On Graphs that are not Star- k-PCGs (short paper)

Angelo Monti ${ }^{1, *, \dagger}$, Blerina Sinaimeri ${ }^{2, \dagger}$
${ }^{1}$ Computer Science Department, Sapienza University of Rome, Italy
${ }^{2}$ LUISS University, Rome, Italy

Abstract

A graph G is a star- k-PCG if there exists a non-negative edge weighted star tree S and k mutually exclusive intervals $I_{1}, I_{2}, \ldots, I_{k}$ of non-negative reals such that each vertex of G corresponds to a leaf of S and there is an edge between two vertices in G if the distance between their corresponding leaves in S lies in $I_{1} \cup I_{2} \cup \ldots \cup I_{k}$. These graphs are related to different well-studied classes of graphs such as PCGs and multithreshold graphs. In this paper, we investigate the smallest value of n such that there exists an n vertex graph that is not a star- k-PCG, for small values of k.

Keywords

Pairwise compatibility graph, Multithreshold graph, Graph theory

1. Introduction

A graph G is a k-PCG (known also as multi-interval PCG) if there exists a non-negative edge weighted tree T and k mutually exclusive intervals $I_{1}, I_{2}, \ldots, I_{k}$ of non-negative reals such that each vertex of G corresponds to a leaf of T and there is an edge between two vertices in G if the distance between their corresponding leaves in T lies in $I_{1} \cup I_{2} \cup \ldots \cup I_{k}$ (see e.g. [1]). Such tree T is called the k-witness tree of G. The concept of 1-PCGs, also known as PCGs, originated from the problem of reconstructing phylogenetic trees [2]. The process of sampling leaves in a phylogenetic tree while considering distance constraints is closely connected to sampling cliques in a PCG [2]. Additionally, PCGs have proven valuable in describing and analyzing infrequent evolutionary scenarios, including those involving horizontal gene transfer [3]. These relationships highlight the significance of PCGs in understanding evolutionary processes.

In this paper we focus on k-PCGs for which the witness tree is a star. These graphs are known as star- k-PCGs [4]. Figure 1 depicts an example of a graph that is a star-1-PCG. The class of star-k-PCGs is equivalent to the class of $2 k$-threshold graphs, which has gained considerable interest within the research community since its introduction in [5], as evidenced by the following studies [5, 6, 7, 8].

[^0]Workshop

Figure 1: An example of a star-1-PCG: (a) the graph G, (b) the witness star for which G is a star-1-PCG for $I_{1}=[5,8]$.

Thus, the class of star- k-PCGs is particularly interesting as it serves as link between two significant graph classes: PCGs and multithreshold graphs, both of which currently lack a complete characterization. Indeed, the computational complexity of determining the minimum value of k for a graph to be a k-PCG remains an open question, and it is unknown whether this problem can be solved in polynomial time, even for the case of $k=1$. Nevertheless, recent advancements have been made towards the recognition of star- k-PCGs. Recently, Xiao and Nagamochi [9] introduced the first polynomial-time algorithm for identifying graphs that are star-1-PCGs. Next, Kobayashi et al. in [10] improved upon this results by introducing a new characterization of star-1-PCGs that led a linear time algorithm for their recognition.
It is already established that every graph G is a star- k-PCG for some positive integer $k \leq$ $|E(G)|$ [1]. Additionally, for each positive integer k, there exist graphs that are not star- k-PCGs but are star- $(k+1)$-PCGs [8]. A natural question is: for any given value of k which is the smallest value of n such that there exists an n vertex graph that is not a star- k-PCGs. This question has been already investigated for related graphs classes. Indeed, it is known that the smallest graph that is not a 1-PCG has 8 vertices $[11,12]$ and the smallest graph that is not a 2 -PCG must have at least 9 vertices [13].

In this paper we ask a similar question for star- k-PCGs. We show that the smallest graph that is not a star-1-PCG has exactly 5 vertices. Moreover, we fully determine the membership to the star- k-PCG class for each graph with at most 5 vertices. We conclude with some open questions.

2. Preliminaries

For a graph $G=(V, E)$ and a vertex $u \in V$, the set $N(u)=\{v:\{u, v\} \in E\}$ is called the neighborhood of u.
Let S be an edge weighted star tree for each leaf v_{i} of S we denote by $w\left(v_{i}\right)=w_{i}$ the weight of the edge incident to v_{i}. For a graph G, the weighted star tree of G is a star whose leaves are the vertices of G.

It is already known that every graph G is a star- k-PCG for some positive integer k [1]. Thus, we introduce the following notation.

Definition 1. Given a graph G, we define the star number, $\gamma(G)$, to be the smallest positive integer k, such that G is a star- k-PCG.

From [1] it holds that for every graph $G, \gamma(G) \leq|E(G)|$.

In the forthcoming proofs we will use the following results.
Lemma 1. [4, 9]. Let G be a graph and let k be a positive integer. If for any weighted star S of G, there exist $x \in V(G)$, vertices v_{1}, \ldots, v_{k+1} in $N(x)$ and $u_{1}, \ldots u_{k}$ not in $N(x) \cup\{x\}$, such that $w\left(v_{1}\right) \leq w\left(u_{1}\right) \leq \ldots \leq w\left(u_{k}\right) \leq w\left(v_{k+1}\right)$, then G is not a star- k-PCG.
The next lemma follows trivially by the definition of star- k-PCG.
Lemma 2. Let G be a star- k-PCG and let S be a weighted witness star for G. If there are two leaves u, v in S for which $w(u)=w(v)$ then $N(u)=N(v)$.

3. Not all 5-vertex graphs are star-1-PCGs

There are 34 non isomorphic graphs with 5 vertices [14]. These graphs are depicted in Fig. 2 based on increasing number of edges (see also [15]). Let $\mathcal{G}_{5}=\left\{G_{1}, G_{2}, \ldots, G_{34}\right\}$ be the set of all non isomorphic graphs with 5 vertices. In this section we show that these graphs are star-1-PCGs or star-2-PCGs. For the sake of simplicity in the forthcoming constructions we will omit to present the star tree proving the membership to star- k-PCG. Instead, for each leaf vertex v_{i} in a witness star tree S, we will simply associate the weight $w\left(v_{i}\right)$ to the vertex v_{i} in the graph G. We will refer to this representation as the witness graph. In Fig. 2 we show for each graph $G \in \mathcal{G}_{5}$ its witness graph together with the corresponding interval(s) proving the membership to star-1-PCG or star-2-PCG. To fully determine the membership to star-1-PCG or star-2-PCG classes, we need the following lemmas.

Lemma 3. $\gamma\left(G_{20}\right)=2$
Lemma 4. $\gamma\left(G_{25}\right)=\gamma\left(G_{27}\right)=2$.
Proof. Due to space limits we will only detail the proof for the graph G_{25}. Let $V\left(G_{25}\right)=$ $\{a, b, c, d, e\}$ as shown in Fig. 2. Assume on the contrary that G_{25} is a star-1-PCG and let S and $I=[m, M]$ be the witness star tree and the corresponding interval. Notice that from Lemma 2, all the vertices are associate to a different weight in S. Let $l_{1}=\min \{w(b), w(c)\}$ and $l_{2}=\min \{w(d), w(e)\}$. Due to the symmetry of the graph, we can assume without loss of generality that $l_{1}=w(b), l_{2}=w(d)$ and $w(b)<w(d)$. Now, we focus on the weight of vertex a relative to the weight of the vertices b and d. We need to consider the following three cases.

- We have $w(a)<w(b)<w(d)$. Then the following holds:

$$
m \leq w(a)+w(e)<w(b)+w(e)<w(d)+w(e) \leq M .
$$

Where the first and last inequalities follow as the edges $\{a, e\},\{d, e\}$ belong to $E\left(G_{25}\right)$. We reach a contradiction as $w(b)+w(e) \in I$ but $b, e \notin E\left(G_{25}\right)$.

- We have $w(b)<w(a)<w(d)$. Then the following holds:

$$
m \leq w(a)+w(b)<w(d)+w(b)<w(d)+w(a) \leq M .
$$

Where the first and last inequalities follow as the edges $\{a, b\},\{d, a\}$ belong to $E\left(G_{25}\right)$. We reach a contradiction as $w(d)+w(b) \in I$ but $d, b \notin E\left(G_{25}\right)$.

- We have $w(b)<w(d)<w(a)$. Then the following holds:

$$
m \leq w(b)+w(c)<w(d)+w(c)<w(a)+w(c) \leq M .
$$

Where the first and last inequalities follow as the edges $\{b, c\},\{a, c\}$ belong to $E\left(G_{25}\right)$. We reach a contradiction as $w(d)+w(c) \in I$ but $d, c \notin E\left(G_{25}\right)$.

We thus, showed that G_{25} is not a star-1-PCG. The result for the graph G_{27} follows in a case by case analysis.

Theorem 1. All graphs with at most 5 vertices are star-1-PCGs, except for the graphs $\left\{G_{15}, G_{20}, G_{25}, G_{27}\right\}$ which are star-2-PCGs.

Proof. For graphs with exactly 5 vertices the proof follows directly by Lemma 3 and Lemma 4 and by noticing that for the graph G_{15}, a cycle on five vertices, $\gamma\left(G_{15}\right)=2$ [4]. It is easy to see that the rest of the graphs in Fig. 2 are star-1-PCG by simply checking the witness graph together with the corresponding interval.

Notice that if a graph is a star- k-PCG, removing a vertex from the graph will still result in a graph that belongs to the class of star- k-PCGs. A graph with 4 vertices can be viewed as a graph with 5 vertices with one isolated vertex. These graphs are depicted in Fig. 2 and are namely, $G_{1}-G_{8}, G_{13}, G_{14}, G_{18}, G_{24}$, which are shown to be star-1-PCGs. The graphs with at most 3 vertices are obtained from the ones of 4 vertices by removing vertices and thus are clearly star-1-PCGs.

4. Conclusion and open problems

In this paper we consider star-multi-interval pairwise compatibility graphs. We show that the smallest graph that is not a star-1-PCG has exactly 5 vertices. Moreover, we fully determine the membership to the star- k-PCG class for each graph with at most 5 vertices. Many problems remain open.
Problem 1: Determine the smallest graph that is not a star-2-PCG.
From the results in this paper we know that this number is at least 6. From the results in [8] we have that $3 K_{4}$, the graph consisting of 3 disjoint cliques on four vertices is a star-3-PCG. We conjecture that the smallest graph that is not a star-2-PCG has indeed 12 nodes, and all the graphs with at most 11 nodes are star-2-PCGs.

References

[1] S. Ahmed, M. Rahman, et al., Multi-interval pairwise compatibility graphs, in: International Conference on Theory and Applications of Models of Computation, Springer, 2017, pp. 71-84.
[2] P. Kearney, J. I. Munro, D. Phillips, Efficient generation of uniform samples from phylogenetic trees, in: G. Benson, R. D. M. Page (Eds.), Algorithms in Bioinformatics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 177-189.

$\begin{aligned} & { }^{\mathrm{G}_{1}} \stackrel{O}{0}_{0}^{0} \mathrm{O}^{1} \\ & \mathrm{O}_{1=[3]}^{0} \\ & 0 \end{aligned}$	${ }^{{ }^{\mathrm{a}_{2}} \mathrm{O}_{\substack{2 \\ \mathrm{O} \\ \mathrm{O}=[4]}}^{\mathrm{O}} \mathrm{O}^{1}}$			

Figure 2: The list for all non isomorphic graphs with at most 5 vertices. The graphs with red edges, namely $G_{15}, G_{20}, G_{25}, G_{27}$ are star-2-PCGs. The rest of the graphs are all star-1-PCGs.
[3] Y. Long, P. F. Stadler, Exact-2-relation graphs, Discrete Applied Mathematics 285 (2020) 212-226. URL: https://www.sciencedirect.com/science/article/pii/S0166218X20302638. doi:https://doi.org/10.1016/j.dam.2020.05.015.
[4] A. Monti, B. Sinaimeri, On star-multi-interval pairwise compatibility graphs, in: WALCOM: Algorithms and Computation, Springer Nature Switzerland, 2023, pp. 267-278. doi:10 . 1007/978-3-031-27051-2_23.
[5] R. Jamison, A. Sprague, Multithreshold graphs., J. Graph Theory 94 (2020) 518-530.
[6] G. J. Puleo, Some results on multithreshold graphs, Graphs and Combinatorics 36 (2020) 913-919. doi:10.1007/s00373-020-02168-7.
[7] R. E. Jamison, A. P. Sprague, Double-threshold permutation graphs, Journal of Algebraic Combinatorics (2021). doi:10.1007/s10801-021-01029-7.
[8] G. Chen, Y. Hao, Multithreshold multipartite graphs, J. Graph Theory (2022) 1-6. doi:10 . $1002 / \mathrm{jgt} .22805$.
[9] M. Xiao, H. Nagamochi, Characterizing Star-PCGs, Algorithmica 82 (2020) 3066-3090. doi:10.1007/s00453-020-00712-8.
[10] Y. Kobayashi, Y. Okamoto, Y. Otachi, Y. Uno, Linear-time recognition of double-threshold graphs, Algorithmica 84 (2022) 1163-1181. doi:10.1007/s00453-021-00921-9.
[11] T. Calamoneri, D. Frascaria, B. Sinaimeri, All graphs with at most seven vertices are pairwise compatibility graphs, The Computer Journal 56 (2012) 882-886. URL: https: //doi.org/10.1093/comjnl/bxs087. doi:10.1093/comjnl/bxs087.
[12] S. Durocher, D. Mondal, M. S. Rahman, On graphs that are not PCGs, Theoretical Computer Science 571 (2015) 78-87. doi:10.1016/j.tcs.2015.01.011.
[13] T. Calamoneri, A. Monti, F. Petroni, All graphs with at most 8 nodes are 2-interval-pcgs, 2022. URL: https://arxiv.org/abs/2202.13844. doi:10.48550/ARXIV. 2202.13844.
[14] OEIS Foundation Inc., Number of graphs on n unlabeled nodes. entry A000088, the On-Line Encyclopedia of Integer Sequences, n.b. https://oeis.org/A000088.
[15] H. N. de Ridder, et al., Information System on Graph Classes and their Inclusions (ISGCI), n.b. https://www.graphclasses.org/smallgraphs.html\#nodes5.

[^0]: ICTCS 2023: 24th Italian Conference on Theoretical Computer Science, September 13-15, 2023, Palermo, Italy
 *Corresponding author.
 ${ }^{\dagger}$ These authors contributed equally.
 monti@di.uniroma1.it (A. Monti); bsinaimeri@luiss.it (B. Sinaimeri)
 (iD 0000-0002-3309-8249 (A. Monti); 0000-0002-9797-7592 (B. Sinaimeri)
 (c) (1) © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
 $[$ CEUR Workshop Proceedings (CEUR-WS.org)

