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Abstract
One of the main problems in the wide area of graph theory is the so called reconstruction problem,
that is the reconstruction of a (hyper)graph from its degree sequence. The problem remained open for
many years, until in 2018 Deza et al. proved its NP hardness even for the simplest case of 3-uniform
hypergraphs. As a consequence, the definition of classes of instances that allow a polynomial time
reconstruction acquired relevance in order to restrict the NP-complete core of the problem. In this paper,
we consider the class of instances 𝒟𝑒𝑥𝑡 defined by Ascolese et al. in 2021, and we provide some structural
properties of the related 3-uniform hypergraphs. Then, we move the spotlight on its subclass 𝒟𝑒𝑥𝑡−

including only those elements that are unique, i.e., two non-isomorphic 3-uniform hypergraphs sharing
a degree sequence do not exist in 𝒟𝑒𝑥𝑡−. This property suggests the possibility of a polynomial time
strategy for the reconstruction of its elements. We define an algorithm that allows a fast reconstruction
of some instances in 𝒟𝑒𝑥𝑡−, and we further provide a heuristic to solve the same problem on the entire
class. The heuristic relies on the uniqueness of the elements in 𝒟𝑒𝑥𝑡− and on geometric and algebraic
features of the related 3-hypergraphs. Finally, statistics on the performance of the heuristic are provided.
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1. Introduction

The characterization of graphs and hypergraphs from their degree sequences has been one of the
most challenging problems in these last decades. In the simplest case of graphs, deciding if an
integer sequence is the degree sequence of a graph was solved in 1960 by Erdős and Gallai [11].
Subsequently, a number of algorithms have been developed to provide constructive proofs of this
result ( [15, 18, 24]). Moving to hypergraphs, the same decision problem has been widely studied
(see [7, 10, 12, 20, 21]). Recently, starting from a general and non constructive characterization
theorem in [8], some relevant subclasses of degree sequences have been considered (see [3]),
whose elements allow a polynomial time algorithm to compute, say reconstruct, the related
hypergraphs (see [1, 5, 13, 14]). In 2018 Deza et al. proved that deciding if an integer sequence
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is the degree sequence of a 3-uniform hypergraph is NP-complete [9]. As a consequence, the
definition of classes of degree sequences that can be reconstructed in polynomial time acquires
relevance in order to limit the NP-complete core of the problem.
In their proof Deza et al. defined as a gadget a class of degree sequences that show remarkable
geometrical and algebraic properties. Relying on this, in [2] the authors provided a class
𝒟 of degree sequences of unique 3-hypergraphs that preserve these properties and whose
incidence matrices have strong symmetrical and structural specific characteristics. In this paper
(Section 3), we define a suitable poset 𝒯 on integer triplets and we provide a quite surprising
connection between 3-hypergraphs having degree sequence in 𝒟 and a family of ideals of 𝒯 .
This connection allows us to further extend the class 𝒟 to 𝒟𝑒𝑥𝑡, defined as the degree sequences
of the 3-hypergraphs which correspond to ideals of 𝒯 . We show that the properties of the
elements in 𝒟 move to those in 𝒟𝑒𝑥𝑡. Unfortunately, the elements of 𝒟𝑒𝑥𝑡 lose the uniqueness
property. We get it back defining the subclass 𝒟𝑒𝑥𝑡− such that 𝒟 ⊂ 𝒟𝑒𝑥𝑡− ⊂ 𝒟𝑒𝑥𝑡. In Section 4,
we provide a polynomial time algorithm to reconstruct two subclasses of 𝒟𝑒𝑥𝑡−, which we
call maximal and minimal instances. We then provide a heuristic to solve the reconstruction
problem for the entire class, that turns out to work perfectly for small-size degree sequences, and
whose performance decreases on increasing the size of the sequence. Despite the algorithm does
not always provide the reconstruction of the whole incidence matrix, it is important to point
out that the obtained partially reconstructed hypergraph is free from wrong edge insertions.
This property can lead to a new research line, concerning the study of error affected degree
sequences reconstruction, together with the possibility of providing bounds to the number of
(non-isomorphic) 3-hypergraphs sharing the same degree sequence.

2. Basic notions and definitions

We recall the basic definitions concerning hypergraphs and we fix the notation we are going to
use. A hypergraph 𝐻 is defined as a pair of sets 𝐻 = (𝑉,𝐸) such that 𝑉 = {𝑣1, . . . , 𝑣𝑛} is the
set of vertices and 𝐸 ⊂ 𝒫(𝑉 )∖{∅} is the multiset of hyperedges (briefly, edges), with 𝒫(𝑉 ) the
power set of 𝑉 . A hypergraph is simple if it does not contain either singleton or repeated edges,
and it is called 𝑘-uniform (briefly, 𝑘-hypergraph) if every hyperedge has exactly 𝑘 vertices.
Given a 𝑘-hypergraph 𝐻 and one of its vertices 𝑣, the link hypergraph of 𝑣 in 𝐻 , denoted
𝐿𝐻(𝑣), is defined as the hypergraph obtained from 𝐻 after deleting all edges not containing
𝑣, and then removing 𝑣 from all remaining edges. The residual of 𝑣, indicated 𝐻−

𝑣 , is defined
as the 𝑘-hypergraph obtained from 𝐻 after deleting all edges containing 𝑣 and the vertex 𝑣
itself. It is worthwhile noticing that the link hypergraph 𝐿𝐻(𝑣) is (𝑘 − 1)-uniform, while the
residual hypergraph 𝐻− is 𝑘-uniform. The degree of a vertex 𝑣 is the number of hyperedges
that contain 𝑣, and the degree sequence of 𝐻 is the list of its vertex degrees, usually arranged in
non-increasing order. A common representation of a hypergraph is using its incidence matrix,
that is a 𝑚× 𝑛 binary matrix where 𝑚 = |𝐸| and 𝑎𝑖,𝑗 = 1 if and only if the vertex 𝑣𝑗 belongs
to the edge 𝑒𝑖. It is clear that the column sums of the incidence matrix of a hypergraph 𝐻 gives
its degree sequence, while the row sums gives the sequence of the edge cardinalities. If 𝐻 is
𝑘-uniform, then the row sums is the 𝑘 constant vector. We observe that the property of being
simple implies that all rows of the incidence matrix are different.



3. The class 𝒟𝑒𝑥𝑡

We recall that the problem of reconstructing 𝑘-hypergraphs from their degree sequences is, in
general, NP-hard. In [9], the authors provided a proof that relies on a reduction involving the
NP-complete problem 3-partition. In an intermediary step, they defined a class of 3-hypergraphs
used as gadget in the reduction. A generalization of this class, denoted 𝒟, shows interesting
combinatorial properties illustrated in [2], such as the uniqueness of its elements. These remarks
supported the idea that the elements of 𝒟 can be reconstructed in polynomial time from their
degree sequences.
The class 𝒟 is defined starting from a weakly decreasing integer sequence 𝑠 = (𝑠1, . . . , 𝑠𝑛),
with 𝑛 ≥ 3 and whose elements belong to Z. We define a 3-hypergraph 𝐻(𝑠) with 𝑛 vertices
𝑣1, . . . , 𝑣𝑛 and whose hyperedges are the triplets (𝑣𝑖, 𝑣𝑗 , 𝑣𝑘) such that 𝑠𝑖+𝑠𝑗+𝑠𝑘 > 0 (see Fig. 1
for an example). The class 𝒟𝑛 is the set of all degree sequences of hypergraphs generated from a
sequence 𝑠 of length 𝑛, and the class 𝒟 is the union of the classes 𝒟𝑛 for each 𝑛 ≥ 3. It is known
that for each sequence 𝜋 ∈ 𝒟 there exists exactly one 3-hypergraph (up to isomorphism) that
realizes it (see [2]), so we will equivalently refer to the elements of 𝒟 either as 3-hypergraphs
or as degree sequences. The following property directly follows from the construction of 𝐻 .

Property 1. Given 𝜋 the degree sequence obtained from 𝑠 = (𝑠1, . . . , 𝑠𝑛) and 𝐻 the related
hypergraph, if (𝑣𝑖, 𝑣𝑗 , 𝑣𝑘) is an edge of 𝐻 and 𝑗 < 𝑘′ < 𝑘, then (𝑣𝑖, 𝑣𝑗 , 𝑣𝑘′) is also an edge of 𝐻 .

The way of generating the elements of 𝒟 suggests their representation as ideals of a partially
ordered set (poset). The reader is addressed to the book of D. West [25] for the definitions,
main properties and notation related to the algebraic structures introduced in the sequel. So, let
us define the following poset: for each positive integer 𝑛, Ω𝑛 is the set of triplets (𝑎1, 𝑎2, 𝑎3)
where 𝑎𝑖 ∈ {1, . . . , 𝑛} and 1 ≤ 𝑎1 < 𝑎2 < 𝑎3 ≤ 𝑛. The triplets in Ω𝑛 can be regarded as the
hyperedges of the complete 3-uniform hypergraph defined on 𝑛 vertices, 𝑣1, . . . , 𝑣𝑛. Then, we
define the following linear extension of the ≤ order on the elements in Ω𝑛:

(𝑎1, 𝑎2, 𝑎3) ⪯ (𝑏1, 𝑏2, 𝑏3) if and only if 𝑎𝑖 ≤ 𝑏𝑖 with 𝑖 ∈ {1, 2, 3}.

Let 𝒯𝑛 = (Ω𝑛,⪯) be the partially ordered set thus obtained. Given 𝑥 ∈ 𝒯𝑛, the principal ideal
↓ {𝑥} = {𝑦 ∈ 𝒯𝑛 s.t. 𝑦 ⪯ 𝑥} is the intersection of all ideals that contain the element 𝑥. Since
𝒯𝑛 is a finite poset, the union of ideals is finite and it is still an ideal and, furthermore, an ideal
𝐼 ⊆ 𝒯𝑛 can always be obtained as the finite union of principal ideals, 𝐼 =↓ {𝑥1, . . . , 𝑥𝑚} =↓
{𝑥1} ∪ · · · ∪ ↓ {𝑥𝑚} for some 𝑥1, . . . , 𝑥𝑚 ∈ 𝒯𝑛.
An element 𝑚 ∈ 𝐼 is maximal if there is no 𝑏 ∈ 𝐼 such that 𝑚 ≺ 𝑏. The maximal elements
of an ideal 𝐼 form an antichain, that is a subset 𝐴 ⊆ 𝒯𝑛 in which no two distinct elements
are comparable. It is known that the antichain of its maximal elements generates an ideal, i.e.,
𝐼 =↓ {𝐴}, and every ideal of the poset is generated by the antichain of its maximal elements [25].
So, there is a bijective correspondence between ideals and antichains of 𝒯𝑛.

Proposition 1. Let 𝐻 be a hypergraph in 𝒟𝑛 and 𝐸 its edge set. Then, 𝐸 is an ideal in 𝒯𝑛.



Proof. Let 𝐻 ∈ 𝒟𝑛 be generated by the non-increasing integer sequence 𝑠, and (𝑖, 𝑗, 𝑘) is one
of its edges; then 𝑠𝑖 + 𝑠𝑗 + 𝑠𝑘 > 0 by definition. We have that 𝑠𝑖′ + 𝑠𝑗′ + 𝑠𝑘′ > 0 for all
(𝑖′, 𝑗′, 𝑘′) ⪯ (𝑖, 𝑗, 𝑘) and, consequently, (𝑖′, 𝑗′, 𝑘′) is an edge of 𝐻 . Then, the edges of 𝐻 are
union of ideals in 𝒯𝑛. □

Example 1. The degree sequence 𝜋 = (8, 7, 7, 6, 6, 2) is in 𝒟6, generated by the integer sequence
𝑠 = (2, 1, 1, 0, 0,−2). The incidence matrix of the 3-hypergraph that realizes it is reported in Fig. 1.
We note that its edges, considered as elements in 𝒯6, form the ideal 𝐼𝜋 =↓ {(1, 3, 6), (3, 4, 5)}.

However, not all ideals of 𝒯𝑛, regarded as hypergraphs, are in 𝒟𝑛. A counterexample can be
found in [2]. Starting from this observation, we define the class 𝒟𝑒𝑥𝑡

𝑛 as the class of the 𝑛-length
degree sequences of 3-hypergraphs whose hyperedges form an ideal in 𝒯𝑛. Obviously, 𝒟𝑒𝑥𝑡

𝑛 is a
proper superset of 𝒟𝑛, as well as 𝒟𝑒𝑥𝑡 =

⋃︀
𝑛𝒟𝑒𝑥𝑡

𝑛 is a proper superset of 𝒟. In general, when
we pass to the class 𝒟𝑒𝑥𝑡 we can lose the property of uniqueness, as shown in the next example.
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Figure 1: On the right, the (incidence matrix of the) 3-hypergraph 𝐻𝜋 , whose degree sequence 𝜋 =
(8, 7, 7, 6, 6, 2) ∈ 𝒟6 is generated by 𝑠 = (2, 1, 1, 0, 0,−2). The decomposition in its three block graphs
and the related Ferrers diagrams with the 𝐿, 𝑅 and 𝐷 labels are also provided; these notions will be
introduced in the next two subsections. On the left, the complete poset 𝒯6, where we highlight in
boldface the ideal 𝐼𝜋 whose elements are the edges of 𝐻𝜋 .

Example 2. Let us consider the degree sequence 𝜋* = (25, 19, 17, 16, 12, 11, 9, 8, 6). It is in
𝒟𝑒𝑥𝑡, since it is realized by a hypergraph that is in correspondence with an ideal in the poset 𝒯9,
that is 𝐻1 =↓ {(1, 6, 9), (2, 3, 9), (2, 5, 7), (3, 4, 8)}. Moreover, there exists a second ideal in 𝒯9
realizing it, 𝐻2 =↓ {(1, 5, 9), (1, 7, 8), (2, 4, 9), (3, 4, 7), (3, 5, 6)}. It is easy to check that the
two hypergraphs are not isomorphic, so that the uniqueness property is lost for 𝜋* ∈ 𝒟𝑒𝑥𝑡 ∖ 𝒟.

It is interesting noticing that the class 𝒟𝑒𝑥𝑡 includes the non-unique degree sequences that
model the 3-partition instances used in the NP-completeness proof by Deza et al. in [9]. So, the



related polynomial time reconstruction algorithms and heuristics we are going to define have
obviously to avoid these elements and focus on the subclass 𝒟𝑒𝑥𝑡−, that consists of the unique
sequences of 𝒟𝑒𝑥𝑡 only. This class properly includes the class 𝒟, as shown in [2], Example 2.
A deeper inspection of the incidence matrix of the hypergraphs in 𝒟𝑒𝑥𝑡 will reveal further
remarkable combinatorial properties of these objects.

The representation of hypergraphs as plane partitions
The incidence matrix of a hypergraph 𝐻 ∈ 𝒟𝑒𝑥𝑡

𝑛 can be recursively split into block graphs, each
of them corresponding to a vertex of 𝐻 : the first one is the link hypergraph related to the vertex
𝑣1, denoted by 𝐿𝐻(𝑣1); its degree sequence will be indicated as 𝜆1. Recursively, we define the
𝑖-th block graph of 𝐻 to be the link hypergraph of the (𝑖− 1)-th residual hypergraph related to
the vertex 𝑣𝑖. By abuse of notation, we indicate both the block graph and its degree sequence as
𝜆𝑖. We underline that the name block graph is due to the fact that since 𝐻 is 3-uniform, then
each of its link hypergraphs is a graph. Moreover, by Property 1, we can see that the incidence
matrix 𝐻 is such that each residual graph has a block structure, in the sense that if the edge
(𝑗, 𝑘) is in 𝜆𝑖, then (𝑗, 𝑘′) is in 𝜆𝑖 too, for each 𝑘′ s.t. 𝑗 < 𝑘′ < 𝑘. We also note that the maximal
number of block graphs is 𝑛− 2, when 𝐻 is the complete 3-hypergraph on 𝑛 vertices.
For each block graph we consider the Ferrers diagram of its degree sequence regarded as
an integer partition (see Fig. 1, the three Ferrers diagrams on the right). We represent these
diagrams both with a sequence of bars or with the associated binary matrix. So, in each diagram
𝜆𝑖 the height of the 𝑗-th bar is the degree of the vertex 𝑣𝑗+𝑖 in the block graph 𝜆𝑖.
Piling up the Ferrers diagrams of the block graphs 𝜆𝑖, matching the columns that refer to the
same vertex and starting, on each layer, from the 𝑖-th row on, we obtain a plane partition. We
recall that a plane partition of the integer 𝑧 of dimension 𝑚× 𝑛 is a two-dimensional integer
𝑚 × 𝑛 matrix 𝑃 such that 𝑧 =

∑︀
𝑘,𝑗 𝑃𝑘,𝑗 , with 1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. An overview of

these combinatorial structures together with their properties can be found in [23]. Obviously,
each (unique) sequence 𝜋 ∈ 𝒟𝑒𝑥𝑡− can be uniquely associated with a plane partition, so that
the plane partition is actually an alternative representation of the hypergraph that realizes 𝜋.
A plane partition can be naturally visualized as a stack arrangement of unitary cubes of height
𝑃𝑘,𝑗 lying on the point (𝑘, 𝑗) of the plane, thus obtaining a three-dimensional object (see Fig. 2).
Each Ferrers diagram 𝜆𝑖 is the plane 𝑃 𝑖 of the plane partition, that is the set of unit cubes on
varying of 𝑘 and 𝑗 for a fixed value of height, 𝑖, whose lower left point is in position (𝑖, 𝑖) (we
enumerate rows and columns from bottom to top and from left to right, respectively). The
height of the plane partition on the point (𝑘, 𝑗) is given by the value 𝑃𝑘,𝑗 .
Figure 2 depicts the plane partition related to the hypergraph in Example 1. We stress that 𝑃 𝑖

corresponds to the Ferrers diagram of 𝜆𝑖.
It is important to underline that 𝑃𝜋 can be constructed up to the knowledge of the hypergraph
𝐻𝜋 , and that the construction of 𝑃𝜋 starting from the degree sequence 𝜋 is equivalent to the
reconstruction of the incidence matrix of the hypergraph 𝐻𝜋 . It turns out that the representation
of 𝐻 as a plane partition allows us to uniquely detect the edges of the hypergraph 𝐻 : the
edge (𝑣𝑖, 𝑣𝑗 , 𝑣𝑘) ∈ 𝐻 is identified by the elements of the Ferrers diagram 𝜆𝑖 in positions
(𝑘− 𝑖− 1, 𝑗− 𝑖) and (𝑗− 𝑖, 𝑘− 𝑖). As an example, in Fig. 1 the edge (1, 2, 6) of 𝐻𝜋 is identified
by the R box in (4, 1) and the bottom L box in (1, 5) of 𝜆1, while both boxes in 𝜆3 identify
the edge (3, 4, 5). The placement of the lower leftmost box of each 𝜆𝑖 at coordinates (𝑖, 𝑖) is



𝑃𝜋 =

1 1 0 0 0
1 2 3 3 0
1 2 2 2 1
1 1 1 1 1

Figure 2: The plane partition associated with the degree sequence 𝜋 = (8, 7, 7, 6, 6, 2) ∈ 𝒟𝑒𝑥𝑡−
6 ,

represented as a matrix (on the left) and a stacking of unit cubes (on the right).

essential to maintain the correspondence between the vertices of 𝐻 and the coordinates of the
plane partition.

Properties of block graphs and plane partitions in 𝒟𝑒𝑥𝑡

Inspecting the Ferrers diagram of an integer partition one can immediately detect if it is the
degree sequence of a graph. Indeed, a Ferrers diagram 𝐹𝜆 associated with an integer partition 𝜆
can always be decomposed into three (possibly empty) partitions 𝐹𝜆 = 𝐷(𝜆) +𝑅(𝜆) + 𝐿(𝜆),
where 𝐷(𝜆) is the largest square entirely contained in 𝐹𝜆, called Durfee square, 𝑅(𝜆) is the set
of cells over 𝐷(𝜆) and 𝐿(𝜆) is the set of cells placed on the right of 𝐷(𝜆) after removing the first
cell of every row [22], see Fig. 3. It is known that 𝜆 is graphical if and only if 𝑅(𝜆) ≤𝑑 𝐿(𝜆)

′

holds (see [17, 22]), where 𝐿(𝜆)
′

is the conjugate partition of 𝐿(𝜆), i.e., the partition obtained
from 𝐿(𝜆) by exchanging rows and columns, and ≤𝑑 is the dominance order [6]. We recall
that provided two integer partitions 𝜆 = (𝜆1, . . . , 𝜆𝑛) and 𝜇 = (𝜇1, . . . , 𝜇𝑛), 𝜆 ≤𝑑 𝜇 holds if
and only if

∑︀𝑘
𝑖=1 𝜆𝑖 ≤

∑︀𝑘
𝑖=1 𝜇𝑖 for any 1 ≤ 𝑘 ≤ 𝑛. If 𝑅(𝜆) = 𝐿(𝜆)

′
holds, the partition 𝜆 is a

maximal graphical partition (see Fig. 3).
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Figure 3: The Ferrers diagrams of three different partitions of 𝑛 = 10, together with their decomposition.
From left to right, a graphical partition, a maximal graphical partition and a partition that is not graphical.

Proposition 2. Given 𝐻 ∈ 𝒟𝑒𝑥𝑡
𝑛 and its block graphs, for all 1 ≤ 𝑖 ≤ 𝑛− 2 the integer sequence

𝜆𝑖 is a maximal graphical partition.

Proof. Let us proceed by contradiction assuming that there exists an index 𝑖 such that 𝜆𝑖 is
not maximal. Since 𝜆𝑖 is graphical, 𝑅(𝜆𝑖) <𝑑 𝐿(𝜆𝑖)′ holds. By definition of dominance order,
the smallest point (𝑗, 𝑘) where they differ is such that (𝑗, 𝑘) ∈ 𝐿(𝜆𝑖) and (𝑘 − 1, 𝑗) ̸∈ 𝑅(𝜆𝑖)
(keeping the rows and the columns indexing bottom-up and left-right, respectively). This means
that the edge (𝑖, 𝑗 + 𝑖, 𝑘 + 𝑖) ̸∈ 𝐻 . Furthermore, (𝑖, 𝑗′, 𝑘 + 𝑖) ∈ 𝐻 for each 𝑖 < 𝑗′ < 𝑗 + 𝑖, by
the minimality of (𝑗, 𝑘), so there exists an index 𝑗′′ > 𝑗 + 𝑖 such that (𝑖, 𝑗′′, 𝑘 + 𝑖) ∈ 𝐻 . This
leads to a contradiction since, by definition of 𝒟𝑒𝑥𝑡, the edges of 𝐻 form an ideal of 𝒯 . □



Again, Figure 1 clarifies the above proof and provides a representation of the sequences 𝜆𝑖

obtained from 𝜋 = (8, 7, 7, 6, 6, 2) ∈ 𝒟𝑒𝑥𝑡
6 as Ferrers diagrams. A visual inspection shows that

they are all maximal graphical partitions (𝑅(𝜆𝑖) = 𝐿(𝜆𝑖)
′

for each 𝑖 = 1, 2, 3).
The complete 3-hypergraph on 𝑛 vertices H𝑛 has its generic block graph 𝜆𝑖 = (𝑛−𝑖−1, . . . , 𝑛−
𝑖− 1) of length 𝑛− 𝑖, for all 𝑖 = 1, . . . , 𝑛− 2, and its Ferrers diagram is a (𝑛− 𝑖)× (𝑛− 𝑖− 1)
rectangle. We stack each 𝜆𝑖 diagram placing its lower leftmost box in position (𝑖, 𝑖), and we get
the plane partition

P𝑛 =

1 2 3 . . . 𝑛− 3 𝑛− 2 𝑛− 2
1 2 3 . . . 𝑛− 3 𝑛− 3 𝑛− 3
...

...
...

1 2 3 . . . . . . . . . 3
1 2 2 . . . . . . . . . 2
1 1 1 . . . . . . . . . 1

Proposition 3. Let 𝑃𝜋 be a plane partition related to a sequence 𝜋 ∈ 𝒟𝑒𝑥𝑡
𝑛 . There exists a

submatrix 𝑃𝜋* of 𝑃𝜋 which is the plane partition of the complete 3-hypergraph on 𝑐 vertices, for
some 3 ≤ 𝑐 ≤ 𝑛.

Proof. Let 𝑡 be the number of planes of 𝑃𝜋 , i.e. the maximum entry of the matrix. By construction,
the submatrix composed by the last 𝑡 rows and first 𝑡+ 1 columns is the plane partition related
to the complete 3-hypergraph on 𝑐 = 𝑡+ 2 vertices. □

It directly follows that the incidence matrix of 𝐻𝜋 always contains a submatrix 𝐻* (called the
core of 𝐻𝜋) which is the matrix of a complete 3-hypergraph on its first 𝑐 ≤ 𝑛 vertices. We
underline that the plane partition representing 𝐻𝜋 is composed of 𝑐− 2 planes, and that the
𝑖-th plane represents all those hyperedges whose first element is the vertex 𝑣𝑖.
For each sequence 𝜋 ∈ 𝒟𝑒𝑥𝑡, we get the following standard decomposition of the related plane
partition

𝑃𝜋 = 𝑃𝜋* +𝑅𝜋 + 𝐿𝜋,

with 𝑃𝜋* the core, 𝑅𝜋 given by the set of rows placed over the submatrix 𝑃𝜋* and 𝐿𝜋 given by
the set of columns on the right side of the submatrix of the core adding the row immediately
over. By abuse of notation, we define 𝐿′

𝜋 =
⋃︀𝑐−2

𝑖=1 𝐿𝜋(𝜆
𝑖)′.

Property 2. For each sequence 𝜋 ∈ 𝒟𝑒𝑥𝑡, 𝑅𝜋 = 𝐿′
𝜋 holds.

This property directly follows from the maximality of block graphs in 𝐻𝜋 and the symmetry
properties of their Ferrers diagrams.

4. The reconstruction problem in the class 𝒟𝑒𝑥𝑡−

In this section we introduce the sets of maximal and minimal degree sequences in 𝒟𝑒𝑥𝑡−, and
we provide a polynomial time algorithm for their reconstruction. Then, we move the spotlight
to the whole class and we provide a heuristic to determine the 3-hypergraphs related to its
elements.



4.1. The reconstruction of maximal and minimal instances

We first define the algorithm GColRec (Greedy Column Reconstruction), that reconstructs a
subset of degree sequences of 𝒟𝑒𝑥𝑡− called maximal instances. The inputs of GColRec are an
element 𝜋 = (𝜋1, . . . , 𝜋𝑛) of 𝒟𝑒𝑥𝑡− and its supposed core dimension 𝑐, while its output is either
a 3-uniform hypergraph 𝐻 consistent with 𝜋 or failure.

Algorithm 1. GColRec(𝜋,c)

1 initialize 𝐻 to the complete 3-hypergraph on the first 𝑐 vertices and let 𝜋𝑐 be its degree
sequence;

2 update 𝜋 = 𝜋 − 𝜋𝑐;
3 for 𝑖 = 1 : 𝑐− 2 do
4 for 𝑗 = 𝑖+ 1 : 𝑛− 1 do
5 for 𝑘 = 𝑗 + 1 : 𝑛 do
6 if 𝜋𝑖 > 0 and 𝜋𝑗 > 0 and 𝜋𝑘 > 0 then
7 insert (𝑖, 𝑗, 𝑘) in 𝐻 and update the three elements 𝜋𝑖 = 𝜋𝑖 − 1, 𝜋𝑗 = 𝜋𝑗 − 1,

𝜋𝑘 = 𝜋𝑘 − 1;
8 else
9 break;

10 if 𝜋 ̸= 0 then
11 return failure;

Output: 𝐻

Since the dimension of the core is not known in advance, we consider 𝑛−2 parallel computations,
one for each possible value of 𝑐. The subset of the maximal instances of 𝒟𝑒𝑥𝑡− is indicated by
ℳ𝑎𝑥.

Proposition 4. Let 𝜋 ∈ 𝒟𝑒𝑥𝑡−
𝑛 and let 𝑅(𝜆𝑖) be an integer partition of the number 𝑧𝑖, for

𝑖 = 1, . . . , 𝑐− 2. If 𝜋 ∈ ℳ𝑎𝑥, then the partition 𝑅(𝜆𝑖) is the maximum, w.r.t. dominance order,
among all integer partitions of 𝑧𝑖 in which each part is less or equal than 𝑛− 𝑐.

Proof. Immediate from the definition of the reconstruction strategy GColRec, that maximizes
the height of the bars of each block graph, from left to right. According to the length of the
sequence and the dimension of its core, it is clear that each value in 𝑅(𝜆𝑖) can not exceed 𝑛− 𝑐.

□

We underline that the class ℳ𝑎𝑥 properly includes the class of maximal instances defined
in [2], where the core computation is not present.

Example 3. The degree sequence 𝜋 = (15, 15, 15, 13, 10, 10, 6, 3) is a maximal instance. Its
block graphs, considered as integer partitions, are the maximum according to 𝜋 with 𝑐 = 6,

𝜆1 = (6, 6, 5, 4, 4, 3, 2) 𝜆2 = (5, 4, 3, 3, 2, 1) 𝜆3 = (3, 2, 2, 1) 𝜆4 = (1, 1).



A second greedy strategy called GRowRec can be defined from GColRec, performing the con-
struction of each 𝑅(𝜆𝑖) row-by-row, from 𝜆1 to 𝜆𝑐−2. We define the class of minimal instances,
ℳ𝑖𝑛, as the set of the sequences in 𝒟𝑒𝑥𝑡− that are correctly reconstructed by GRowRec. The
notion of minimality follows from the greedy choices of the strategy, similarly to Proposition 4.

Theorem 1. GColRec (respectively, GRowRec) performs in 𝑂(𝑛4) time.

The proof is immediate. A simple check shows that the union of the subclasses ℳ𝑎𝑥 and ℳ𝑖𝑛 is
strictly included in 𝒟𝑒𝑥𝑡−. As a matter of fact, the sequence 𝜋 = (21, 20, 18, 15, 12, 11, 10, 7, 3)
is in 𝒟𝑒𝑥𝑡− ∖ (ℳ𝑎𝑥 ∪ℳ𝑖𝑛).
We stress that the failures of the algorithms GColRec and GRowRec are due to the insertion of
extra edges that do not belong to the (unique) final solution. Furthermore, wrong insertions may
determine a reconstruction failure some steps ahead in the computation, so that, in general, they
cannot be immediately detected, requiring an unbounded backtrack process to fix the errors.
In the next section we describe a heuristic that avoids wrong edge insertions, but sometimes
produces only a partial reconstruction of a 3-hypergraph in 𝒟𝑒𝑥𝑡−.

4.2. A heuristic for the class 𝒟𝑒𝑥𝑡−

Let us consider the reconstruction of the class 𝒟𝑒𝑥𝑡−
𝑛 . We introduce the notion of complemen-

tarity: given a 3-hypergraph 𝐻 on 𝑛 vertices, we denote 𝑑𝑀 =
(︀
𝑛−1
2

)︀
the maximum admitted

degree of each vertex, that corresponds to the common degree in the complete 3-hypergraph on𝑛
vertices H𝑛. For a given 𝜋 ∈ 𝒟𝑒𝑥𝑡

𝑛 , we define its complementary sequence 𝜋 = (𝑑𝑀 , . . . , 𝑑𝑀 )−𝜋.
It is clear that 𝜋 is the degree sequence of the complementary 3-hypergraph 𝐻𝜋 with 𝑛 ver-
tices and containing all edges not in 𝐻𝜋 . We underline that 𝐻𝜋 keeps all properties of the
hypergraphs of the class 𝒟𝑒𝑥𝑡

𝑛 , in particular the strong block-structure of the incidence matrix
(and the uniqueness if we restrict to 𝒟𝑒𝑥𝑡−). Similarly, we define the degree sequences of the
complementary block graphs in 𝐻𝜋 as 𝜆

𝑖
= (𝑛 − 𝑖 − 1) − 𝜆𝑖 for 𝑖 = 1, . . . , 𝑛 − 2, and the

related complementary plane partition as 𝑃 𝜋 = P𝑛−𝑃𝜋 , with P𝑛 the plane partition associated
to H𝑛. From now on, we will omit the subscript that identifies the degree sequence 𝜋 when no
ambiguities may arise.
The heuristic we propose starts from a sequence 𝜋 ∈ 𝒟𝑒𝑥𝑡−

𝑛 and requires a parallel reconstruction
of both 𝐻 and its complementary 𝐻 at the same time, avoiding the insertion of extra edges
during the process. All edges of H𝑛 are considered and assigned either to 𝐻 or to 𝐻 , if no
ambiguities occur, otherwise are kept unassigned. The hypergraphs 𝐻 and 𝐻 are modelled
by two three-dimensional matrices that represent their plane partitions 𝑃 and 𝑃 , respectively.
Both matrices are initialized to the null matrix, and their elements are updated to the value 1
according to the detected edges in 𝐻 and 𝐻 . The heuristic, indicated as HeuRec, is composed
by the following three steps:

Step 1

The pseudo-code of the first step of the reconstruction is provided in Algorithm 2, Preprocessing,
that computes from the input sequence 𝜋 of length 𝑛 an admitted dimension of the core 𝑐



and the complementary sequence 𝜋. Then, it assigns to 𝐻 all hyperedges of the core, i.e., all
hyperedges of H𝑐 on the vertices 𝑣1, . . . , 𝑣𝑐. After their insertion, the sequence 𝜋 is updated
by subtracting the common degree value 𝑑𝑐 =

(𝑐−2)(𝑐−1)
2 of H𝑐 from the first 𝑐 elements of the

input sequence, obtaining the sequence 𝜋0. Since the dimension of the core is not known in
advance, we perform 𝑛− 2 parallel computations, one for each possible value of 𝑐.

Property 3. Let 𝑐 be the dimension of the core of the degree sequence 𝜋. An edge (𝑣𝑖, 𝑣𝑗 , 𝑣𝑘) in
𝐻𝜋 whose minimum vertex index 𝑖 is greater than 𝑐− 2 does not exist.

It directly follows from the definition of core of a plane partition. As a consequence, all edges
whose minimum vertex is 𝑣𝑖, with 𝑖 > 𝑐− 2, are assigned to 𝐻 , and they form the complete
3-hypergraph defined on the last 𝑛− (𝑐− 2) vertices. After their insertion in 𝐻 , Preprocessing
creates the sequence 𝜋0 by subtracting the value 𝑑𝑐 =

(𝑛−𝑐)(𝑛−𝑐+1)
2 from the last 𝑛− (𝑐− 2)

elements of 𝜋.

Theorem 2. Preprocessing performs in 𝑂(𝑛3) time.

Proof. The plane partition related to the hypergraph 𝐻 can be represented as a three-dimensional
matrix whose dimensions are (𝑛− 2)× (𝑛− 1)× (𝑐− 2) for a hypergraph on 𝑛 vertices and
with core dimension 𝑐. The same for 𝐻 . The insertion of the edges of the core requires to iterate
through the whole matrix, procedure that runs in 𝑂(𝑛3). □

The reconstruction of each plane of 𝑃 and 𝑃 proceeds in Step 2, starting from the updated
sequences 𝜋0 = (𝜋0

1, . . . , 𝜋
0
𝑛) and 𝜋0 = (𝜋0

1, . . . , 𝜋
0
𝑛).

Algorithm 2. Preprocessing(𝜋)
Input: 𝜋

1 compute 𝜋;

2 assumed 𝑐 the dimension of the core, compute 𝑑𝑐 =
(𝑐−2)(𝑐−1)

2 and 𝑑𝑐 =
(𝑛−𝑐)(𝑛−𝑐+1)

2 ;
3 insert all edges of the complete hypergraph on the first 𝑐 vertices in 𝐻 and compute 𝜋0 by

updating 𝜋;
4 insert all edges of the complete hypergraph on the last 𝑛− (𝑐− 2) vertices in 𝐻 and

compute 𝜋0 by updating 𝜋;
Output: 𝐻 , 𝐻 , 𝜋0, 𝜋0

Step 2

Now the heuristic inserts in 𝐻 and 𝐻 the edges that definitely belong to one of them. The
insertions are performed either by checking the cardinalities of the possible positions or the
values of the (supposed) degree sequences starting from 𝜋0 and 𝜋0. The reconstruction process
proceeds plane by plane from 𝑃 1 up to 𝑃 𝑐−2, resp. from 𝑃

1
up to 𝑃

𝑐−2
. The edges’ insertion in

a generic plane 𝑃 𝑖 is sketched in Algorithm 3, Insert-𝐻 , and hereafter detailed. An analogous
algorithm, Insert-𝐻 , is also defined. A further definition is required: we call 𝑅-area the set



of positions in 𝑃 𝑖 that are delimited by the upper row of the core, the 𝑖-th column and the
(discrete) diagonal line of 𝑃 𝑖 (these two last included). In other words, the 𝑅-area is the part of
𝑃 𝑖 where the elements of 𝑅(𝜆𝑖) may lie. Symmetrically, we can define the 𝐿-area of 𝑃 𝑖 that
includes the elements of 𝐿(𝜆𝑖), see Fig. 4.

Insert-H: starting from the sequence 𝜋𝑖−1, the algorithm computes the maximal and the
minimal partition of the 𝑖-th element 𝜋𝑖−1

𝑖 of 𝜋𝑖−1 included in the 𝑅-area of 𝑃 𝑖. Let
these partitions be 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛, respectively. The algorithm inserts in the 𝑅-area of
𝑃 𝑖 the elements common to 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛, i.e. the partition 𝑝𝑚𝑎𝑥 ∩ 𝑝𝑚𝑖𝑛. Accordingly,
it inserts in the 𝐿-area their symmetric elements. It is worthwhile noticing that each
element added to the 𝑅-area with its symmetric in the 𝐿-area form an edge whose first
vertex is 𝑣𝑖, and which is common to all 3-hypergraphs sharing the same degree sequence
𝜋, if any. Example 4 clarifies this construction.

Insert-𝐻 : acts analogously to compute 𝑃
𝑖

from the sequence 𝜋𝑖−1.

Algorithm 3. Insert-H(𝐻 ,𝜋𝑖−1)

Input: 𝐻 ,𝜋𝑖−1

1 compute 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛;
2 insert in the 𝑅-area of 𝑃 𝑖 the elements in 𝑝𝑚𝑎𝑥 ∩ 𝑝𝑚𝑖𝑛;
3 fill the 𝐿-area of 𝑃 𝑖 symmetrically with respect to the 𝑅-area;

Output: 𝐻

Example 4. Let us consider the sequence 𝜋 = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) ∈ 𝒟11,
given by 𝑠 = (15, 8, 8, 8, 5,−2,−2,−4,−8,−11,−13). We can argue from 𝑠 the size of the
core, 𝑐 = 7. In the first step of HeuRec the algorithm Preprocessing gives as output the sequences
𝜋0 = (23, 17, 17, 17, 13, 6, 6, 19, 13, 12, 7) and 𝜋0 = (7, 13, 13, 13, 17, 14, 14, 16, 22, 23, 28),
together with the matrices 𝐻 and 𝐻 where the insertion of the edges belonging to the (respective)
core has been performed. We now show the steps of the algorithm Insert-H for 𝑖 = 1, whose
output is depicted in Fig. 4, right. The performance of Insert-𝐻 is analogous. Since the length
of the sequence is 𝑛 = 11 and the core has size 𝑐 = 7, the plane 𝑃 1 is a 9 × 10 rectangle in
which Preprocessing already inserted the edges on the left-bottom 5 × 6 rectangle, i.e. the core
(see Fig 4). In the following step, the partitions 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 of 𝜋0

1 = 23 are computed. Since
they must be contained in the R-area, the partitions will be 𝑝𝑚𝑖𝑛 = (4, 4, 3, 3, 3, 3, 2, 1) and
𝑝𝑚𝑎𝑥 = (4, 4, 4, 4, 4, 3), highlighted with different colors in Fig. 4, left. Insert-H performs the
insertion of the elements belonging to both of them, 𝑝𝑚𝑖𝑛 ∩ 𝑝𝑚𝑎𝑥, pointed out in Fig. 4, left, with
dashed lines. Finally, their symmetric in the L-area are also inserted, reaching the final (partial)
reconstruction of 𝑃 1, shown in Fig 4, right.

Theorem 3. Insert-H (resp., Insert-𝐻) performs in 𝑂(𝑛2) time.

Proof. In Insert-H the computation of both 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 can be performed by simple arithmetic
operations, resulting in a constant time complexity. The update of both𝑅(𝜆𝑖) and 𝐿(𝜆𝑖) requires
𝑂(𝑛2) time, since 𝑃 𝑖 is modelled by a matrix of dimension 𝑂(𝑛2). □
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Figure 4: The figure shows the main passages of Insert-H on the first plane 𝑃 1 of the plane partition
related to 𝜋 = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) ∈ 𝒟11, whose core has size 𝑐 = 7. On the left,
the computation of the elements in the R-area that definitively belong to the plane partition; on the
right, their insertion together with the symmetric elements in the L-area.

Finally, the update of 𝜋𝑖−1 into 𝜋𝑖 is performed. We compute the sequence 𝑞 =
(0, . . . , 0, 𝑞𝑖, . . . , 𝑞𝑛) where each 𝑞𝑗 , with 𝑖 + 1 ≤ 𝑗 ≤ 𝑛, counts the number of the edges
involving the vertices 𝑣𝑖 and 𝑣𝑗 that are inside the 𝑅 or 𝐿-area of 𝐻 and that are not yet added
in 𝐻 , while 𝑞𝑖 counts the number of edges inserted in 𝑃 𝑖. In other words, the vector 𝑞 counts
the edges of 𝑃 𝑖 that either belong to 𝐻 or still maintain their placement ambiguity.
Then, we define 𝜋𝑖 = 𝜋𝑖−1 − 𝑞. In general, 𝑞𝑖 can be different from 𝜋𝑖−1

𝑖 . Such a discrepancy
is useful to keep possible all ways of inserting the edges in the 𝑃 𝑖+1 plane. A symmetric
computation leads to the update of 𝜋𝑖−1 to 𝜋𝑖. The following property is immediate.

Property 4. Let 𝜋 be the degree sequence of a 3-hypergraph with core dimension 𝑐. If Insert-𝐻
adds the edge (𝑖, 𝑗, 𝑘) to the plane𝑃 𝑖 of𝐻 , with 𝑖 < 𝑗 < 𝑘, then it also belongs to all 3-hypergraphs
whose degree sequence is 𝜋.

Step 3

As a final step, the heuristic considers the set 𝐴 of ambiguous edges, i.e. the edges that have not
yet been inserted in 𝐻 or in 𝐻 , and the updated sequences 𝜋 = 𝜋𝑐−2 and 𝜋 = 𝜋𝑐−2 obtained
after the performance of Step 2. In this final step the heuristic benefits of the membership of 𝜋
in 𝒟𝑒𝑥𝑡

𝑛 , in particular of the ideal (and filter) characterization w.r.t. the poset 𝒯𝑛.
If (𝑖, 𝑗, 𝑘) ⪯ (𝑖′, 𝑗′, 𝑘′) in 𝒯𝑛 then, for the related edges 𝑒1 and 𝑒2, respectively, it holds that if
𝑒2 ∈ 𝐻 then 𝑒1 ∈ 𝐻 (symmetrically, if 𝑒1 ∈ 𝐻 then 𝑒2 ∈ 𝐻 , as stated in Property 1).
The procedure described in Algorithm 4, Poset, is iteratively repeated on each edge 𝑚 ∈ 𝐴
until no further edge insertions in 𝐻 and 𝐻 are possible. The heuristic produces a successful
reconstruction if all edges of 𝐴 are inserted in 𝐻 or 𝐻 . The matrix 𝐻 is the final output.

Theorem 4. 𝑃𝑜𝑠𝑒𝑡 performs in 𝑂(𝑛3) time.

Proof. Both the check of the maximality and minimality of an element 𝑚 in 𝐴, and the related
computation of 𝐼 and 𝐹 , require a scan of the whole set, performed in 𝑂(𝑛3) time. The update of
the sequences 𝜋* and 𝜋*, together with the possible insertion of 𝑚, run in 𝑂(𝑛) time. Summing
up, the whole Poset procedure requires 𝑂(𝑛3) steps. □



Algorithm 4. Poset(𝐻 ,𝐻 ,𝜋,𝜋,𝐴,𝑚)

Input: 𝐻 , 𝐻 , 𝜋, 𝜋, 𝐴, 𝑚
1 if 𝑚 is a maximal element in 𝒯𝑛 then
2 compute 𝐼 =↓ {𝑚} ∩𝐴;
3 compute 𝜌 the degree sequence of the 3-hypergraph 𝐼 and 𝜋* = 𝜋 − 𝜌;
4 if there exists 𝑖 such that 𝜋*

𝑖 < 0 then
5 insert 𝑚 in 𝐻 and update 𝜋;
6 remove 𝑚 from the set 𝐴;
7 if 𝑚 is a minimal element in 𝒯𝑛 then
8 compute 𝐹 =↑ {𝑚} ∩𝐴;
9 compute 𝜌 the degree sequence of the 3-hypergraph 𝐹 and 𝜋* = 𝜋 − 𝜌;

10 if 𝜋*
𝑖 < 0 for some 𝑖 then

11 insert 𝑚 in 𝐻 and update 𝜋;
12 remove 𝑚 from the set 𝐴;

Output: 𝐻 , 𝐻 , 𝜋, 𝜋, 𝐴

Remark 1. The algorithm Poset does not perform wrong edge-insertions, since it relies on the
properties of ideal and filter of 𝐻 and 𝐻 only, without any further assumption.

We stress again that Poset terminates in a finite number of iterations, at most |𝐴|, leading to the
(unique) solution or to a partial reconstruction where no wrong insertions are performed.

Theorem 5. HeuRec performs in polynomial time with a total cost of 𝑂(𝑛10).

Proof. It directly follows from the previous analysis. In particular, Step 1 is performed in 𝑂(𝑛3),
see Theorem 2. In Step 2, Insert-H and Insert-𝐻 run on each of the 𝑐− 2 planes of the partition,
for a total cost of 𝑂(𝑛3), see Theorem 3. Finally, Step 3 requires a running time of 𝑂(𝑛9), since
Poset can be performed |𝐴| times at most, with |𝐴| = 𝑂(𝑛3), see Theorem 4. Then, we have
that the total cost of the three steps is 𝑂(𝑛9). Since the three steps are required to be performed
for 𝑛 times at most (one for each value of 𝑐), the total running time is 𝑂(𝑛10). □

Example 5. The sequences𝜋1 = (95, 95, 52, 50, 47, 44, 30, 30, 24, 17, 16, 16, 13, 13, 9, 9, 9, 9, 9, 7)
and 𝜋2 = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) are two sequences of different length
in 𝒟𝑒𝑥𝑡− that are neither maximal nor minimal instances. 𝐻𝑒𝑢𝑅𝑒𝑐 correctly recon-
structs the corresponding hypergraphs. On the other hand, let us consider the sequence
𝜋 = (51, 48, 39, 36, 32, 31, 29, 27, 24, 20, 15, 11) ∈ 𝒟𝑒𝑥𝑡

12 . HeuRec does not fully reconstruct the
related 3-hypergraph, as the computation stops with a non-empty set 𝐴 of ambiguous edges.
Moreover, 𝜋 is a maximal instance that can be reconstructed by GColRec. As a matter of fact,
HeuRec does not extend GColRec.

Statistical results
We checked the performance of HeuRec on randomly generated sequences 𝜋 ∈ 𝒟, varying
their length. We underline that the computation of sequences in 𝒟 instead of 𝒟𝑒𝑥𝑡− allows



to guarantee the uniqueness property without limiting or affecting the heuristic performance.
Table 1 shows the success rate according to the different lengths of 𝜋 up to 𝑛 = 30. The statistics
was obtained as the mean of several runs of 100𝐾 block trials for each length.

𝑛 ≤ 9 𝑛 = 10 𝑛 = 11 𝑛 = 12 𝑛 = 13 𝑛 = 14 𝑛 = 15 𝑛 = 16 𝑛 = 17 𝑛 = 18 𝑛 = 19
100% 99.998% 99.95% 99.78% 99.34% 98.43% 96.75% 93.95% 90.25% 84.87% 78.54%
𝑛 = 20 𝑛 = 21 𝑛 = 22 𝑛 = 23 𝑛 = 24 𝑛 = 25 𝑛 = 26 𝑛 = 27 𝑛 = 28 𝑛 = 29 𝑛 = 30
71.28% 62.95% 54.79% 46.85% 39.14% 32.42% 26.07% 20.79% 16.37% 12.70% 9.70%

Table 1
Success rate of HeuRec on sequences of the class 𝒟𝑛, up to 𝑛 = 30. We generated all sequences of the
classes until 𝑛 = 6. From 𝑛 = 7 to 𝑛 = 30, we performed the algorithm on several blocks of 100𝐾
randomly generated sequences. What here reported is the mean of the performance of the blocks.

It is known that the cardinality of the class 𝒟𝑒𝑥𝑡
𝑛 has an exponential growth rate (w.r.t. to

the length 𝑛 of its elements), see [2]. From the obtained data, we observe a high success
rate for small degree sequences, while the performance drastically deteriorate when 𝑛 in-
creases (second line of Table 1), as expected. From Example 5, the possibility of running on
the same input sequence 𝜋 the three algorithms, HeuRec, GColRec and GRowRec, can be con-
sidered to improve the set of instances that are fast reconstructable. Unfortunately, not all
sequences in 𝒟𝑒𝑥𝑡− can be reconstructed by the three algorithms: as an example, consider
𝜋 = (70, 55, 49, 36, 33, 32, 28, 20, 20, 17, 17, 16, 10, 8, 6) in 𝒟. In view of achieving a polyno-
mial time reconstruction strategy for the class 𝒟𝑒𝑥𝑡−, the possibility of defining new techniques
that reduce the set 𝐴 of the ambiguous edges we get at the end of the run deserves deeper
investigation.
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