
On the Parameterized Complexity of Computing

𝑠𝑡-Orientations with Few Transitive Edges (short

paper)

Carla Binucci
1
, Giuseppe Liotta

1
, Fabrizio Montecchiani

1,*
, Giacomo Ortali

1
and

Tommaso Piselli
1

1

Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy

Abstract

We study the problem of computing an 𝑠𝑡-orientation of a graph with at most 𝑘 transitive edges, which

was recently proven to be NP-hard already when 𝑘 = 0. We strengthen this result by showing that the

problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree.

These computational lower bounds naturally raise the question about which structural parameters

can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable

algorithm parameterized by treewidth.

Keywords

𝑠𝑡-orientations, Parameterized Complexity, Treewidth

1. Introduction

An orientation of an undirected graph is an assignment of a direction to each edge, turning the

initial graph into a directed graph (or digraph for short). In particular, we consider constrained

acyclic orientations, which find applications in several domains, including graph planarity and

graph drawing [1, 2, 3]. More specifically, given a graph 𝐺 = (𝑉,𝐸) and two vertices 𝑠, 𝑡 ∈ 𝑉 ,

an 𝑠𝑡-orientation of 𝐺, also known as bipolar orientation, is an orientation of its edges such that

the corresponding digraph is acyclic and contains a single source 𝑠 and a single sink 𝑡. It is

well-known that 𝐺 admits an 𝑠𝑡-orientation if and only if it is biconnected after the addition

of the edge 𝑠𝑡 (if not already present). The computation of an 𝑠𝑡-numbering (an equivalent

concept defined on the vertices of the graph) is for instance at the core of planarity testing

algorithms [4, 5]. In the field of graph drawing, bipolar orientations are a central algorithmic tool

to compute different types of layouts (see [6, 7] for references). On a similar note, a prominent

result states that a planar digraph admits an upward planar drawing if and only if it is the

subgraph of a planar 𝑠𝑡-graph, that is, a planar digraph with a bipolar orientation [8]. Recently,

Binucci, Didimo and Patrignani [9] focused on 𝑠𝑡-orientations with no transitive edges. We

24th Italian Conference on Theoretical Computer Science

*
Corresponding author.

" carla.binucci@unipg.it (C. Binucci); giuseppe.liotta@unipg.it (G. Liotta); fabrizio.montecchiani@unipg.it

(F. Montecchiani); giacomo.ortali@unipg.it (G. Ortali); tommaso.piselli@studenti.unipg.it (T. Piselli)

� 0000-0002-5320-9110 (C. Binucci); 0000-0002-2886-9694 (G. Liotta); 0000-0002-0877-7063 (F. Montecchiani);

0000-0002-4481-698X (G. Ortali); 0000-0002-7088-920X (T. Piselli)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:carla.binucci@unipg.it
mailto:giuseppe.liotta@unipg.it
mailto:fabrizio.montecchiani@unipg.it
mailto:giacomo.ortali@unipg.it
mailto:tommaso.piselli@studenti.unipg.it
https://orcid.org/0000-0002-5320-9110
https://orcid.org/0000-0002-2886-9694
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0002-4481-698X
https://orcid.org/0000-0002-7088-920X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

10

4

5
19

17

18

12

16

0

9

13
11

7

8

6

15

3

2

14

1

20

(a)

10==s

4

5

19

17

18

12

16
0

9

1311

7

8

6

15

3 2

14

1==t

20

(b)

10==s

4

5 19

17

18

12

16

0

9

13

11

7

8

6

15

3

2

14

1==t

20

(c)

Figure 1: (a): An undirected graph 𝐺. (b)-(c): Two polyline drawings of 𝐺 computed by using different
𝑠𝑡-orientations. The drawing in (b) uses an 𝑠𝑡-orientation without transitive edges and it has smaller
area and number of bends than the drawing in (c).

recall that an edge 𝑢𝑣 is transitive if the digraph contains a path directed from 𝑢 to 𝑣; for

example, the bold (red) edges in Fig. 1c are transitive. Besides being of theoretical interest,

such orientations, when they exist, can be used to compute readable and compact drawings

of graphs [9]; see Fig. 1 for an example. Unfortunately, while an 𝑠𝑡-orientation of an 𝑛-vertex

graph can be computed in 𝑂(𝑛) time, computing one that has the minimum number of transitive

edges is much more challenging from a computational perspective. Namely, Binucci et al. [9]

prove that the problem of deciding whether an 𝑠𝑡-orientation with no transitive edges exists is

NP-complete.

Contribution. We study the parameterized complexity of finding 𝑠𝑡-orientations with few

transitive edges. More formally, given a graph 𝐺 and an integer 𝑘, the st-Orientation problem

asks for an 𝑠𝑡-orientation of 𝐺 with at most 𝑘 transitive edges. This problem is para-NP-hard

by the natural parameter 𝑘 [9]. We strengthen this result by showing that, for 𝑘 = 0, st-

Orientation remains NP-hard even for graphs of diameter at most six, and for graphs of vertex

degree at most four. In light of these computational lower bounds, we seek for structural

parameters that can lead to tractable parameterizations of the problem. Our main result is a

fixed-parameter tractable algorithm for st-Orientation parameterized by treewidth, a central

parameter in the parameterized complexity analysis (see [10, 11]). The main challenge in

applying dynamic programming over a tree decomposition is that the algorithm must know if

adding an edge to the graph may cause previously forgotten non-transitive edges to become

transitive, and, if so, how many of them. To tackle this difficulty, our approach avoids storing

information about all edges that may potentially become transitive; instead, it guesses the

edges that will be transitive in a candidate solution and ensures that no other edge will become

transitive in the course of the algorithm.

For space reasons, many proofs have been omitted, see [12] for an extended version.

Notation. Let 𝐺 = (𝑉,𝐸) be an undirected graph. An orientation 𝑂 of 𝐺 is an assignment

of a direction, also called orientation, to each edge of 𝐺. We denote by 𝐷𝑂(𝐺) the digraph

obtained from 𝐺 by applying the orientation 𝑂. For each undirected pair (𝑢, 𝑣) ∈ 𝐸, we write

𝑢𝑣 if (𝑢, 𝑣) is oriented from 𝑢 to 𝑣 in 𝐷𝑂(𝐺), and we write 𝑣𝑢 otherwise. A directed path from

a vertex 𝑢 to a vertex 𝑣 is denoted by 𝑢 ⇝ 𝑣. A vertex of 𝐷𝑂(𝐺) is a source (sink) if all its

edges are outgoing (incoming). An edge 𝑢𝑣 of 𝐷𝑂(𝐺) is transitive if 𝐷𝑂(𝐺) contains a directed

path 𝑢 ⇝ 𝑣 distinct from the edge 𝑢𝑣. A digraph 𝐷𝑂(𝐺) is an 𝑠𝑡-graph if: (i) it contains a

single source 𝑠 and a single sink 𝑡, and (ii) it is acyclic. An orientation 𝑂 such that 𝐷𝑂(𝐺) is an

𝑠𝑡-graph is called an 𝑠𝑡-orientation.

st-Orientation

Input: An undirected graph 𝐺 = (𝑉,𝐸), two vertices 𝑠, 𝑡 ∈ 𝑉 , and 𝑘 ≥ 1.

Output: An 𝑠𝑡-orientation 𝑂 of 𝐺 such that the resulting digraph 𝐷𝑂(𝐺) contains at most 𝑘
transitive edges.

In what follows, for a graph 𝐺 = (𝑉,𝐸), the pair (𝒳 , 𝑇) denotes a nice tree-decomposition of 𝐺,

such that 𝒳 = {𝑋𝑖}𝑖∈[ℓ] is a collection of subsets of vertices of 𝐺, called bags, and 𝑇 is a tree

whose nodes are in one-to-one correspondence with the elements of 𝒳 . The width of (𝒳 , 𝑇) is

maxℓ𝑖=1 |𝑋𝑖| − 1, while the treewidth of 𝐺, denoted by tw(𝐺), is the minimum width over all

(not necessarily nice) tree-decompositions of 𝐺. Refer to [13, 14] for the required background.

2. st-Orientation Parameterized by Treewidth

We provide a fixed-parameter tractable algorithm for st-Orientation parameterized by

treewidth. In fact, the algorithm we propose can solve a slightly more general problem. Namely,

it does not assume that 𝑠 and 𝑡 are part of the input, but it looks for an 𝑠𝑡-orientation in which

the source and the sink can be any pair of vertices of the input graph. However, if 𝑠 and 𝑡 are

prescribed, a simple check can be added to the algorithm (we will highlight the crucial point in

which the check is needed) to ensure this property. Let 𝐺 = (𝑉,𝐸) be an undirected graph.

A solution of the st-Orientation problem is an orientation 𝑂 of 𝐺 such that 𝐷𝑂(𝐺) is an

𝑠𝑡-graph with at most 𝑘 transitive edges. Let (𝒳 , 𝑇) be a nice tree-decomposition of 𝐺 of width

𝜔. For a bag 𝑋𝑖 ∈ 𝒳 , we denote by 𝐺[𝑋𝑖] the subgraph of 𝐺 induced by the vertices of 𝑋𝑖, and

by 𝑇𝑖 the subtree of 𝑇 rooted at 𝑋𝑖. Also, we denote by 𝐺𝑖 the subgraph of 𝐺 induced by all the

vertices in the bags of 𝑇𝑖. We adopt a dynamic-programming approach performing a bottom-up

traversal of 𝑇 . The solution space is encoded into records associated with the bags of 𝑇 , which

we describe in the next section.

Encoding solutions. Let 𝑂 be a solution and consider a bag 𝑋𝑖. The record 𝑅𝑖 of 𝑋𝑖 that

encodes 𝑂 is the interface of the solution 𝑂 with respect to 𝑋𝑖. For ease of notation, the

restriction of 𝐷𝑂(𝐺) to 𝐺𝑖 is denoted by 𝐷𝑖, and similarly the restriction to 𝐺[𝑋𝑖] is 𝐷[𝑋𝑖].
Record 𝑅𝑖 stores the following information.

• 𝒪𝑖 is the orientation of 𝐷[𝑋𝑖].

• 𝒜𝑖 is the subset of the edges of 𝐷[𝑋𝑖] that are transitive in 𝐷𝑂(𝐺). We call such edges

admissible transitive edges or simply admissible edges. The edges of 𝐺𝑖 not in 𝒜𝑖 are called

non-admissible.

• 𝒫𝑖 is the set of ordered pairs of vertices (𝑎, 𝑏) such that: (i) 𝑎, 𝑏 ∈ 𝑋𝑖, and (ii) 𝐷𝑖 contains

the path 𝑎⇝ 𝑏.

• ℱ𝑖 is the set of ordered pairs of vertices (𝑎, 𝑏) such that: (i) 𝑎, 𝑏 ∈ 𝑋𝑖, and (ii) connecting

𝑎 to 𝑏 with a directed path makes a non-admissible edge of 𝐷𝑖 to become transitive.

• 𝑐𝑖 ≥ |𝒜𝑖| is the cost of 𝑅𝑖, i.e., the number of transitive edges in 𝐷𝑖.

• 𝒮𝑖 maps each vertex 𝑣 ∈ 𝑋𝑖 to a Boolean value 𝒮𝑖(𝑣) that is true if and only if 𝑣 is a

source in 𝐷𝑖. Analogously, 𝒯𝑖 maps each vertex 𝑣 ∈ 𝑋𝑖 to a Boolean value 𝒯𝑖(𝑣) that is

true if and only if 𝑣 is a sink in 𝐷𝑖.

• 𝜎𝑖 is a flag that indicates whether 𝐷𝑂(𝐺) contains a source that belongs to 𝐺𝑖 but not to

𝑋𝑖. Analogously, 𝜏𝑖 is a flag that indicates whether 𝐷𝑂(𝐺) contains a sink that belongs

to 𝐺𝑖 but not to 𝑋𝑖.

Observe that different solutions 𝑂 and 𝑂′
of 𝐺 may be encoded by the same record 𝑅𝑖, we

call 𝑂 and 𝑂′
equivalent. This defines an equivalent relation on the set of solutions for 𝐺, and

each record represents an equivalence class. The algorithm incrementally constructs the set of

records (i.e., the quotient set) for each bag rather than the whole set of solutions. More formally,

for each bag 𝑋𝑖 ∈ 𝒳 , we associate a set of records ℛ𝑖 = {𝑅1
𝑖 , ..., 𝑅

ℎ
𝑖 }. The next lemma follows.

Lemma 1 The cardinality of ℛ𝑖 is 2𝑂(𝜔2)
, and each record has size 𝑂(𝜔2).

Informal description of the algorithm. Let 𝑋𝑖 be the current bag visited by the algorithm.

We compute the records of 𝑋𝑖 based on the records computed for its child or children (if any).

If the set of records of a bag is empty, the algorithm halts and returns a negative answer. We

distinguish four cases based on the type of the bag 𝑋𝑖. Observe that, to index the records within

ℛ𝑖, we added a superscript 𝑞 ∈ [ℎ] to each record, and we will do the same for all the record’s

elements. To begin with, if 𝑋𝑖 is a leaf bag, we have that 𝑋𝑖 is the empty set and ℛ𝑖 consists of

only one record, i.e., ℛ𝑖 = {𝑅1
𝑖 = ⟨∅, ∅, ∅, ∅, 0, ∅, ∅, false, false⟩}.

𝑋𝑖 is an introduce bag. Let 𝑋𝑗 = 𝑋𝑖 ∖ {𝑣} be the child of 𝑋𝑖. Initially, ℛ𝑖 = ∅. Next, the

algorithm exhaustively extends each record 𝑅𝑝
𝑗 ∈ ℛ𝑗 to a set of records of ℛ𝑖 as follow. Let

𝒪𝑣 be the set of all the possible orientations of the edges incident to 𝑣 in 𝐺[𝑋𝑖], and similarly

let 𝒜𝑣 be the set of all the possible subsets of the edges incident to 𝑣 in 𝐺[𝑋𝑖]. The algorithm

considers all possible pairs (𝑜, 𝑡) such that 𝑜 ∈ 𝒪𝑣 and 𝑡 ∈ 𝒜𝑣 . For each pair (𝑜, 𝑡), we proceed

as follows.

1. Let 𝑞 = |ℛ𝑖|+ 1, the algorithm computes a candidate orientation 𝒪𝑞
𝑖 of 𝐺[𝑋𝑖] starting

from 𝑂𝑝
𝑗 and orienting the edges of 𝑣 according to 𝑜.

2. Similarly, it computes the candidate set of admissible edges 𝒜𝑞
𝑖 starting from 𝒜𝑝

𝑗 and

adding to it the edges in 𝑡.

3. Next, it sets the candidate cost 𝑐𝑞𝑖 = 𝑐𝑝𝑗 + |𝑡|.

4. Let the extension ⟨𝒪𝑞
𝑖 ,𝒜

𝑞
𝑖 , 𝑐

𝑞
𝑖 ⟩ be valid if: a) 𝑐𝑞𝑖 ≤ 𝑘; b) there is no pair (𝑎, 𝑏) ∈ 𝒫𝑝

𝑗 so

that 𝑏𝑣, 𝑣𝑎 ∈ 𝐷[𝑋𝑞
𝑖]; c) there is no pair (𝑎, 𝑏) ∈ 𝐹 𝑝

𝑗 so that 𝑎𝑣, 𝑣𝑏 ∈ 𝐷[𝑋𝑞
𝑖]. Clearly, if

an extension is not valid, the corresponding record cannot encode any solution, hence

the algorithm discards the extension and continues with the next pair (𝑜, 𝑡). Otherwise,

we compute the record 𝑅𝑞
𝑖 = ⟨𝒪𝑞

𝑖 ,𝒜
𝑞
𝑖 ,𝒫

𝑞
𝑖 ,ℱ

𝑞
𝑖 , 𝑐

𝑞
𝑖 ,𝒮

𝑞
𝑖 , 𝒯

𝑞
𝑖 , 𝜎

𝑞
𝑖 , 𝜏

𝑞
𝑖 ⟩ of ℛ𝑖, where 𝜎𝑞

𝑖 = 𝜎𝑝
𝑗 ,

𝜏 𝑞𝑖 = 𝜏𝑝𝑗 .

5. To complete the record 𝑅𝑞
𝑖 , it remains to compute 𝒮𝑞

𝑖 , 𝒯 𝑞
𝑖 , 𝒫𝑞

𝑖 and ℱ𝑞
𝑖 . We omit a formal

description. At high level, 𝒮𝑞
𝑖 and 𝒯 𝑞

𝑖 can be easily computed by inspecting the vertices

in 𝑋𝑗 and 𝑣. For 𝒫𝑞
𝑖 , we simply recompute the paths from scratch. For ℱ𝑞

𝑖 , we observe

that the addition of 𝑣 might have created new pairs of vertices that should belong to ℱ𝑞
𝑖 ,

hence we identify such pairs and compute ℱ𝑞
𝑖 accordingly.

𝑋𝑖 is a forget bag. Let 𝑋𝑗 = 𝑋𝑖 ∪ {𝑣} be the child of 𝑋𝑖. The algorithm computes ℛ𝑖 by

exhaustively merging records of ℛ𝑗 as follow.

1. For each 𝑅𝑝
𝑗 ∈ ℛ𝑗 , we remove from 𝒪𝑝

𝑗 and 𝒜𝑝
𝑗 all the edges incident to 𝑣 and from 𝒫𝑝

𝑗

and ℱ𝑝
𝑗 all the pairs where one of the vertices is 𝑣. Due to this operation, there may be

records that are identical except possibly for their costs, we only keep the one whose cost

is no larger than any other record.

2. Let 𝑅𝑝
𝑗 be a record of ℛ𝑗 that was not discarded by the procedure above. If 𝒮𝑝

𝑗 (𝑣) ∧ 𝜎𝑝
𝑗 ,

we discard 𝑅𝑝
𝑗 (because the orientation would contain two sources), else we set 𝜎𝑝

𝑗 = true

(because 𝑣 is a source). Similarly, if 𝒯 𝑝
𝑗 (𝑣) ∧ 𝜏𝑝𝑗 , we discard 𝑅𝑝

𝑗 , else we set 𝜏𝑝𝑗 = true. At

this point, if the record has not been discarded yet and vertices 𝑠 and 𝑡 are prescribed, we

can add the following check. If 𝒮𝑝
𝑗 (𝑣) ∧ 𝜎𝑝

𝑗 , then 𝑣 is a source, hence if 𝑣 ̸= 𝑠, we discard

the record. Analogously, if 𝒯 𝑝
𝑗 (𝑣) ∧ 𝜏𝑝𝑗 , then 𝑣 is a sink, hence if 𝑣 ̸= 𝑡, we discard the

record. Next, we remove from 𝒮𝑝
𝑗 and 𝒯 𝑝

𝑗 the values 𝒮𝑝
𝑗 (𝑣) and 𝒯 𝑝

𝑗 (𝑣).

3. All the records that have not been discarded and have been updated according to the

above procedure are added to ℛ𝑖.

𝑋𝑖 is a join bag. This case is omitted for space reasons.

It is possible to prove that graph 𝐺 admits a solution for st-Orientation if and only if the

algorithm terminates after visiting the root of 𝑇 .

Theorem 1 Given an input graph 𝐺 = (𝑉,𝐸) of treewidth 𝜔 and an integer 𝑘 ≥ 0, there is an

algorithm that either finds a solution of st-Orientation or reject the input in time 2𝑂(𝜔2) · 𝑛.

3. Hardness of Non-Transitive st-Orientation

We first recall the special case of st-Orientation studied in [9]. An 𝑠𝑡-orientation 𝑂 of a graph

𝐺 is non-transitive if 𝐷𝑂(𝐺) does not contain transitive edges.

Non-Transitive st-Orientation (NT-st-Orientation)

Input: An undirected graph 𝐺 = (𝑉,𝐸), and two vertices 𝑠, 𝑡 ∈ 𝑉 .

Output: An non-transitive 𝑠𝑡-orientation 𝑂 of 𝐺 such that vertices 𝑠 and 𝑡 are the source

and sink of 𝐷𝑂(𝐺), respectively.

In the hardness proof of NT-st-Orientation in [9], the diameter is unbounded. The authors

exploit a reduction from Not-all-equal 3-Sat (NAE-3-Sat) [15]. The construction in [9] adopts

three types of gadgets, which we carefully modify to prove the following theorem.

Theorem 2 NT-st-Orientation is NP-hard for graphs of diameter at most 6 and for graphs of

vertex degree at most 4.

References

[1] P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kaufmann, S. Antonios, On

the perspectives opened by right angle crossing drawings, Journal of Graph Algorithms and

Applications 15 (2011) 53–78.

[2] W. Didimo, P. Eades, G. Liotta, Drawing graphs with right angle crossings, in: F. K. H. A. Dehne,

M. L. Gavrilova, J. Sack, C. D. Tóth (Eds.), WADS 2009, volume 5664 of LNCS, Springer, 2009, pp.

206–217. doi:10.1007/978-3-642-03367-4_19.

[3] P. Eades, A. Symvonis, S. Whitesides, Three-dimensional orthogonal graph drawing algorithms,

Discret. Appl. Math. 103 (2000) 55–87. doi:10.1016/S0166-218X(00)00172-4.

[4] S. Even, R. E. Tarjan, Computing an st-numbering, Theoretical Computer Science 2 (1976) 339–344.

doi:https://doi.org/10.1016/0304-3975(76)90086-4.

[5] A. Lempel, S. Even, I. Cederbaum, An algorithm for planarity testing of graphs, in: Theory of

Graphs: International Symposium., Gorden and Breach, 1967, pp. 215–232.

[6] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Graph Drawing: Algorithms for the Visualization

of Graphs, Prentice-Hall, 1999.

[7] M. Kaufmann, D. Wagner (Eds.), Drawing Graphs, Methods and Models, volume 2025 of LNCS,

Springer, 2001. doi:10.1007/3-540-44969-8.

[8] G. Di Battista, R. Tamassia, Algorithms for plane representations of acyclic digraphs, Theor.

Comput. Sci. 61 (1988) 175–198. doi:10.1016/0304-3975(88)90123-5.

[9] C. Binucci, W. Didimo, M. Patrignani, 𝑠𝑡-orientations with few transitive edges, in: P. Angelini,

R. von Hanxleden (Eds.), GD 2022, volume 13764 of LNCS, Springer, 2022, pp. 201–216. doi:10.
1007/978-3-031-22203-0_15.

[10] R. G. Downey, M. R. Fellows, Parameterized Complexity, Monographs in Computer Science, Springer,

1999.

[11] N. Robertson, P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7

(1986) 309–322.

[12] C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, T. Piselli, On the parameterized complexity of

computing st-orientations with few transitive edges, in: MFCS, volume 272 of LIPIcs, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 18:1–18:15.

[13] H. L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth

of graphs, J. Algorithms 21 (1996) 358–402. doi:10.1006/jagm.1996.0049.

[14] T. Kloks, Treewidth, Computations and Approximations, volume 842 of LNCS, Springer, 1994.

[15] T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the Tenth Annual ACM

Symposium on Theory of Computing (STOC 1978), Association for Computing Machinery, 1978, p.

216–226. doi:10.1145/800133.804350.

http://dx.doi.org/10.1007/978-3-642-03367-4_19
http://dx.doi.org/10.1016/S0166-218X(00)00172-4
http://dx.doi.org/https://doi.org/10.1016/0304-3975(76)90086-4
http://dx.doi.org/10.1007/3-540-44969-8
http://dx.doi.org/10.1016/0304-3975(88)90123-5
http://dx.doi.org/10.1007/978-3-031-22203-0_15
http://dx.doi.org/10.1007/978-3-031-22203-0_15
http://dx.doi.org/10.1006/jagm.1996.0049
http://dx.doi.org/10.1145/800133.804350

	1 Introduction
	2 st-Orientation Parameterized by Treewidth
	3 Hardness of Non-Transitive st-Orientation

