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Abstract
A graph 𝐺 is a star-𝑘-PCG if there exists a non-negative edge weighted star tree 𝑆 and 𝑘 mutually
exclusive intervals 𝐼1, 𝐼2, . . . , 𝐼𝑘 of non-negative reals such that each vertex of 𝐺 corresponds to a leaf
of 𝑆 and there is an edge between two vertices in 𝐺 if the distance between their corresponding leaves
in 𝑆 lies in 𝐼1 ∪ 𝐼2 ∪ . . . ∪ 𝐼𝑘 . These graphs are related to different well-studied classes of graphs such
as PCGs and multithreshold graphs. In this paper, we investigate the smallest value of 𝑛 such that there
exists an 𝑛 vertex graph that is not a star-𝑘-PCG, for small values of 𝑘.
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1. Introduction

A graph 𝐺 is a 𝑘-PCG (known also as multi-interval PCG) if there exists a non-negative edge
weighted tree 𝑇 and 𝑘 mutually exclusive intervals 𝐼1, 𝐼2, . . . , 𝐼𝑘 of non-negative reals such that
each vertex of 𝐺 corresponds to a leaf of 𝑇 and there is an edge between two vertices in 𝐺 if the
distance between their corresponding leaves in 𝑇 lies in 𝐼1 ∪ 𝐼2 ∪ . . . ∪ 𝐼𝑘 (see e.g. [1]). Such
tree 𝑇 is called the 𝑘-witness tree of 𝐺. The concept of 1-PCGs, also known as PCGs, originated
from the problem of reconstructing phylogenetic trees [2]. The process of sampling leaves in
a phylogenetic tree while considering distance constraints is closely connected to sampling
cliques in a PCG [2]. Additionally, PCGs have proven valuable in describing and analyzing
infrequent evolutionary scenarios, including those involving horizontal gene transfer [3]. These
relationships highlight the significance of PCGs in understanding evolutionary processes.

In this paper we focus on 𝑘-PCGs for which the witness tree is a star. These graphs are known
as star-𝑘-PCGs [4]. Figure 1 depicts an example of a graph that is a star-1-PCG. The class of star-
𝑘-PCGs is equivalent to the class of 2𝑘-threshold graphs, which has gained considerable interest
within the research community since its introduction in [5], as evidenced by the following
studies [5, 6, 7, 8].
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Figure 1: An example of a star-1-PCG: (a) the graph 𝐺, (b) the witness star for which 𝐺 is a star-1-PCG
for 𝐼1 = [5, 8].

Thus, the class of star-𝑘-PCGs is particularly interesting as it serves as link between two
significant graph classes: PCGs and multithreshold graphs, both of which currently lack a
complete characterization. Indeed, the computational complexity of determining the minimum
value of 𝑘 for a graph to be a 𝑘-PCG remains an open question, and it is unknown whether this
problem can be solved in polynomial time, even for the case of 𝑘 = 1. Nevertheless, recent
advancements have been made towards the recognition of star-𝑘-PCGs. Recently, Xiao and
Nagamochi [9] introduced the first polynomial-time algorithm for identifying graphs that are
star-1-PCGs. Next, Kobayashi et al. in [10] improved upon this results by introducing a new
characterization of star-1-PCGs that led a linear time algorithm for their recognition.

It is already established that every graph 𝐺 is a star-𝑘-PCG for some positive integer 𝑘 ≤
|𝐸(𝐺)| [1]. Additionally, for each positive integer 𝑘, there exist graphs that are not star-𝑘-PCGs
but are star-(𝑘 + 1)-PCGs [8]. A natural question is: for any given value of 𝑘 which is the
smallest value of 𝑛 such that there exists an 𝑛 vertex graph that is not a star-𝑘-PCGs. This
question has been already investigated for related graphs classes. Indeed, it is known that the
smallest graph that is not a 1-PCG has 8 vertices [11, 12] and the smallest graph that is not a
2-PCG must have at least 9 vertices [13].

In this paper we ask a similar question for star-𝑘-PCGs. We show that the smallest graph
that is not a star-1-PCG has exactly 5 vertices. Moreover, we fully determine the membership
to the star-𝑘-PCG class for each graph with at most 5 vertices. We conclude with some open
questions.

2. Preliminaries

For a graph 𝐺 = (𝑉,𝐸) and a vertex 𝑢 ∈ 𝑉 , the set 𝑁(𝑢) = {𝑣 : {𝑢, 𝑣} ∈ 𝐸} is called the
neighborhood of 𝑢.

Let 𝑆 be an edge weighted star tree for each leaf 𝑣𝑖 of 𝑆 we denote by 𝑤(𝑣𝑖) = 𝑤𝑖 the weight
of the edge incident to 𝑣𝑖. For a graph 𝐺, the weighted star tree of 𝐺 is a star whose leaves are
the vertices of 𝐺.

It is already known that every graph 𝐺 is a star-𝑘-PCG for some positive integer 𝑘 [1]. Thus,
we introduce the following notation.

Definition 1. Given a graph 𝐺, we define the star number, 𝛾(𝐺), to be the smallest positive
integer 𝑘, such that 𝐺 is a star-𝑘-PCG.

From [1] it holds that for every graph 𝐺, 𝛾(𝐺) ≤ |𝐸(𝐺)|.



In the forthcoming proofs we will use the following results.

Lemma 1. [4, 9]. Let 𝐺 be a graph and let 𝑘 be a positive integer. If for any weighted star 𝑆 of 𝐺,
there exist 𝑥 ∈ 𝑉 (𝐺), vertices 𝑣1, . . . , 𝑣𝑘+1 in 𝑁(𝑥) and 𝑢1, . . . 𝑢𝑘 not in 𝑁(𝑥) ∪ {𝑥}, such that
𝑤(𝑣1) ≤ 𝑤(𝑢1) ≤ . . . ≤ 𝑤(𝑢𝑘) ≤ 𝑤(𝑣𝑘+1), then 𝐺 is not a star-𝑘-PCG.

The next lemma follows trivially by the definition of star-𝑘-PCG.

Lemma 2. Let 𝐺 be a star-𝑘-PCG and let 𝑆 be a weighted witness star for 𝐺. If there are two
leaves 𝑢, 𝑣 in 𝑆 for which 𝑤(𝑢) = 𝑤(𝑣) then 𝑁(𝑢) = 𝑁(𝑣).

3. Not all 5-vertex graphs are star-1-PCGs

There are 34 non isomorphic graphs with 5 vertices [14]. These graphs are depicted in Fig. 2
based on increasing number of edges (see also [15]). Let 𝒢5 = {𝐺1, 𝐺2, . . . , 𝐺34} be the set
of all non isomorphic graphs with 5 vertices. In this section we show that these graphs are
star-1-PCGs or star-2-PCGs. For the sake of simplicity in the forthcoming constructions we
will omit to present the star tree proving the membership to star-𝑘-PCG. Instead, for each leaf
vertex 𝑣𝑖 in a witness star tree 𝑆, we will simply associate the weight 𝑤(𝑣𝑖) to the vertex 𝑣𝑖 in
the graph 𝐺. We will refer to this representation as the witness graph. In Fig. 2 we show for
each graph 𝐺 ∈ 𝒢5 its witness graph together with the corresponding interval(s) proving the
membership to star-1-PCG or star-2-PCG. To fully determine the membership to star-1-PCG or
star-2-PCG classes, we need the following lemmas.

Lemma 3. 𝛾(𝐺20) = 2

Lemma 4. 𝛾(𝐺25) = 𝛾(𝐺27) = 2.

Proof. Due to space limits we will only detail the proof for the graph 𝐺25. Let 𝑉 (𝐺25) =
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} as shown in Fig. 2. Assume on the contrary that 𝐺25 is a star-1-PCG and let 𝑆
and 𝐼 = [𝑚,𝑀 ] be the witness star tree and the corresponding interval. Notice that from
Lemma 2, all the vertices are associate to a different weight in 𝑆. Let 𝑙1 = min{𝑤(𝑏), 𝑤(𝑐)}
and 𝑙2 = min{𝑤(𝑑), 𝑤(𝑒)}. Due to the symmetry of the graph, we can assume without loss of
generality that 𝑙1 = 𝑤(𝑏), 𝑙2 = 𝑤(𝑑) and 𝑤(𝑏) < 𝑤(𝑑). Now, we focus on the weight of vertex
𝑎 relative to the weight of the vertices 𝑏 and 𝑑. We need to consider the following three cases.

• We have 𝑤(𝑎) < 𝑤(𝑏) < 𝑤(𝑑). Then the following holds:

𝑚 ≤ 𝑤(𝑎) + 𝑤(𝑒) < 𝑤(𝑏) + 𝑤(𝑒) < 𝑤(𝑑) + 𝑤(𝑒) ≤ 𝑀.

Where the first and last inequalities follow as the edges {𝑎, 𝑒}, {𝑑, 𝑒} belong to 𝐸(𝐺25).
We reach a contradiction as 𝑤(𝑏) + 𝑤(𝑒) ∈ 𝐼 but 𝑏, 𝑒 ̸∈ 𝐸(𝐺25).

• We have 𝑤(𝑏) < 𝑤(𝑎) < 𝑤(𝑑). Then the following holds:

𝑚 ≤ 𝑤(𝑎) + 𝑤(𝑏) < 𝑤(𝑑) + 𝑤(𝑏) < 𝑤(𝑑) + 𝑤(𝑎) ≤ 𝑀.

Where the first and last inequalities follow as the edges {𝑎, 𝑏}, {𝑑, 𝑎} belong to 𝐸(𝐺25).
We reach a contradiction as 𝑤(𝑑) + 𝑤(𝑏) ∈ 𝐼 but 𝑑, 𝑏 ̸∈ 𝐸(𝐺25).



• We have 𝑤(𝑏) < 𝑤(𝑑) < 𝑤(𝑎). Then the following holds:

𝑚 ≤ 𝑤(𝑏) + 𝑤(𝑐) < 𝑤(𝑑) + 𝑤(𝑐) < 𝑤(𝑎) + 𝑤(𝑐) ≤ 𝑀.

Where the first and last inequalities follow as the edges {𝑏, 𝑐}, {𝑎, 𝑐} belong to 𝐸(𝐺25).
We reach a contradiction as 𝑤(𝑑) + 𝑤(𝑐) ∈ 𝐼 but 𝑑, 𝑐 ̸∈ 𝐸(𝐺25).

We thus, showed that 𝐺25 is not a star-1-PCG. The result for the graph 𝐺27 follows in a case
by case analysis. .

Theorem 1. All graphs with at most 5 vertices are star-1-PCGs, except for the graphs
{𝐺15, 𝐺20, 𝐺25, 𝐺27} which are star-2-PCGs.

Proof. For graphs with exactly 5 vertices the proof follows directly by Lemma 3 and Lemma 4
and by noticing that for the graph 𝐺15, a cycle on five vertices, 𝛾(𝐺15) = 2 [4]. It is easy to
see that the rest of the graphs in Fig. 2 are star-1-PCG by simply checking the witness graph
together with the corresponding interval.

Notice that if a graph is a star-𝑘-PCG, removing a vertex from the graph will still result in
a graph that belongs to the class of star-𝑘-PCGs. A graph with 4 vertices can be viewed as
a graph with 5 vertices with one isolated vertex. These graphs are depicted in Fig. 2 and are
namely, 𝐺1 −𝐺8, 𝐺13, 𝐺14, 𝐺18, 𝐺24, which are shown to be star-1-PCGs. The graphs with
at most 3 vertices are obtained from the ones of 4 vertices by removing vertices and thus are
clearly star-1-PCGs.

4. Conclusion and open problems

In this paper we consider star-multi-interval pairwise compatibility graphs. We show that the
smallest graph that is not a star-1-PCG has exactly 5 vertices. Moreover, we fully determine the
membership to the star-𝑘-PCG class for each graph with at most 5 vertices. Many problems
remain open.

Problem 1: Determine the smallest graph that is not a star-2-PCG.
From the results in this paper we know that this number is at least 6. From the results in [8]

we have that 3𝐾4, the graph consisting of 3 disjoint cliques on four vertices is a star-3-PCG.
We conjecture that the smallest graph that is not a star-2-PCG has indeed 12 nodes, and all the
graphs with at most 11 nodes are star-2-PCGs.
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