographic order of words. These
classes were recently defined and studied and they turn out to be efficiently encodable and indexable.

We prove that each automata in these classes can be decomposed as a cascade with a number of
components which is linear in the number of states of the original automaton and, for the Wheeler class,
we prove that only two-state resets are needed. Our line of reasoning avoids the necessity of using full
KRDT and proves our results directly by a simple inductive argument.
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1. Introduction

One of the most fruitful, pervasive, and basic idea in mathematics is primal decomposition,
where a complex mathematical structure is decomposed in a more or less structured collection
of simpler components. Examples are the factorization of a number into prime numbers, the
many matrix decomposition used in linear algebra, the Fourier decomposition of a periodic
function, or the Jordan-Holder Decomposition Theorem for finite groups.

The Krohn-Rhodes Decomposition Theorem (KRDT), in general terms, falls into this category:
it is a method for decomposing a deterministic finite automaton into “simple” finite automata [1].
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These components correspond to two-state reset automata (one bit memory automata acting
as a two states resets or, equivalently, as on-off switches) and permutation automata, and are
combined in a feedback-free composition called a “cascade”.

Finite deterministic automata (DFA) correspond, via their transition semigroups, to finite
semigroups and a cascade of DFAs correspond to a wreath product of semigroups. As a conse-
quence KRDT is also an unexpected major result in the theory of semigroups, an analogue of
the Jordan-Holder Theorem for finite groups (see [2]). In fact, even though semigroups/DFAs
are characterised by very weak properties, KRDT reveals a surprising inner structure that was
exploited in a wealth of connections within a variety of different areas (see [3]).

The permutations appearing in the KRDT cascade of an automaton are (homomorphic images
of) subgroups of the transition semigroup of the original automaton. This is in fact the part
of the KRDT that is most difficult to prove, requiring a careful analysis for the permutations’
components. This is exploited for proving that the cascade decomposition of counter-free
automata (that is automata without non-primitive cycles) is permutation-free, i.e. it contains
only two-state resets. However, to the best of our knowledge, no proof of the decomposition in
the counter-free case guarantees the linearity of the number of the two-state reset blocks .

In this paper we consider the KRDT for two classes of automata: path-coherent and Wheeler
automata. The first class comprises automata that are state-ordered in such a way that the
image of an interval of states, by any transition, is still an interval of states. The Wheeler class
(see [5]) is defined using some local axioms constraining the state order to agree with the the
co-lexicographic (co-lex) order of the words reaching states (with respect to an a priori fixed
order of the alphabet’s letters). Both classes where recently studied ([6, 5, 7]) and considered
also for their amenability to being efficiently encodable and indexable.

We prove that for both path-coherent and Wheeler classes it is always possible to find a
decomposition into a cascade made of a linear number of components. Moreover, the cascade
whose existence we prove in the case of Wheeler automata is permutation-free and, contrary to
the counter-free case, the proof is a simple induction, not requiring particular care for handling
permutations.

The paper is organized as follows. Section 2 deals with notation and basic definitions. Section 3
introduces the path-coherent and Wheeler classes and prove some basic dependencies/indepen-
dencies of the properties involved in their definitions. In section 4 we prove our main results on
the existence of a cascade with a linear number of component for the aforementioned classes.
Finally, section 5 is dedicated to conclusions and further works. The proofs that are not present
in the body of the paper can be found in the Appendix.

2. Notation and First Definitions

The KRDT is a theorem on deterministic finite automata (DFAs), but initial and final states play
no role in its statement. Hence we start defining semiautomata, which are DFAs where initial
and final states are not specified. Moreover, the general KRDT theorem is stated for complete
deterministic automata, where transitions from any states are always defined for every letter.

'In [4] it is proved that there is a family of counter-free automata admitting only exponential-sized cascades, but in
this case the size refers to the total number of transitions in the cascade and not to the number of blocks.



The path-coherent and Wheeler automata, to be formally introduced below, are inherently
partial, since their classes are not closed under complementation. Hence, we introduce the class
of partial semiautomata and in Section 4 we state KRDT for this class.

A partial semiautomaton is a tuple A = (S4, 54 §4) where: (i) 54 is a finite set of states;
(ii) X4 is the alphabet; (iii) 64 : S4 x 4 — S4 is a partial function. In this paper, by a
semiautomaton we always mean a partial semiautomaton. For any a € ¥4, we denote by
64(—, a) the (possibly partial) function from S4 to 54 that maps ¢ in 6(q, a), for each g € S4.
Moreover, for any subset of states S C S and any symbol a € £4, we denote by 64(S, a)
the set {¢’ € S* | ¢ = 6%(q,a) A q € S}. Since we will also introduce semiautomata
A= (84,%4,64) and B = (SB, 2B §P) where ¥4 = %7 and states in S? are subsets of S4
~ that is, S C Pow(S4) -, we avoid ambiguity by always explicitly indicating the automaton,
as in 6(S, a) and 62(S, a), so that it is clear whether S is a state of B or a subset of A-states.

Finally, if (¢, a) does not belong to the domain of §4 we write (g, a) = L, where L ¢ S4.
More in general, for a partial function f: X — Y and an element z € X we write f(z) = L
to denote that ¢ dom(f). Clearly, a function can be defined only if all of its arguments are
defined, thus we consider every function that has | as one of its arguments as undefined - e.g.
f(L)=_Lland (L,z) = (x, L) = L for all z. Moreover, given two functions f,g: X — Y,
when we write Vo € X f(z) = g(x) we always imply that f(z) = L if and only if g(z) = L,
that is, f and g have the same domain.

Definition 1. A transition ¢ € X in a semiautomaton A = (S4, 24, §4) is: 1) a reset if either
a) there exists a state r € S such that (g, a) # L implies 6*(q, a) = r, for all ¢ € S4; or
b) 64(q,a) # L implies 64(q,a) = ¢, for all ¢ € S — that is, §(—, a) is the identity over
its domain. 2) A permutation if it is not a reset and the function 6(—, a) is a permutation
over its domain i.e. it is injective and maps its domain onto itself. A semiautomaton A is a
permutation-reset semiautomaton if all its transitions are permutations or resets. We say that
A is a reset semiautomaton if all its transitions are resets. We say that A is a permutation
automaton if all its transitions are permutations.
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(a) The transition a is a reset. (b) The transition b is a permutation.

Figure 1: An example of reset and permutation transitions.

Definition 2 (Homomorphic image). Let A, B be two semiautomata over the same alphabet .
We say that A is an homomorphic image of B if there is a surjective (total) function ¢: SB — §4
such that, forallg € S® and a € 3,

¢(6% (g, a)) = 6%(¢(q), a).

If ¢ is a bijection, A and B are said to be isomorphic.



A semiautomaton A can be transformed into a language acceptor by fixing an initial state
s and a set of final states F' and setting, as usual, £(A4) = {a € (Z4)* | 6%(s,a) € F}. We
say that a semiautomaton B is as least as expressive as the semiautomaton A if any language
accepted by A is also accepted by B. The next lemma proves that if A is a homomorphic image
of B then B is at least as expressive as A.

Lemma 1. If the semiautomaton A is a homomorphic image of the semiautomaton B and the
language L is accepted by A, then L is also accepted by B.

We now introduce the operation we shall use in our decomposition results.

Definition 3 (Cascade product). Let B = (SB, 3, §%) be a semiautomaton and C' = (S¢, S5 x
¥, 6¢) be a semiautomaton whose alphabet is the cartesian product of S? and ¥. The cascade
product B o C = (SB°C | %, §5°C) is the semiautomaton with set of states S°C := §8 x §¢
and transition function defined by

(5300(((]7 T), a) = (53(% (I), 6C(T7 (Q7 CL)))

Note that both 6% and 6 might be partial functions, thus we are implicitly requiring that
68°C((q,7),a) # Lifand only if 65(q,a) # L A 6%(r,(q,a)) # L.

Figure 2 shows an example of cascade product between two automata.

C
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(a) The automata B and C. The two links from ¥ to C and from B (b) The cascade product B o C be-

to C' indicate that, at each step, the automaton C reads both the input tween B and C.
letter from X and the current state of the automaton B.
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Figure 2: An example of cascade product.

Next, we state some basic results about cascades and homomorphic images. Since these
results are normally stated and proved for complete semiautomata, we add the proofs for the
more general partial case in the Appendix.

Proposition 2. 1) The cascade product is associative (see [8]). 2) If A, B, C, D are semiautomata
such that A is an homomorphic image of B o C and C' is an homomorphic image of D, then A is
an homomorphic image of B o D.
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Figure 3: Example of a path-coherent semiautom¥igure 4: A path coherent semiautomaton not satisfying W1.

3. Path-Coherence and Wheeler Axioms

In this section we introduce the two classes we shall analyze in terms of KRDT. We first consider
a related property.

Definition 4 (Input Consistency). A semiautomaton A = (54, %4, §4) is input consistent iff
64(v,a) = 6*(w,b) = v implies a = b, whenever u, v, w € S4 and a € X4,

Path-coherence is a condition on graphs equipped with a total order over their nodes, that
requires intervals of states to be mapped by transitions into intervals of states. It was originally
introduced in the context of Wheeler graphs [6] and later exploited in the study of Wheeler
languages [5]. We introduce below the adaptation of the definition to the case of semiautomata.
As usual, if (X, <) is a totally ordered set and z < y € X, we denote by [z, y] the interval
{zeX z<z<y}

Definition 5 (Path Coherence). Let < be a total order over the set of states S of a semiautoma-
ton A = (S4,%4,64). Then (A, <) is path-coherent if, for all a € ¥4, the function 6(—, a)
maps intervals in intervals. Equivalently, (A, <) is path-coherentif, forall ¢ < ¢’ € 54, a € ¥4,
and z,y, z € S4 it holds that:

r<z<y A zyedgd)a) = 26 g q),a)

Figure 3 shows an example of a path-coherent automaton on the alphabet > = {a}.
Wheeler automata where first introduced in [6]. To define a Wheeler automaton we need to
fix both an order < on its states and an order < on the alphabet %4

Definition 6 (Wheeler Axioms). Let A = (S4, %4, (5A) be a semiautomaton and let <, < be
a total order over the alphabet ¥4 and a total order over the set of states S, respectively.
Wheeler Axioms 1 (W1) and 2 (W2)? are stated as follows (see [6]). If 6 (uy,a1) = v; and
64 (uz, az) = v then:

(W1) a1 < ag — v < vg;
(W2) (a1 =a2 ANup < UQ) — v1 < V.

A semiautomaton satisfying W1 and W2 is called a Wheeler semiautomaton. A Wheeler DFA
(WDFA) is a DFA based on a Wheeler semiautomaton. Moreover, it is required that the initial

*The W2 axiom was introduced in [9] in the context of complete DFA to define the class of ordered DFAs.
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Figure 5: A path-coherent semiautomaton satisfying W1 but not W2.

state has no ingoing transitions and it is the minimum in the order <.
A Wheeler language is a language recognized by a WDFA °.

If not specified otherwise we always assume that the set of states S* of a semiautomaton A
satisfying W1, W2, or path-coherence is SA = {1,...,n},orderedas 1 < --- < n.

In general, a path-coherent semiautomaton may not satisfy W1, for any order of the alphabet.
Consider for example the semiautomaton A in Figure 4. Moreover, path-coherence and W1 do
not imply W2. Consider for example the semiautomaton A in Figure 5.

However, we do have the following dependencies.

Proposition 3. 1) If a semiautomaton A satisfies both path-coherence and input consistency then
there is an order < over the alphabet X for which A satisfies W1. In particular, a path-coherent,
input consistent semiautomaton satisfying W2 is a Wheeler semiautomaton. 2) Any semiautomaton
A satisfying both W1 and W2 and such that any state has at least an incoming transition is
path-coherent.

4. Krohn-Rhodes Decomposition for Path Coherent Graphs and
Wheeler Graphs

The general KRDT states that each semiautomaton A is a homomorphic image of a sub-
semiautomaton of a cascade product of two-state resets and permutation automata. Moreover,
the cascade can be choosen in such a way that, for each permutation automaton in the cascade,
the semigroup generated by the transitions of the automaton is a simple group which is an
homomorphic image of subgroups of the semigroup generated by the A-transitions. This im-
plies that any counter-free automaton is a homomorphic image of a (sub-)semiautomaton* of a
cascade product of two-state resets. In this section we give a simpler proof of the decomposition
for the path-coherent and Wheeler class. In the Wheeler case we also prove that the numbers
of the blocks —two-state resets— is linear in the number of states of the original automaton.

We start by defining the first element of the cascade using the notion of admissible decompo-
sition (see [10, 8]).

Definition 7. A set D of subsets of the set of states of a semiautomaton A = (S4, %4, 64) is
said to be an admissible decomposition if:

*In [7] a more general definition of Wheeler Automata is given, not implying the input consistency of the automaton.
However, the two definitions are equivalent with respect to the class of languages they recognize, i.e. the Wheeler
Languages.

*The general KRDT does not prove that the original automaton is a homomorphic image of the cascade: one has to
go through a sub-semiautomaton of the cascade. For path consistent and Wheeler class we can avoid the use of
sub-semiautomata.



1. UD = §4,

2. for any a € ¥4 the image of an element of D under 6*(—, a) is contained in at least one
element of D:
Vae x4 DeD3D € Ds(D,a) C D

Given an admissible decomposition D of a semiautomata A we can build a factor semiau-
tomaton A/D over the same alphabet with $4/P = D and §4/P(D, a) = D’ where D’ € D is
such that §4(D, a) C D’ (if there is more than one, then choose one arbitrarily).’

Given a semiautomaton A, the first element of a cascade decomposition for A can be choosen
to be a factor of A (see Zimmermann [10], Ginzburg [8]). However for the full KRDT, which
proves that there are cascades where the permutation-blocks are homomorphic images of
subgroups of the transition monoid of the original automaton, one has to choose a particularly
well behaved decomposition of A.

In the following lemma and theorem we prove that, in case of path-coherent semiautomata,
a particular choice for the decomposition of A allows to use a simple induction for obtaining
the full decomposition. Moreover, when applied to the Wheeler case, we shall see that this
decomposition avoid altogether the use of permutations in the cascade.

Lemma 4. Let A = (S4, %, 64, <) be a path-coherent semiautomaton withn = |S4| > 2. Then,
there are a permutation-reset semiautomaton B with |SP| = 2 and a path-coherent semiautomaton
C with |SC| = n — 1, such that A is a homomorphic image of B o C.

Proof. Consider the decomposition D = { Dy, D1} of S where
DO = {1,...,n—1},D1 :{2,...,71}.

We have either 64 (D;,a) C Dy or 64(D;,a) C Dy (possibly both) for i = 0, 1: it cannot be
the case that both 1 and n are in 64(D;, a) or, by path-coherence, we would have 64 (D;, a) =
{1,...,n} which is not possible, being A deterministic. In other words, the decomposition D
is admissible. Let B = A/D = (S8, %, 6%) be the D-factor of A, defined as follows. The set
of states is S® = {Dp, D1} and we define 6%(D;,a) = L if and only if 64(Dj,a) = 0. If
instead 64 (D;, a) # 0, then we define 6%(D;,a) = Dy if §4(D;,a) C Dy (or, equivalently,
if n ¢ 04(Dj, a)), whereas we define 6%(D;,a) = Dy if 6*(D;,a) € Dy (or, equivalently,
n € 64(D;,a)) and hence 6*(D;,a) C D;. More succinctly, when 6% (D;, a) # L we have

§8(Dj,a) = D, (j,a) where 7(j, a) is defined as

_ 0 ifn ¢ d4(Dj,a)
7(J,a) = . "
1 ifn e §*(Dj,a)
for all j € {0,1} and a € X. Note that B has only two states. Hence, a transition in B
can only be a (eventually partial) reset, the identity, or the permutation 6% (Dg,a) = Dy,
6B(D1,a) = Dy. Therefore, B is a permutation-reset automaton.

For a complete semiautomaton A, where the transition functions are total, a factor of A is always a homomorphic
image of A. This is not always the case for partial automata.



Let C = (5,88 x ,6%) be the semiautomaton with set of states
S¢ ={Cy,...,Cpq1} with C;={(i,Dy),(i+1,D;)} forl<i<n-—1

and transition function defined as follows, fort =1,...,n —land j =0, 1:

6¢ (C'u (Dj7 a)) = C5A(i+j7a)_7(jaa)' (1)

Note that §¢ (Ci, (Dj, a)) is well defined because it always hold

0 < 62(i+j,a) —~(j,a) <n.

Assuming, for contradiction, that (i + 5, a) — (4, a) = n, we must have both 6 (i+j,a) = n
and y(j,a) = 0. Note that i + j € Dj, foralli = 1,...,n — 1 and j = 0, 1, thus, from
64(i + j,a) = n it follows that n € 64(D;, a). By definition of v, this means that (j, a) = 1:
a contradiction. Therefore 62 (i + j, a) — v(j, a) # n. The fact that (i + j,a) — v(j,a) # 0
can be proved in a similar manner.

We prove that A is a homomorphic image of the cascade B o C'. Consider the function

¢: SP°C = 84 definedby ¢(D;,C;) =i+ j.

The codomain of ¢ is S because ifi = 1,...,n—1landj = 0,1theni+j € {1,...,n} = S4.
Moreover, ¢ is surjective. Notice that, as opposed to the Krohn-Rhodes general case, ¢ is a total
function.
We prove that ¢ is a homomorphism from B o C to A, thatis, forall j = 0,1 and ¢ =
1,...,.n—1:
6(67°C (D, Cy), ) = 34(6(D;, C1), ).

In fact, we have

o(3P°C (D}, Cy), a)) = $(68(D;,a),5%(Ci, (Dj,a)) =

¢(D7(j,a)a CJA(iJrj,a)f'y(j,a)) = 5A(Z + 7, a’) - 7(]7 a’) + 7(]7 a’) = 5A(¢(Dja Cz)’ CL).

To conclude the proof of the lemma we prove that the order C; < --- < C),_1 makes C
path-coherent. Let [Cy, ()] be any interval, with 1 < k& < | < n — 1. From equation (1) it
follows that, for all j € {0,1} and foralla € ¥,

5 (10, C1). (Dj,0)) = {Ch = h-+7(G,0) € 54 ([k -+ 5L+ 5], ).

By the hypothesis that A is path-coherent it follows that §4([k 4 7,1 + j], a) is an interval,
hence also the set §¢ ([Ck, Cl, (D, a)) is an interval. O

Theorem 5. Each path-coherent semiautomaton A withn > 2 states is an homomorphic image
of a cascade product of n — 1 permutation-reset semiautomata, each one having exactly 2 states.
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Figure 6: Cascade decomposition of the automaton in Figure 3. The letters
ba c, d767faga h7ial7m7na o,p are shortcuts for (q07a)7(Q17a)7(Q67b)’ (qllab)’ (Q6,C),
(q1,0), (40, d), (@, d), (40 €), (d1s ), (a0, £), (a1, £), (45, 9), (¢; 9), respectively.

Proof. By induction using Lemma 4. O

Figure 6 shows the cascade decomposition of the path-coherent automaton depicted in
Figure 3.

Note that, although the automaton in Figure 3 is counter-free and, as so, KRDT decomposes
it using resets only, the decomposition obtained from Theorem 5 (see Figure 6) contains blocks
with permutations. In this sense, this decomposition is not optimal as the one obtained in the
original KRDT. However, as we shall see shortly, in case of path-coherence plus W2 (hence in
the Wheeler case as well), in which automata are always counter-free, the decomposition that
we propose in Theorem 7 allows us to produce a permutation-free cascade.

Lemma 6. Let A = (S4, %, 64, <) be a path-coherent semiautomaton satisfying Wheeler axiom
2 (W2). Then the construction of Lemma 4 provides a reset semiautomaton B with |SP| = 2
and a path-coherent semiautomaton C with |S¢| = n — 1 still satisfying W2 such that A is an
homomorphic image of B o C.

Theorem 7. Each path-coherent semiautomaton A satisfying W2 with n > 2 states is the
homomorphic image of a cascade product of n — 1 reset semiautomata, each one having exactly 2
states.

Proof. The proof is the same as the one of Theorem 5, but we apply Lemma 6 instead of Lemma
4 everywhere. d

Since Wheeler automata are path-coherent and satisfy W2, we get

Corollary 7.1. Wheeler semiautomaton A withn > 2 states is the homomorphic image of a
cascade product of n — 1 reset semiautomata, each one having exactly 2 states.



5.

Conclusions

In this paper, we proved that path-coherent automata admit a linear-sized cascade decomposition

into

permutation-reset automata. Moreover we showed that, for the case of Wheeler automata,

the cascade is permutation-free.
Some further natural questions arise. For example:

+ Can we find a linear-sized permutation-free decomposition for counter-free, path-coherent
automata?

« Is there a condition on the blocks of a cascade of resets in order for it to be a Wheeler
automaton?

« The Krohn-Rhodes complexity (KR-complexity) of a finite semigroup was introduced in [11]
as a way of measuring the complexity of a cascade based on the least number of simple
groups in it. Can the KR-complexity of path-coherent automata be effectively computed?
If yes, what is the computational complexity of establishing their KR-complexity?

+ Are there efficient algorithms implementing Theorems 5 and 7?

In addition to the above, more theoretical, issues one might wonder, on a more practical side,
if the cascade decomposition can be used in the index production/optimization for a Wheeler
automaton.
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