
Finite State Verifiers with Both Private and Public
Coins
M. Utkan Gezer1,*, A. C. Cem Say1

1Department of Computer Engineering, Boğaziçi University, Bebek 34342, İstanbul, Türkiye

Abstract
We consider the effects of allowing a finite state verifier in an interactive proof system to use a bounded
number of private coins, in addition to “public” coins whose outcomes are visible to the prover. Although
swapping between private and public-coin machines does not change the class of verifiable languages
when the verifiers are given reasonably large time and space bounds, this distinction has well known
effects for the capabilities of constant space verifiers. We show that a constant private-coin “budget”
(independent of the length of the input) increases the power of public-coin interactive proofs with finite
state verifiers considerably, and provide a new characterization of the complexity class P as the set of
languages that are verifiable by such machines with arbitrarily small error in expected polynomial time.

Keywords
Interactive proof systems, Delegating computation, Verifiable computing

1. Introduction

In addition to providing a new perspective on the age-old concept of “proof” and offering
possibilities for weak clients to check the correctness of difficult computations that they delegate
to powerful servers, interactive proof systems also play an important role in the characterization
of computational complexity classes [1]. These systems involve a computationally weak “verifier”
(a probabilistic Turing machine with small resource bounds) engaging in a dialogue with a very
strong but possibly malicious “prover”, whose aim is to convince the verifier that a common
input string is a member of the language under consideration. If the input is a non-member, the
prover may well “lie” during this exchange to mislead the verifier to acceptance, or to trick it
into running forever instead of rejecting. Interestingly, this setup allows the weak machines
to be able to verify (that is, to determine the membership status of any given string with low
probability of being fooled) a larger class of languages than they can manage to handle in a
“stand-alone” fashion, i.e., without engaging with a prover.

Several specializations of the basic model described above have been studied until now. One
parameter is whether the prover can “see” the outcomes of the random choices made by the
verifier or not. A “private-coin” system hides the results of the verifier’s coin flips from the
prover, and the verifier only sends information that it deems necessary through a communication
channel. “Public-coin” systems, on the other hand, hide nothing from the prover, who can

Proceedings of the 24th Italian Conference on Theoretical Computer Science, Palermo, Italy, September 13–15, 2023
*Corresponding author.
$ utkan.gezer@boun.edu.tr (M. U. Gezer); say@boun.edu.tr (A. C. C. Say)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:utkan.gezer@boun.edu.tr
mailto:say@boun.edu.tr
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


be assumed to observe the coin flips and deduce the resulting changes to the configuration
of the verifier as they unfold. It is known [2] that private-coin systems are more powerful
(i.e., can verify more languages) than public-coin ones when the verifiers are restricted to be
constant-space machines, but this distinction vanishes when the space restriction is lifted [3].

In this paper, we study the capabilities of constant-space verifiers (essentially, two-way
probabilistic finite automata) which are allowed to hide some, but not necessarily all, of their
coin flips from the prover. We show that allowing these machines to use even only a constant
number1 of private coins enlarges the class of verified languages considerably. We adapt several
previous results from the literature to this framework and present a new characterization of the
complexity class P as the set of languages that can be verified by such machines in polynomial
time with arbitrarily small error.

2. Background

2.1. Interactive proof systems

We start by providing definitions of interactive proof systems and related language classes that
are general enough to cover finite state verifiers with both private and public coins, as well as
the more widely studied versions with greater memory bounds [2, 4].

A verifier in an interactive proof system (IPS) is a 6-tuple (𝑄,Σ,Φ,Γ, 𝛿, 𝑞0), where

1. 𝑄 is the finite set of states, such that 𝑄 = 𝑄pri ∪𝑄pub ∪ { 𝑞acc, 𝑞rej } where

• 𝑄pri is the set of states that flip private coins,

• 𝑄pub is the set of states that flip public coins, 𝑄pri ⊆ 𝑄pub, and

• 𝑞acc, 𝑞rej /∈ 𝑄pri ∪𝑄pub are the accept and reject states, respectively,

2. Σ is the input alphabet,

3. Φ is the work tape alphabet, which is guaranteed to include the special blank symbol, ,

4. Γ is the communication alphabet, ∈ Γ,

5. 𝛿 is the transition function, described below, and

6. 𝑞0 is the initial state, 𝑞0 ∈ 𝑄.

The computation of a verifier is initialized with ▷𝑤◁ written on its read-only input tape,
where 𝑤 ∈ Σ* is the input string, and ▷,◁ /∈ Σ are the left and right end-markers, respectively.
The input head of the verifier is initially on the left end-marker. The read-write work tape is
initially filled with blank symbols, with the work tape head positioned at the beginning of the
tape. Apart from these two tapes, the verifier also has access to a communication cell, which is
a single-cell tape that is initially blank.

Let Σ◁▷ = Σ∪{▷,◁ }. Let ∆ = { −1, 0,+1 } be the set of possible head movements, where
−1 means “move left”, 0 means “stay put”, and +1 means “move right”.

1That is, the number of such private coin flips is fixed, regardless of the length of the input.



The computation of a verifier evolves by its transition function 𝛿, which is constructed
in two parts as follows: For 𝑞 ∈ 𝑄pri (which implies 𝑞 ∈ 𝑄pub), 𝛿(𝑞, 𝜎, 𝜑, 𝛾, 𝑏pri, 𝑏pub) =
(𝑞′, 𝜑′, 𝛾′, 𝑑𝑖, 𝑑𝑤) dictates that if the machine is originally in state 𝑞, scanning 𝜎 ∈ Σ◁▷ in the
input tape, 𝜑 ∈ Φ in the work tape, and 𝛾 ∈ Γ in the communication cell, and has obtained the
“private” random bit 𝑏pri ∈ { 0, 1 } and the “public” random bit 𝑏pub ∈ { 0, 1 } as the result of
two independent fair coin flips, then it will switch to state 𝑞′ ∈ 𝑄, write 𝜑′ ∈ Φ to the work
tape, overwrite the communication cell with 𝛾′, and move the input and work tape heads in the
directions 𝑑𝑖, 𝑑𝑤 ∈ ∆ respectively. For 𝑞 ∈ 𝑄pub ∖𝑄pri, 𝛿(𝑞, 𝜎, 𝜑, 𝛾, 𝑏pub) = (𝑞′, 𝜑′, 𝛾′, 𝑑𝑖, 𝑑𝑤)
dictates a similar transition in which the outcome of only a single public coin is used.

The verifier is paired with another entity, the prover, whose aim is to convince the verifier to
accept (or to prevent it from rejecting) its input string. At every step of the verifier’s execution,
the outcome of the public coin flip is automatically communicated to the prover. The prover
can be modeled as a function that determines the symbol 𝛾 ∈ Γ which will be written in the
communication cell in between the transitions of the verifier based on the input string, the
public coin outcomes, and the sequence of symbols written by the verifier to the communication
cell up to that point. Note that the prover does not “see” (and, in the general case, cannot
precisely deduce) the configuration of a verifier which uses private coins.

A verifier halts with acceptance (rejection) when it executes a transition entering 𝑞acc (𝑞rej).
Any transition that moves the input head beyond an end-marker delimiting the string written
on the read-only input tape leads to a rejection, unless that last move enters 𝑞acc. Note that the
verifier may never halt, in which case it is said to be looping.

We say a verifier 𝑉 in an IPS verifies a language 𝐿 with error 𝜀 = max(𝜀+, 𝜀−) if there exist
numbers 𝜀+, 𝜀− < 1/3 where

• for all input strings 𝑤 ∈ 𝐿, there exists a prover 𝑃 such that 𝑉 halts by accepting with
probability at least 1− 𝜀+ when started on 𝑤 and interacting with 𝑃 , and,

• for all input strings 𝑤 /∈ 𝐿 and for all provers 𝑃 *, 𝑉 halts by rejecting with probability at
least 1− 𝜀− when started on 𝑤 and interacting with 𝑃 *.

The terms 𝜀+ and 𝜀− bound the two possible types of error corresponding to failing to accept
and reject, respectively. Intuitively, this definition requires 𝑉 (in order for it to keep its error low)
to be reasonable enough to accept legitimate arguments that prove that the input is a member
of the language in question, yet skeptical enough to reject spurious claims of membership when
the input is not in the language, both with high probability, even when it is interacting with the
most cunning of all provers.

In some of our proofs in Section 3, we will be considering verifiers with multiple input
tape heads that the machine can move independently of one another. This type of verifier
can be modeled easily by modifying the tuples in the transition function definitions above to
accommodate more scanned input symbols and input head directions. Sections 2.2 and 2.3
provide more information on automata with multiple input heads and their relationships with
the standard Turing machine model.

We will be using the notation IP(resource1, resource2, . . . , resource𝑘) to denote the class of
languages that can be verified with arbitrarily small (but possibly positive) errors by machines
that operate within the resource bounds indicated in the parentheses. These may represent



budgets for runtime, working memory usage, and number of public and private random bits,
given as a function of the length of the input string, in asymptotic terms. We reserve the symbol
𝑛 to denote the length of the input string. The terms con, log, linear, and poly will be used
to represent the well-known types of functions to be considered as resource bounds, with
“con” standing for constant functions of the input length, the others being self evident, to form
arguments like “poly-time” or “log-space”. The absence of a specification for a given type of
resource (e.g., private coins) shall indicate that that type of resource is simply unavailable to
the verifiers of that class.2

By default, a given resource budget should be understood as a worst case bound, indicating
that it is impossible for the verifier to exceed those bounds. Some of the interactive protocols
to be discussed have the property that the verifier has a probability 𝜀 of being fooled to run
forever by a malicious prover trying to prevent it from rejecting the input. The designer of the
protocol can reduce 𝜀 to any desired small positive value. The denotation “*” will be used to
mark that the indicated amount corresponds to such a machine’s expected consumption of a
specific resource with the remaining (high) probability 1− 𝜀. For instance, “poly*-time” will
indicate that the verifier’s expected runtime is polynomially bounded with probability almost,
but possibly not exactly, 1.

2.2. Multihead finite automata and finite state verifiers

Our work makes use of an interesting relationship [5] between multihead finite automata and
logarithmic-space Turing machines, which will be detailed in Section 2.3. In this subsection, we
provide the necessary definitions and establish the link between these machines and probabilistic
finite state verifiers.

A 𝑘-head nondeterministic finite automaton (2nfa(𝑘)) is a nondeterministic finite-state ma-
chine with 𝑘 read-only heads that move on an input string flanked by two end-marker symbols.
Each head can be made to stay put or move to an adjacent tape cell in each computational step.
Formally, a 2nfa(𝑘) is a 4-tuple (𝑄,Σ, 𝛿, 𝑞0), where

1. 𝑄 is the finite set of internal states, which includes the two halting states 𝑞acc and 𝑞rej,

2. Σ is the finite input alphabet,

3. 𝛿:𝑄 × Σ𝑘
◁▷ → 𝒫

(︀
𝑄×∆𝑘

)︀
is the transition function describing the sets of alternative

moves the machine may perform at each execution step, where each move is associated
with a state to enter and whether or not to move each head, given the machine’s current
state and the list of symbols that are currently being scanned by the 𝑘 input heads, and
Σ◁▷ and ∆ are as defined previously in Section 2.1, and

4. 𝑞0 ∈ 𝑄 is the initial state.

Given an input string 𝑤 ∈ Σ*, a 2nfa(𝑘)𝑀 = (𝑄,Σ, 𝛿, 𝑞0) begins execution from the state
𝑞0, with ▷𝑤◁ written on its tape, and all 𝑘 of its heads on the left end-marker. At each step, 𝑀

2Verifiers that use only some private coins and no public coins can be described in the framework given above by
simply specifying their transition functions to be insensitive to the value of the public random bit argument, i.e.,
𝛿(𝑞, 𝜎, 𝜑, 𝛾, 𝑏pri, 0) = 𝛿(𝑞, 𝜎, 𝜑, 𝛾, 𝑏pri, 1) and 𝛿(𝑞, 𝜎, 𝜑, 𝛾, 0) = 𝛿(𝑞, 𝜎, 𝜑, 𝛾, 1) for all values of 𝑞, 𝜎, 𝜑, 𝛾, and 𝑏pri.



nondeterministically updates its state and head positions according to the choices dictated by
its transition function. Computation halts if one of the states 𝑞acc or 𝑞rej has been reached, or a
head has moved beyond either end-marker.
𝑀 is said to accept 𝑤 if there exists a sequence of nondeterministic choices where it reaches

the state 𝑞acc, given 𝑤 as the input. 𝑀 is said to reject 𝑤 if every sequence of choices either
reaches 𝑞rej, ends with a transition whose associated set of choices is ∅, or by a head moving
beyond an end-marker without a final state being entered. 𝑀 might also loop on the input 𝑤,
neither accepting nor rejecting it.

The language recognized by 𝑀 is the set of strings that it accepts.
Let ℒ(2nfa(*)) denote the set of languages that have a 2nfa(𝑘) recognizer (for some 𝑘 > 0),

and ℒ(2nfa(*), linear-time) denote the set of languages that have a 2nfa(𝑘) recognizer running
in linear time.

Our main result will be making use of a technique introduced by Say and Yakaryılmaz [4]
for “simulating” a multihead nondeterministic automaton in an interactive proof system whose
verifier is a (single-head) probabilistic finite automaton. This method’s application to the
problem studied in this paper will be explained in detail in the proof of Lemma 6 in Section 3.

2.3. Multihead finite automata and logarithmic space Turing machines

The equivalence of multiple input heads and logarithmic amounts of memory was discovered
by Hartmanis [5]. The following theorem reiterates this result in detail, and also contains an
analysis for the overhead in time incurred during the simulation.

Theorem 1. Any language recognized by a Turing machine that uses at most ⌈log 𝑛⌉ space with
a work tape alphabet of size at most 2𝑐 (for some integer constant 𝑐 > 0) and in 𝑡(𝑛) time can also
be recognized by a (𝑐+ 5)-head finite automaton in 𝑡(𝑛) · (1 + 𝑐+ 2𝑛+ 3𝑐𝑛) time.

Proof idea. Assume, for the sake of simplicity, that 𝑛 is a power of 2. A string over the alphabet
{ 0, 1 } in a work tape of length log 𝑛 can be seen as the digits of a number between 0 and 𝑛−1,
inclusive, represented in binary. The index of a head on the input tape can similarly range
between 0 (when on ▷) and 𝑛+1 (when on ◁). This correspondence enables a multihead finite
automaton to store the same information there is on a log 𝑛 symbol string over an alphabet of
size 2𝑐 (which can be viewed as the binary digits of 𝑐 numbers stacked on top of each other),
encoded at the indices of 𝑐 input heads.

There is a way for a multihead finite automaton to retrieve a single binary digit of a head’s
index and also to change it. Four spare input heads are introduced and used to accomplish these
functions, with one of them mimicking the position of the simulated work tape head, and the
other three helping with the index manipulations for decoding, changing, and then re-encoding.
One last input head is the input head of the multihead finite automaton.

Using this method, a multihead finite automaton can simulate a ⌈log 𝑛⌉-space Turing machine
directly.

The detailed proof can be found in [6, Appendix A.1].



2.4. Implementing a polynomial-time “clock” in a probabilistic finite
automaton

A logarithmic-space Turing machine can “clock” its own execution to satisfy any desired
polynomial time bound by counting up till that bound in the logarithmic space available. The
constant-space machines we construct in Section 3 will employ a different technique using
randomness, which is illustrated in the following lemma, to obtain the same bound on expected
runtime.

Lemma 2. For any constant 𝑡 > 0, integer-valued function 𝑓(𝑛) ∈ O
(︀
𝑛𝑡
)︀
, and desired “error”

bound 𝜀premature > 0, there exists a probabilistic finite automaton with an expected runtime
in O

(︀
𝑛𝑡+1

)︀
, such that the probability that this machine halts in fewer than 𝑓(𝑛) time-steps is

𝜀premature.

Proof idea. Assume, for the sake of simplicity, that 𝑡 is an integer. We program a probabilistic
finite state automaton to make 𝑡 random walks with its input head, each starting from the first
symbol on the input and ending at either one of the end-markers. If all the walks have ended
on the right end-marker, the machine halts. Otherwise, the process is repeated. The analysis
shows that such a machine has all the necessary characteristics in its runtime.

The detailed proof can be found in [6, Appendix A.2].

3. Finite state verifiers with constant private randomness

Let us consider the language of palindromes, 𝐿pal =
{︀
𝑤 ∈ { 0, 1 }*

⃒⃒
𝑤 = 𝑤𝑅

}︀
, where 𝑥𝑅 is

the reverse any string 𝑥. Trivially, 𝐿pal ∈ ℒ(2nfa(*), linear-time).
We recall the following facts about the power of finite state verifiers at the two extreme ends

of the “public vs. private” spectrum, which shows us that even a finite amount of private coins
gives verifiers an edge that no amount of public coins can compensate:

Fact 3. 𝐿pal /∈ IP(con-space,∞-public-coins,∞-time) [2].

Fact 4. ℒ(2nfa(*), linear-time) ⊆ IP(con-space, con-private-coins, linear*-time) [7].3

Let us now examine the effects of allowing finite state verifiers to hide a constant number
of their coin flips from the prover. This turns out to provide a new characterization of the
complexity class P, corresponding to the collection of languages decidable by deterministic
Turing machines in polynomial time and space.

Theorem 5.

IP(con-space, con-private-coins,poly*-public-coins,poly*-time) = P.

3Recall from the definition of our IP complexity class notation in Section 2 that the verifier’s runtime can be infinite
with probability at most 𝜀, and its expected runtime is bounded as indicated with the remaining large probability.



Proof. It is known [8, 1] that

IP(log-space,poly-public-coins, poly-time) = P.

The proof follows from this fact and Lemmas 6 and 7.

Lemma 6.

IP(log-space,poly-public-coins, poly-time) ⊆
IP(con-space, con-private-coins,poly*-public-coins, poly*-time).

More specifically, for any 𝑡 > 1,

IP(log-space,O
(︀
𝑛𝑡
)︀
-public-coins,O

(︀
𝑛𝑡
)︀
-time) ⊆

IP(con-space, con-private-coins,O
(︀
𝑛𝑡+2

)︀*
-public-coins,O

(︀
𝑛𝑡+2

)︀*
-time).

Proof. For some 𝑡 > 1, let 𝑉1 be a public-coin verifier that uses O(log 𝑛) space and O
(︀
𝑛𝑡
)︀

time
to verify the language 𝐿 with error 𝜀1 > 0. We will assume that the work tape of 𝑉1 is exactly
⌈log 𝑛⌉ cells long, but with a “multi-track” alphabet (e.g., as in [5]) to accommodate for the
required amount of memory.

In the following discussion, let any prover facing 𝑉1 be called 𝑃1. Since 𝑉1 cannot be fooled
into accepting a non-member of 𝐿 with high probability no matter what prover it is facing, it is
also immune against any such 𝑃1 that “knows” 𝑉1’s algorithm. Since all coins are public, such
a 𝑃1 can be assumed to have complete knowledge about 𝑉1’s configuration at every step of
their interaction. Therefore we will assume that 𝑉1 sends no further information through the
communication cell without loss of generality.

Let us consider a constant-space, public-coin, 𝑘-head verifier 𝑉2 that can verify 𝐿 by simply
executing 𝑉1’s program, simulating 𝑉1’s logarithmic-length work tape by the means of Theo-
rem 1. Since the simulation is direct and does not involve any additional use of randomness,
𝑉2 recognizes 𝐿 with the same probability of error 𝜀1. The only time overhead is caused by
the simulation of the log-space memory, so, by Theorem 1, 𝑉2 will complete its execution in
O
(︀
𝑛𝑡+1

)︀
time. Just like 𝑉1, 𝑉2 sends no information to its prover, say, 𝑃2, except the outcomes

of its public coins.
We now describe 𝑉3, a constant-space, single-head verifier that uses a constant number of

private coins (in addition to the public coins that it flips at every step) to verify 𝐿.
𝑉3 performs the following verification for 𝑚 consecutive rounds:
First, 𝑉3 flips 𝑟 of its private coins. Thanks to this randomness, it picks the 𝑖th head of 𝑉2

with some probability4 𝑝𝑖. 𝑉3 then engages in an interaction with its own prover, say, 𝑃3, to
simulate the execution of 𝑉2, including 𝑉2’s interaction with 𝑃2 about the input string. In this
process, 𝑉3 traces the selected head of 𝑉2 with its own single head, and relies on the messages of
𝑃3 to inform it about what the other heads of 𝑉2 would be reading at any step of the execution.
𝑉3 does not send any information (except, of course, the outcomes of its public coins) to 𝑃3. 𝑃3,
on the other hand, is expected to transmit both

4We will discuss constraints on these values in the discussion below.



• what 𝑃2 would be transmitting to 𝑉2, and

• its claims about the readings of all 𝑘 heads of 𝑉2

at every step of the simulated interaction. 𝑉3 verifies the part of these claims regarding the head
it had chosen in private, and rejects if it sees any discrepancy. 𝑃3 sends a special symbol when
it claims that the simulated interaction up to that point has ended with 𝑉2 reaching acceptance.
If this is consistent with what 𝑉3 has been able to validate, and if this was not the 𝑚th round,
𝑉3 proceeds to another round.

While 𝑝𝑖 is positive for all 𝑖, the sum 𝑝simulation =
∑︀𝑘

𝑖=1 𝑝𝑖 is very small by design. With
the remaining high probability 𝑝timer = 1 − 𝑝simulation, 𝑉3 passes this round operating as a
probabilistic timer that has an expected runtime of O

(︀
𝑛𝑡+2

)︀
. This timer is also guaranteed to

run longer than 𝑉2’s runtime with probability 1− 𝜀premature, for some positive 𝜀premature that can
be set to be arbitrarily close to 0, by the premise of Lemma 2. If 𝑃3 claims that 𝑉2 has accepted
before the timer runs out, then 𝑉3 proceeds with another round of verification. Otherwise (if
the timer runs out before 𝑃3 declares acceptance), 𝑉3 rejects.

𝑉3 accepts if it does not reject for 𝑚 rounds of verification. The total number of private coins
used is 𝑚𝑟.

The rest of the proof analyzes the error and runtime of 𝑉3.

Arbitrarily small verification error. For any input string that is a member of 𝐿, 𝑃3 should
tell 𝑉3 the truth about what 𝑉2 would read with its 𝑘 heads, and emit the messages 𝑃2 would
send to 𝑉2 alongside those readings. Faced with such a truthful 𝑃3, 𝑉3 may erroneously reject
at any given round, either due to the simulated 𝑉2 also rejecting,5 or due to a premature timeout
of the probabilistic timer. The probability of that is 𝑝simulation · 𝜀1 + 𝑝timer · 𝜀premature. For 𝑉3 to
accept such an input string, it should go through 𝑚 consecutive rounds of verification without
committing such errors. The probability that 𝑉3 will fail to accept a string in 𝐿 is therefore

𝜀+3 ≤ 1−
(︀
1−

(︀
𝑝simulation · 𝜀1 + 𝑝timer · 𝜀premature

)︀)︀𝑚
.

For any input not in 𝐿, 𝑉3 can accept only if 𝑃3 claims that 𝑉2 accepts in all 𝑚 rounds.
Such a claim can either be true, since 𝑉2 can genuinely accept such a string with probability
at most 𝜀1; or false, in which case 𝑃3 would be “lying”, i.e., providing false information that
could be detected when compared against the actual readings of at least one of 𝑉2’s heads. Let
𝑝min = min𝑘𝑖=1 𝑝𝑖. The probability of 𝑉3 failing to catch such a lie in any round is at most
1− 𝑝min. It follows that the probability that 𝑉3 accepts a string not in 𝐿 is

𝜀−3 ≤ max(𝜀1, (1− 𝑝min))
𝑚.

The last kind of verification error for 𝑉3 is getting tricked into running forever by an evil
prover when given a non-member input string. The probabilistic timer function, when in play
with probability 𝑝timer, will keep 𝑉3 from running forever. The probability of 𝑉3 looping on the
𝑖th round of its verification is at most max(𝜀1, (1− 𝑝min))

𝑖−1 · 𝑝simulation (since it should pass

5Our definitions allow 𝑉2 to reject members of 𝐿 with some small probability.



the first 𝑖− 1 rounds without rejecting in that case). The probability that 𝑉3 can be fooled to
loop is at most the sum of those probabilities, i.e.,

𝜀
loop
3 ≤ 𝑝simulation ·

∑︀𝑚−1
𝑖=0 max(𝜀1, (1− 𝑝min))

𝑖.

The overall error bound of 𝑉3 is the maximum of all three, i.e.,

𝜀3 = max
(︁
𝜀+3 , 𝜀

−
3 , 𝜀

loop
3

)︁
.

Since all of these bounds can be lowered arbitrarily to any positive constant (by first increasing
𝑚 to constrain 𝜀−3 , and then decreasing 𝑝simulation > 0 and 𝜀premature > 0 to constrain the other
two), 𝜀3 can also be lowered to any desired positive constant.

Polynomial expected runtime with arbitrarily high probability. With 𝜀
loop
3 set to a

desired small value, 𝑉3 will be running for at most 𝑚 rounds with the remaining high probability.
At each of those rounds, 𝑉3 will either complete 𝑉2’s simulation in O

(︀
𝑛𝑡+1

)︀
time or will operate

as the probabilistic timer that has the expected runtime of O
(︀
𝑛𝑡+2

)︀
. Thus, it is expected to run

in O
(︀
𝑛𝑡+2

)︀
time with arbitrarily high probability.

Lemma 7.

IP(con-space, con-private-coins,poly*-public-coins,poly*-time) ⊆
IP(log-space,poly-public-coins,poly-time).

More specifically, for any integer 𝑡 > 1,

IP(con-space, con-private-coins,O
(︀
𝑛𝑡
)︀*
-public-coins,O

(︀
𝑛𝑡
)︀*
-time) ⊆

IP(log-space,O
(︀
𝑛𝑡+1

)︀
-public-coins,O

(︀
𝑛𝑡+1

)︀
-time).

Proof. Let 𝑉1 be a (single-head) constant space verifier that uses at most 𝑟 private coins and an
unlimited budget of public coins to verify a language 𝐿, for some constant 𝑟. The three types of
errors that 𝑉1 may commit are that

• it might reject a member of 𝐿 when communicating with an honest prover with some
probability 𝜀+1 ,

• it might be tricked to accept a non-member of 𝐿 with some probability 𝜀−1 ,

• it might be tricked to run forever when the input is not a member of 𝐿 with some
probability 𝜀

loop
1 .

When it is not running forever (i.e., with probability 1− 𝜀
loop
1 ), 𝑉1 is expected to terminate in

𝑓1(𝑛) ∈ O
(︀
𝑛𝑡
)︀

steps where 𝑡 > 1 is an integer. In the following, the prover that 𝑉1 interacts
with will be named 𝑃1.

A constant space public-coin (2𝑟 + 𝑡)-head verifier 𝑉2 can verify 𝐿 in polynomial time and
with an error bound close to that of 𝑉1 as follows: 𝑉2 will run 2𝑟 parallel simulations (“sims”) of



𝑉1, where the 𝑖th sim 𝑆𝑖 (for 𝑖 ∈ { 0, . . . , 2𝑟 − 1 }) assumes its private random bits as the bits of
the binary representation of the number 𝑖 and uses the (𝑖+ 1)st head of 𝑉2. The prover that 𝑉2

interacts with, which we name 𝑃2, is supposed to mimic 𝑃1 by providing a 2𝑟-tuple containing
the symbols that 𝑃1 would send to each 𝑆𝑖 at each step. At every step of its interaction, 𝑉2

performs the following three tasks:

• It checks the communication symbol received from 𝑃2 to see if it is consistent with the
simulated interaction that took place up to that point between 𝑃1 and the sims (as will be
detailed below), rejecting otherwise.

• It updates the simulated state information and moves the head corresponding to each
sim in accordance with 𝑉1’s transition function, the latest public coin outcome, the input
symbol scanned by the corresponding head and the communication symbol received from
𝑃2 addressed to that sim.

• It sends 𝑃2 a 2𝑟-tuple containing the communication symbols emitted by all the sims at
the present step.

The consistency check mentioned above is necessary for the following reason: Consider
two distinct sims which correspond to two probabilistic paths that emit precisely the same
sequence of communication symbols up to a certain point during an interaction of 𝑉1 with
𝑃1. Since 𝑃1 is unable to determine which of these two paths it is talking to at that point, it
cannot send different communication symbols to these sims. 𝑉2 is supposed to check that 𝑃2

respects this condition, and never sends different symbols to two sims whose communications
have been identical since the beginning of the interaction. 𝑉2 can keep track of subsets of such
similar-looking sims in its finite memory to implement this control at every step.
𝑉2 uses its remaining 𝑡 heads to implement a deterministic clock that runs for 𝑓2(𝑛) = 𝑐𝑛𝑡

steps (where 𝑐 is a positive integer whose value ensures that 𝑓2(𝑛) ≫ 𝑓1(𝑛), and determines the
error committed by 𝑉2, as will be described below) in the background.6 𝑉2 makes its decision
when the clock times out by picking one of the sims at random with equal probability by the
result of 𝑟 public coin tosses. It accepts if the chosen sim has accepted on time, and rejects
otherwise.
𝑉2 is not able to carry out a “perfect” simulation of 𝑉1 (with identical acceptance and rejection

probabilities) because of the strict bound on its runtime. This causes 𝑉2’s decisions to differ
from those of 𝑉1 in the following two ways:

1. 𝑉1 has a nonzero probability of accepting some inputs after running for more than 𝑓2(𝑛)
steps, whereas 𝑉2 rejects in branches of its simulation corresponding to such cases.

2. 𝑉2 rejects and halts on each branch of its simulation corresponding to cases where 𝑉1 is
tricked to run forever.

Let 𝜀+2 and 𝜀−2 be the counterparts in 𝑉2 of the errors 𝜀+1 and 𝜀−1 , respectively. (𝑉2 can not be
fooled into looping, so we do not have to worry about that type of error.) Let us analyze how
the two differences described above affect the errors of 𝑉2 compared to those of 𝑉1.

6See [7, Lemma 3] for an explanation of how such a clock can be constructed for any desired value of 𝑐.



𝜀−2 is at most 𝜀−1 , since none of the differences between 𝑉2 and 𝑉1 can cause an increase in
an acceptance probability.
𝜀+2 is greater than 𝜀+1 by the probability that 𝑉1 runs longer than 𝑓2(𝑛) steps and then accepts.

By definition, the expected runtime of 𝑉1 is 𝑓1(𝑛) when it is not running forever (i.e., with
probability 1− 𝜀

loop
1 ). By Markov’s inequality, the probability that 𝑉1 runs for more than 𝑓2(𝑛)

steps when it is not running forever is at most 𝑓1(𝑛)/𝑓2(𝑛). This difference can be reduced by
increasing 𝑐, thus bringing 𝜀+2 arbitrarily close to 𝜀+1 , and proving our claim that the overall
error bound of 𝑉2 is close to that of 𝑉1.

We will conclude the proof by demonstrating 𝑉3, a standard public coin log-space verifier with
a single input head that verifies the same language. The naive way of simulating a multi-head
machine by a logarithmic space machine is rather straightforward. Specifically, 𝑉3 can keep 𝑉2’s
head indices in multiple tracks of its work tape in binary format. (To accommodate for 2𝑟 + 𝑡
tracks in the work tape, 𝑉3 should use a work tape alphabet of size 22

𝑟+𝑡.) In each simulated
transition of 𝑉2, to decipher what 𝑉2 is reading with its 2𝑟 + 𝑡 heads, 𝑉3 will carry out the
following steps:

1. Move the input head to ▷.
2. Do the following for all 𝑖 ∈ { 1, . . . , 2𝑟 + 𝑡 }:
3. Decrement the index on the 𝑖th track of the work tape and move the input head to the

right. Repeat this until the index becomes 0.
4. Register the symbol under the input head as 𝑥𝑖.
5. Increment the index on the 𝑖th track of the work tape and move the input head to the left.

Repeat this until the head is reading ▷.

Having learned the symbols 𝑥1, . . . , 𝑥2𝑟+𝑡 scanned by the simulated 𝑉2’s heads, 𝑉3 can use the
latest public coin flip and consult the communication cell to complete a simulated transition of
𝑉2, updating the work tape contents to reflect the new head positions of 𝑉2 by incrementing or
decrementing the indices on the respective tracks. Note that the matching prover, 𝑃3, which
is supposed to send the messages that 𝑃2 would be sending for each simulated step, will send
“filler” symbols (all of which will be ignored by 𝑉3) through the communication cell while it
waits for 𝑉3 to complete these walks on its work tape. 𝑉3 accepts the input only if it is convinced
that 𝑉2 accepts the same as a result of this interaction.
𝑉3’s runtime is simply the runtime of 𝑉2 multiplied by the overhead of simulating multiple

input heads within the logarithmic work tape. Counting from 0 to 𝑛 (or down from 𝑛 to
0) in binary takes O(𝑛) time for a Turing machine by amortized analysis. Incrementing or
decrementing binary numbers with ⌈log 𝑛⌉ digits takes O(log 𝑛) time. As a result, using the
naive method of simulation explained above, 𝑉3 is expected to run in O

(︀
𝑛𝑡+1

)︀
time.

The runtime of 𝑉3 in Lemma 7 can be improved by introducing 2𝑟 + 𝑡 logarithmically-long
caches in the memory, one for each head of the simulated 𝑉2, each containing the slice from the
input string where the corresponding head resides at that time. This slightly more advanced
way of simulating multiple heads using logarithmic space (which has been previously used and
demonstrated in detail in [7]) saves 𝑉3 a factor of O(log 𝑛) in runtime, but we stuck with the
naive method for its sufficiency and simplicity.



Theorem 8.

NC ⊆ IP(con-space, con-private-coins,O
(︀
𝑛4

)︀*
-public-coins,O

(︀
𝑛4

)︀*
-time).

Proof. It is known [9] that

NC ⊆ IP(log-space, 0-private-coins,O
(︀
𝑛 log2 𝑛

)︀
-public-coins,O

(︀
𝑛 log2 𝑛

)︀
-time).

Since log2 𝑛 ∈ O(𝑛) by standard asymptotic analysis, we also have

NC ⊆ IP(log-space, 0-private-coins,O
(︀
𝑛2

)︀
-public-coins,O

(︀
𝑛2

)︀
-time).

The claimed result then follows directly from Lemma 6.

4. Concluding remarks

This line of research can be expanded with various further questions. Although we mentioned
the effect of cutting off the usage of public coins completely (Fact 4), we did not consider the
results of imposing a tight budget on the number of public coins that the verifier can flip. (The
“clock” head’s random walk in Section 2.4 has an expected cost of polynomially many such flips.)
It would be interesting, for instance, to ask whether Condon and Ladner’s result stating that
logarithmic space verifiers that flip only logarithmically many public coins can not verify any
language outside the class LOGCFL [10] has a counterpart for the constant space case or not.

Acknowledgments

The authors thank the anonymous referees for their comments. This research was partially sup-
ported by Boğaziçi University Research Fund Grant Number 19441. Utkan Gezer’s participation
in this work is supported by the Turkish Directorate of Strategy and Budget under the TAM
Project number 2007K12-873.

References

[1] S. Goldwasser, Y. T. Kalai, G. N. Rothblum, Delegating computation: Interactive proofs for
muggles, J. ACM 62 (2015).

[2] C. Dwork, L. Stockmeyer, Finite state verifiers I: The power of interaction, J. ACM 39
(1992) 800–828.

[3] S. Goldwasser, M. Sipser, Private coins versus public coins in interactive proof systems,
in: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, 1986, pp. 59–68.

[4] A. C. C. Say, A. Yakaryılmaz, Finite state verifiers with constant randomness, Logical
Methods in Computer Science 10 (2014).

[5] J. Hartmanis, On non-determinancy in simple computing devices, Acta Informatica 1
(1972) 336–344.



[6] M. U. Gezer, A. C. C. Say, Finite state verifiers with both private and public coins, arXiv
e-prints (2023). arXiv:2306.09542.

[7] M. U. Gezer, A. C. C. Say, Constant-space, constant-randomness verifiers with arbitrarily
small error, Information and Computation 288 (2022) 104744.

[8] A. Condon, Computational Models of Games, MIT Press, 1989.
[9] L. Fortnow, C. Lund, Interactive proofs and alternating time-space complexity, Theoretical

Computer Science 113 (1993) 55–73.
[10] A. Condon, R. Ladner, Interactive proof systems with polynomially bounded strategies,

Journal of Computer and System Sciences 50 (1995) 506–518.

http://arxiv.org/abs/2306.09542

	1 Introduction
	2 Background
	2.1 Interactive proof systems
	2.2 Multihead finite automata and finite state verifiers
	2.3 Multihead finite automata and logarithmic space Turing machines
	2.4 Implementing a polynomial-time ``clock'' in a probabilistic finite automaton

	3 Finite state verifiers with constant private randomness
	4 Concluding remarks

