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Abstract
In this work, we consider the problem of improving the efficiency of utility-sharing games, by resorting
to a limited amount of subsidies. Utility-sharing games model scenarios in which strategic and self-
interested players interact with each other by selecting resources. Each resource produces a utility that
depends on the number of players selecting it, and each of these players receives an equal share of
this utility. As the players’ selfish behavior may lead to pure Nash equilibria whose total utility is sub-
optimal, previous work has resorted to subsidies, incentivizing the use of some resources, to contrast
this phenomenon.

In this work, we focus on the case in which the budget used to provide subsidies is bounded. We
consider a class of mechanisms, called 𝛼-subsidy mechanisms, that allocate the budget in such a way
that each player’s payoff is re-scaled up to a factor 𝛼 ≥ 1. We design a specific sub-class of 𝛼-subsidy
mechanisms, that can be implemented efficiently and distributedly by each resource, and evaluate their
efficiency by providing upper bounds on their price of anarchy. These bounds are parametrized by both
𝛼 and the underlying utility functions and are shown to be best-possible for 𝛼-subsidy mechanisms.
Finally, we apply our results to the particular case of monomial utility functions of degree 𝑝 ∈ (0, 1),
and derive bounds on the price of anarchy that are parametrized by 𝑝 and 𝛼.
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1. Introduction

In several real-life contexts arising from economics, operation research and computer science,
we face the necessity of allocating a set of utility-producing resources to agents, in such a way
that the total utility is maximized. For example, we could consider a scenario, connected with
management engineering, in which each resource models a project or a task to be completed,
and each agent is an employee of a company, or a server in a content delivery network, that
can be assigned to one of the tasks. It is reasonable to assume that, the more the number of
employees assigned to a task, the more the quality of the completed task (or the lower the
completion time, or the higher the probability that the task will be correctly completed). Indeed,
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the employees assigned to the same task can work in team, and it is expected that the resulting
quality improves as the working team includes new members.

When completed, each task generates a profit (i.e., a utility) that is proportional to the
resulting quality, and this profit (or a percentage of it) is equally shared among the employees
who contributed to the task. As the number of employees and tasks could be very high, the
presence of a centralized coordinator imposing all the assignments might be impracticable.
Therefore, a decentralized implementation of the system, where each worker autonomously
decides which task she wants to contribute to, is a more reasonable choice. To describe the
effects of decentralization, we consider a game representation of the system in which each
worker acts as a player who aims at maximizing the fraction of the profit that she receives (i.e.,
her payoff). This creates an interplay of strategic behavior, in which players compete with each
other by selecting the tasks (i.e., the resources) that maximize their payoff. This may lead to
suboptimal outcomes, in which the total utility is lower than the one achievable by a central
authority imposing an optimal assignment of players to resources.

Algorithmic game theory [1] offers several tools to describe how the strategic choices of the
players may affect the total utility achieved by all resources. First, the notion of pure Nash
equilibrium [2], that is an outcome in which no player can increase her payoff by unilaterraly de-
viating to another strategic choice, is used to model stable solutions arising from selfish behavior.
Then, the Price of Anarchy [3], which compares the total utility of any pure Nash equilibrium
against the optimal total utility achievable in a centralized and coordinated environment, is
adopted to quantify the lack of cooperation and coordination.

Our Contribution. Given the difficulties in coordinating the players’ strategic behavior, a
reasonable approach to convey them toward better pure Nash equilibria is that of providing
subsidies encouraging the use of certain resources. Several works [4, 5, 6, 7, 8, 9, 10, 11] showed
the effectiveness of this idea, by designing ad-hoc subsidy allocation mechanisms that are able to
improve the price of anarchy. The amount of subsidies that these mechanisms require, however,
can be very high, thus limiting their applicability to most real-life contexts, where budgets are
usually severely constrained.

In this work, we show how to improve the efficiency of decentralized allocation systems,
when the total amount of subsidies available to each resource is somewhat constrained by the
total utility that can be generated by the resource itself. We model allocation systems as a class
of games, called utility-sharing games, which constitutes a subclass of the general framework
of monotone valid utility games defined in [12], and is similar and/or equivalent to other game
classes studied in [13, 14, 15, 16, 8, 17, 18]. In utility-sharing games, we have a finite set of
players, a finite set of resources available to the players, and each resource is associated with
a certain utility function whose value is equally shared among the players selecting it. Each
player aims at maximizing her payoff, given by the fraction of utility she receives.

The main novelty of this work is the design and the analysis of 𝛼-subsidy mechanisms (𝛼-SMs),
a new class of subsidy allocation mechanisms that, parametrized by a value 𝛼 ≥ 1, allocate to
each resource an amount of subsidies that is at most 𝛼− 1 times the utility produced by the
resource, so that the players’ payoffs can be re-scaled up by a multiplicative factor 𝛼.

We provide tight bounds on the price of anarchy guaranteed by 𝛼-SMs for several classes of



utility-sharing games. In particular, we resort to a particular sub-class of 𝛼-SMs, called optimal-
congestion-based 𝛼-SMs, that can be computed and executed in polynomial time (Theorem 1),
and we provide upper bounds on the resulting price of anarchy that depend on 𝛼, the number
of players 𝑛, and the class of utility functions of the game (Theorem 2); we also provide simpler
bounds that depend on 𝑛 and 𝛼 only (Corollary 1).

Conversely, we show that optimal-congestion-based mechanisms achieve best-possible per-
formances within the general class of 𝛼-SMs, that is, no 𝛼-SM can further lower our bounds
on the price of anarchy (Theorem 3, Corollaries 2 and 3). Finally, we apply our general results
to the specific case of utility functions representable as monomials of fixed degree 𝑝 ∈ [0, 1]
(Theorem 4).

We point out that, for any utility-sharing game and sufficiently large 𝛼 ≥ 1, all pure Nash
equilibria induced by optimal-congestion-based 𝛼-SMs maximize the total utility (Remark 1).
Thus, our approach guarantees the same performance of the subsidy allocation mechanisms
studied in [8], that, differently from ours, may fail under some budget limitations. Furthermore,
for 𝛼 = 1, we re-obtain the tight bounds on the price of anarchy for utility-sharing games
without subsidies (Remark 2), already shown in [8, 17].

Further Related Work. The first general game-theoretic model for decentralized resource
allocation systems with payoff-maximizing players is that of monotone valid utility games
[12], where the payoff functions satisfy some mild assumptions, such as monotonicity and
submodularity w.r.t. the selected resources. In this seminal paper, a tight bound of 2 on the
price of anarchy of monotone valid utility games is provided. Subsequently, several (sub)classes
of monotone valid utility games have been introduced and studied.

A work that is strictly close to ours is [17], which studies the price of anarchy of (an equivalent
model of) utility-sharing games, and provided tight bounds that are parametrized by the number
of players and the considered utility functions; tight bounds on the price of anarchy for more
general settings in which the set of available resources is player-specific is also provided. Papers
[14, 8] model strategic project selection as specific instantiations of monotone valid utility
games, and provide more specific bounds on the price of anarchy and other efficiency metrics
(such as the price of stability [19]). In [16, 18], the efficiency of specific monotone valid utility
games where, differently from our model of utility-sharing games the sharing rules do not
necessarily split each resource utility in an equal way among the players selecting it, has been
considered.

The problem of determining mechanisms improving the price of anarchy in utility-sharing
games (so as for their variants and/or generalizations) has been widely considered in the
literature. In [8], it is shown how to assigns a credit (i.e., a subsidy) to each project, so as to
guarantee that any pure Nash equilibrium is an optimal strategy profile. A considerable amount
of work [5, 6, 7, 9, 10, 11] shows how to modify the payoffs of the players participating in
utility-sharing games (e.g., via subsidies), with the purpose of improving the efficiency of pure
Nash equilibria; in particular, tight bounds on the resulting price of anarchy, that depend on the
considered class of utility functions, are provided.

Utility-sharing games are strictly related to the cost-minimization game-theoretic model
of congestion games [20, 21]. Congestion games are resource selection games with a finite set



of cost-minimizing players and a finite set of resources, where each player selects a subset
of resources (among a finite collection that is player-specific), and the cost of each selected
resource is a function of the number of players selecting it. In particular, utility-sharing games
can be seen as the payoff-maximization version of congestion games with symmetric players
[22, 23] (that is, all players can share all resources) and singleton strategies (that is, each player
can select exactly one resource). The problem of measuring the price of anarchy of congestion
games has been a hot-topic in algorithm game theory in the last two decades [24, 25, 26, 27],
and several works have provided upper and lower bounds depending on the considered cost-
functions [28, 29, 30, 31, 32, 22, 33, 34] or the structure of the players’ strategies [35, 29, 36, 31,
37, 38, 39, 22, 23]. Furthermore, several works have also focused on the design and analysis
of mechanisms to improve the price of anarchy. The following classes of mechanisms have
been widely studied: taxation mechanisms [40, 41, 42, 7, 43, 44, 45], where each player, instead
of receiving a subsidy, is charged a tax; Stackelberg strategies [46, 22, 47, 48], in which a fraction
of the players can be controlled by a central authority; coordination-mechanisms [49, 50, 51],
where the order in which players are processed is decided by a local policy implemented on
each resource; cost-sharing mechanisms [49, 52, 53], that decide the rules to share the cost of
each resource among the players selecting it.

2. Model and Definitions

Given an integer 𝑘 ≥ 1, let [𝑘] := {1, 2, . . . , 𝑘} denote the set of the first 𝑘 positive integers.
Given an integer ℎ ≥ 0, N≥ℎ denotes the set of natural numbers higher or equal to ℎ, and
N := N≥1 denotes the set of natural numbers.

Utility-Sharing Games. A utility-sharing game is formally defined as a tuple SG =
(𝑁,𝑅, (𝑢𝑟)𝑟∈𝑅) where 𝑁 = [𝑛] is a set of 𝑛 players, 𝑅 = {𝑟1, . . . , 𝑟𝑚} is a set of 𝑚 re-
sources and 𝑢𝑟 : N≥0 → R≥0 is a non-negative (resource) utility function associated with each
resource 𝑟 ∈ 𝑅. We further assume that (i) 𝑢𝑟(0) = 0, (ii) 𝑢𝑟(𝑥) > 0 for some 𝑥 ∈ N, and 𝑢𝑟 is
(iii) non-decreasing and (iv) concave in N≥0; in particular, (i) holds since a resource without
players does not produce any utility, (ii) has been considered to avoid the presence of resources
that do not produce any utility, (iii) holds since the more the players, the higher the utility, and
(iv) holds since the contribution of a player who joins a resource decreases as the congestion of
that resource increases.

A strategy profile (or assignment) 𝜎 = (𝜎𝑖)𝑖∈𝑁 is a configuration in which each player 𝑖 has
selected resource 𝑟 = 𝜎𝑖 ∈ 𝑅, and 𝜎𝑖 denotes the strategy of player 𝑖 in 𝜎. The congestion
𝑛𝑟(𝜎) := |{𝑖 ∈ 𝑁 : 𝜎𝑖 = 𝑟}| of resource 𝑟 in strategy profile 𝜎 is the total amount of players
selecting 𝑟 in 𝜎. Given a strategy profile 𝜎, the payoff of player 𝑖 is defined as 𝑝𝑖(𝜎) :=
𝑢𝜎𝑖(𝑛𝜎𝑖(𝜎))/𝑛𝜎𝑖(𝜎). Informally, we assume that the utility achieved on each resource is
equally shared among the players selecting it, and this fraction of utility determines the payoff
of each player. The total utility function SUM(𝜎) :=

∑︀
𝑟∈𝑅 𝑢𝑟(𝑛𝑟(𝜎)) is equal to the sum of

all resource utilities. We have that SUM(𝜎) =
∑︀

𝑟∈𝑅 𝑢𝑟(𝑛𝑟(𝜎)) =
∑︀

𝑟∈𝑅 |{𝑖 ∈ 𝑁 : 𝜎𝑖 =

𝑟}| · 𝑢𝜎𝑖 (𝑛𝜎𝑖 (𝜎))

𝑛𝜎𝑖 (𝜎) =
∑︀

𝑖∈𝑁 𝑝𝑖(𝜎), that is, the total utility can be seen as the sum of all payoffs,
i.e., it is a social welfare function that is proportional to the overall satisfaction of all players.



Pure Nash Equilibria and Price of Anarchy. All players aim at maximizing their payoffs,
regardless of the others. As a reasonable outcome of selfish behavior, we consider the notion of
pure Nash equilibrium [2]. Given a strategy profile𝜎, a player 𝑖 ∈ 𝑁 and a resource 𝑟, let (𝜎−𝑖, 𝑟)
denote the strategy profile 𝜎′ in which player 𝑖 chooses resource 𝑟 (that is, 𝜎′

𝑖 = 𝑟), and all other
players choose the same resource as in𝜎 (that is, 𝜎′

ℎ = 𝜎ℎ for any ℎ ∈ 𝑁∖{𝑖}). A strategy profile
𝜎 is a pure Nash equilibrium if, for any player 𝑖 and resource 𝑟 ∈ 𝑅, we have 𝑝𝑖(𝜎) ≥ 𝑝𝑖(𝜎−𝑖, 𝑟),
that is, no player improves her payoff by deviating to another resource. Given a utility-sharing
game SG, let SP(SG) denote the set of strategy profiles of SG, and PNE(SG) denote the set of
pure Nash equilibria of SG; furthermore, let OPT(SG) = max𝜎∈𝑆𝑃 (SG) SUM(𝜎) denote the
maximum total utility achievable in SG.

A universal metric to measure the impact of selfishness on the total utility is the price of
anarchy [3]. Given a utility-sharing game SG, the price of anarchy (PoA) of SG is defined as
PoA(SG) = max𝜎∈PNE(SG)

OPT(SG)
SUM(𝜎) , that is, the worst-case ratio between the optimal total

utility and that achieved by any pure Nash equilibrium of SG. We observe that, the lower the
price of anarchy, the lower the impact of selfish behavior in terms of total utility.

Subsidy Mechanisms. We assume that each resource can implement a local policy that,
by means of a subsidy, may increase the payoffs of players selecting it, up to a maximum
factor 𝛼 ≥ 1. We refer to this set of local policies as 𝛼-subsidy mechanisms (𝛼-SMs). In
particular, an 𝛼-subsidy mechanism Π𝛼 takes as input a utility-sharing game SG and returns a
new utility-sharing game SG𝛼 = (𝑁,𝑀, (𝑢′𝑟)𝑟∈𝑀 ) that will be played in place of SG, where
each utility function 𝑢′𝑟 is called perceived utility of resource 𝑟, and verifies the following
properties: (i) 𝑢′𝑟(𝑥) = 𝑢𝑟(𝑥) + 𝜃𝑟(𝑥) for any 𝑥 ∈ N≥0, for an opportune non-negative subsidy
function 𝜃𝑟; (ii) the subsidy function 𝜃𝑟 is locally computed by resource 𝑟, based only on the
knowledge of the initial game SG and the congestion 𝑛𝑟(𝜎) of 𝑟 in a given strategy profile 𝜎;
(iii) 𝜃𝑟(𝑥) ≤ (𝛼 − 1) · 𝑢𝑟(𝑥), that is, 𝑢′𝑟(𝑥) ≤ 𝛼𝑢𝑟(𝑥), for any 𝑥 ∈ N≥0. We observe that the
perceived utilities 𝑢′𝑖 lead to a new players’ payoff 𝑝′𝑖(𝜎) = (𝑢𝜎𝑖(𝑛𝜎𝑖(𝜎))+𝜃𝑟(𝑛𝜎𝑖(𝜎)))/𝑛𝜎𝑖(𝜎),
for any strategy profile 𝜎 of SGΠ𝛼 and player 𝑖 ∈ 𝑁 .

In the following, we provide some justifications on the above properties characterizing 𝛼-SMs.
Property (i) states that the perceived utility is equal to the overall value given by the utility
and the additional subsidy (determined by 𝜃𝑟) assigned by the mechanism to each resource;
then, both the utility and the subsidy are shared by the players selecting the resource, thus
leading to new players’ payoffs. Property (ii) is motivated by the fact that the mechanism can
be reasonably executed in a distributed way, where each resource uses its local information on
the congestion, without knowing the congestion of the other resources. Finally, property (iii) is
motivated by scenarios in which the subsidies, because of some budget constraints, are limited
by a factor 𝛼 of the utility achievable by each resource.

Given an 𝛼-SM Π𝛼 for SG, the price of anarchy of SG under Π𝛼 is defined as PoA(SG,Π𝛼) =

max𝜎∈PNE(SG𝛼)
OPT(SG)
SUM(𝜎) , where PNE(SG𝛼) is the set of pure Nash equilibria of the game SG𝛼

induced by Π𝛼, OPT(SG) is the optimal total utility of the initial game SG and SUM(𝜎) is the
total utility computed according to the utility-functions of the initial game SG. Informally, the
price of anarchy of a game SG under an 𝛼-SM Π𝛼 measures how bad is a pure Nash equilibrium
of the game modified by Π𝛼 compared with the optimal total utility, but considering as total



utility functions those related to the initial game SG. The modelling choice for which subsidies
are not taken into account in the total utility appearing in the price of anarchy is motivated by
the realistic scenario in which players receive money as subsidies, and then the same amount
of money is lost by the central authority (e.g., a governmental entity) who disburses them.
Thus, the overall contribution to the social welfare of subsidies is null, that is, the social welfare
continues to be equal to the total utility without subsidies.

3. Computation and Efficiency of 𝛼-SMs

In this section, we first define a specific𝛼-SM that is polynomial-time computable and executable,
and then we measure its efficiency by providing bounds on the resulting price of anarchy. We
first provide some preliminary notation. We say that a function 𝑓 : N≥0 → R≥0 is payoff-regular
if the function 𝑢 defined as 𝑢(𝑥) := 𝑥 · 𝑓(𝑥) is a proper utility function (that is, 𝑓 determines
the payoff associated with utility function 𝑢). Given a class of payoff-regular functions 𝒟, let
ℒ(𝒟) := {𝑢 : 𝑢(𝑥) = 𝑤 · 𝑥 · 𝑓(𝑥), 𝑓 ∈ 𝒟, 𝑤 > 0} denote the family of utility functions whose
related payoff functions, up to a scaling factor, belong to 𝒟. The following proposition, whose
proof is deferred to the full version of the paper, shows some useful properties of payoff-regular
functions.

Proposition 1. Each payoff-regular function is non-increasing and positive in N.

3.1. Computation
Fix 𝛼 ≥ 1. Given a game SG = (𝑁,𝑀, (𝑢𝑟)𝑟∈𝑀 ) and an optimal strategy profile 𝜎* of SG, let
Π𝛼(𝜎

*) be an 𝛼-SM for SG that returns a new utility-sharing game SG𝛼 = (𝑁,𝑀, (𝑢′𝑟)𝑟∈𝑀 )
with perceived utility functions 𝑢′𝑟 defined as follows. For any 𝑥 ∈ N≥0 and strategy profile 𝜎:

𝑢′
𝑟(𝑥) =

{︃
𝑢𝑟(𝑥), if 𝑛𝑟(𝜎) ≥ 𝑛𝑟(𝜎

*),

𝛼 · 𝑢𝑟(𝑥), if 𝑛𝑟(𝜎) < 𝑛𝑟(𝜎
*).

(1)

Such an 𝛼-SM is called optimal-congestion-based. We observe that optimal-congestion-based
𝛼-SMs encourage the use of resources whose congestion in the optimal strategy profile is
higher than that in the played strategy profile, and this is done by increasing the utility of such
resources by a factor of 𝛼.

In the following theorem, we show that optimal-based-congestion 𝛼-SMs, under mild as-
sumptions, can be computed and executed in polynomial time.

Theorem 1. Given 𝛼 ≥ 1 and a utility-sharing game SG with utility functions in ℒ(𝒟), with
𝒟 containing payoff-regular functions only, we can compute and execute in polynomial time an
optimal-based-congestion 𝛼-SM for SG.

Sketch. We observe that, once an optimal strategy profile 𝜎* of SG is computed, then the 𝛼-SM
Π𝛼(𝜎

*) can be executed in polynomial time. Thus, to show the claim, it is sufficient to show
that an optimal strategy profile 𝜎* for SG can be computed in polynomial time. To compute an
optimal strategy profile 𝜎* of SG, we can apply a greedy algorithm that processes all players
following the ordering induced by their indices, and each processed player 𝑖 ∈ 𝑁 is assigned to



the resource 𝑟 that minimizes the quantity 𝑢𝑟(𝑘𝑖−1,𝑟 + 1)− 𝑢𝑟(𝑘𝑖−1,𝑟), where ties are broken
in favor of the resource with lower index, and 𝑘𝑖−1,𝑟 denotes the congestion of resource 𝑟
under the strategy profile obtained after assigning the first 𝑖− 1 players. This greedy algorithm
obviously runs in polynomial time.

The proof that the strategy profile returned by the greedy algorithm is optimal for SG is
based on the concavity of the utility functions 𝑢𝑟 , and is deferred to the full version.

3.2. Efficiency

In the following, we provide an upper bound on the price of anarchy under optimal-congestion-
based 𝛼-SMs, that is parametrized by the considered class of utility functions; furthermore, we
show that, under mild assumptions on the considered utility functions, no 𝛼-SM can improve
the efficiency achieved by optimal-congestion-based 𝛼-SMs, that is, the latter are essentially
the best possible 𝛼-SMs mechanisms.

PoAUpperBounds. We first give some preliminary notation. Given a payoff-regular function
𝑓 , let

𝛽𝑛,𝛼(𝑓) := sup
𝑥,𝑦∈N≥0:𝑛≥𝑥≥𝑦≥0,𝑥>0

𝑦

(︂
𝑓(𝑦)− 1

𝛼
𝑓(𝑥)

)︂
𝑥𝑓(𝑥)

;

we observe that 𝛽𝑛,𝛼(𝑓) ≥ 1− 1/𝛼 (indeed, it is sufficient to set 𝑥 = 𝑦 in the argument of the
supremum to get a value equal to 1−1/𝛼); furthermore, the denominator appearing in the right-
hand part of the definition is always non-zero, as each utility function 𝑓(𝑥) is positive in 𝑥 > 0
(by Proposition 1). Given a class of payoff-regular functions 𝒟, let 𝛽𝑛,𝛼(𝒟) := sup𝑓∈𝒟 𝛽𝑛,𝛼(𝑓)
and 𝛽𝛼(𝒟) := sup𝑛∈N 𝛽𝑛,𝛼(𝒟).

Theorem 2. Let 𝒟 be a class of payoff-regular functions. Given a game SG with at most 𝑛 ≥ 2
players and utility functions in ℒ(𝒟), and given an optimal-congestion-based 𝛼-SM Π𝛼(𝜎

*) for
SG, we have that

PoA(SG,Π𝛼(𝜎
*)) ≤ 1

𝛼
+ 𝛽𝑛,𝛼(𝒟) ≤ 1

𝛼
+ 𝛽𝛼(𝒟).

Sketch. Let SG = (𝑁,𝑀, (𝑢𝑟)𝑟∈𝑀 ) be a utility-sharing game with utility functions in ℒ(𝒟),
and let 𝜎* be a social optimum of SG. Let 𝜎 be a pure Nash equilibrium of the game SG𝛼

obtained after applying the 𝛼-SM Π𝛼(𝜎
*). Let 𝑜𝑗 and 𝑘𝑗 be the congestions of each resource

𝑟𝑗 ∈ 𝑅 in 𝜎* and 𝜎, respectively.
For each 𝑟𝑗 ∈ 𝑅 such that 𝑘𝑗 ≥ 𝑜𝑗 , we have that

𝑜𝑗𝑓𝑗(𝑜𝑗)−
1

𝛼
𝑜𝑗𝑓𝑗(𝑘𝑗) ≤ 𝑘𝑗𝑓𝑗(𝑘𝑗)𝛽𝑛,𝛼(𝒟), (2)

by definition of 𝛽𝑛,𝛼(𝒟). On the other hand, for any 𝑟𝑗 ∈ 𝑅 such that 𝑜𝑗 > 𝑘𝑗 , we have that

𝑜𝑗𝑓𝑗(𝑜𝑗)− (𝑜𝑗 − 𝑘𝑗) 𝑓𝑗(𝑘𝑗 + 1) ≤ 𝑜𝑗𝑓𝑗(𝑜𝑗)− (𝑜𝑗 − 𝑘𝑗) 𝑓𝑗(𝑜𝑗) = 𝑘𝑗𝑓𝑗(𝑜𝑗) ≤ 𝑘𝑗𝑓𝑗(𝑘𝑗), (3)

where 𝑘𝑗𝑓𝑗(𝑘𝑗) ≥ 𝑘𝑗𝑓𝑗(𝑘𝑗 + 1) ≥ 𝑘𝑗𝑓𝑗(𝑜𝑗) trivially holds if 𝑘𝑗 = 0, and holds even if 𝑘𝑗 > 0,
since 𝑓 is payoff-regular (thus, non-increasing by Proposition 1) and 𝑘𝑗 + 1 ≤ 𝑜𝑗 (by the
integrality of 𝑘𝑗 and 𝑜𝑗).



Now, we recall that each utility function 𝑢𝑗 := 𝑢𝑟𝑗 of SG can be written as 𝑢𝑗(𝑥) :=
𝑤𝑗 · 𝑥 · 𝑓𝑗(𝑥), with 𝑤𝑗 > 0 and 𝑓𝑗 ∈ 𝒟. Thus, as 𝜎 is a pure Nash equilibrium in the new game
SG𝛼, we observe that the value of each utility function 𝑢′𝑗 := 𝑢′𝑟𝑗 achieved when playing 𝜎 in
SG𝛼 is equal to 𝑢′𝑗(𝑘𝑗) = 𝑤′

𝑗 · 𝑥 · 𝑓𝑗(𝑘𝑗), where

𝑤′
𝑗 =

{︃
𝑤𝑗 , if 𝑘𝑗 ≥ 𝑜𝑗 ,

𝛼 · 𝑤𝑗 , if 𝑘𝑗 < 𝑜𝑗
; (4)

analogously, the payoff function of each player in the new game SG𝛼 when playing the equilib-
rium 𝜎 is equal to 𝑤′

𝑗 ·𝑓𝑗(𝑘𝑗). Thus, since 𝜎 is an equilibrium in game SG𝛼 and all payoff-regular
functions are non-increasing (by Proposition 1), for each pair of resources (𝑟𝑗 , 𝑟ℎ), we have that

𝑤′
𝑗𝑓𝑗(𝑘𝑗) ≥ 𝑤′

ℎ𝑓ℎ(𝑘ℎ + 1). (5)

Furthermore, as
∑︀

𝑟𝑗∈𝑅 𝑘𝑗 = |𝑁 | =
∑︀

𝑟𝑗∈𝑅 𝑜𝑗 , we have the following equality (whose proof is
deferred to the full version): ∑︁

𝑟𝑗∈𝑅:𝑘𝑗≥𝑜𝑗

(𝑘𝑗 − 𝑜𝑗) =
∑︁

𝑟𝑗∈𝑅:𝑜𝑗>𝑘𝑗

(𝑜𝑗 − 𝑘𝑗). (6)

By combining (5) and (6), we obtain the following inequality:∑︁
𝑗:𝑘𝑗≥𝑜𝑗

(𝑘𝑗 − 𝑜𝑗)𝑤
′
𝑗𝑓𝑗(𝑘𝑗)−

∑︁
𝑗:𝑘𝑗<𝑜𝑗

(𝑜𝑗 − 𝑘𝑗)𝑤
′
𝑗𝑓𝑗(𝑘𝑗 + 1) ≥ 0. (7)

By combining (2), (3) and (7), and by exploiting the definition of 𝑤′
𝑗 given in (4), we get the

following inequalities (a more detailed list of inequalities is deferred to the full version):∑︁
𝑗∈𝑅

𝑜𝑗𝑤𝑗𝑓𝑗(𝑜𝑗)

≤
∑︁
𝑗∈𝑅

𝑜𝑗𝑤𝑗𝑓𝑗(𝑜𝑗) +
1

𝛼

⎡⎣ ∑︁
𝑗:𝑘𝑗≥𝑜𝑗

(𝑘𝑗 − 𝑜𝑗)

=𝑤𝑗⏞ ⏟ 
𝑤′

𝑗 𝑓𝑗(𝑘𝑗)−
∑︁

𝑗:𝑘𝑗<𝑜𝑗

(𝑜𝑗 − 𝑘𝑗)

=𝛼𝑤𝑗⏞ ⏟ 
𝑤′

𝑗 𝑓𝑗(𝑘𝑗 + 1)

⎤⎦ (8)

=

⎡⎣ ∑︁
𝑗:𝑘𝑗≥𝑜𝑗

𝑤𝑗

(︂
𝑜𝑗𝑓𝑗(𝑜𝑗)−

1

𝛼
𝑜𝑗𝑓𝑗(𝑘𝑗) +

1

𝛼
𝑘𝑗𝑓𝑗(𝑘𝑗)

)︂⎤⎦
+

⎡⎣ ∑︁
𝑗:𝑘𝑗<𝑜𝑗

𝑤𝑗 (𝑜𝑗𝑓𝑗(𝑜𝑗)− (𝑜𝑗 − 𝑘𝑗) 𝑓𝑗(𝑘𝑗 + 1))

⎤⎦
≤

⎡⎣ ∑︁
𝑗:𝑘𝑗≥𝑜𝑗

𝑤𝑗

(︂
𝛽𝑛,𝛼(𝒟)𝑘𝑗𝑓𝑗(𝑘𝑗) +

1

𝛼
𝑘𝑗𝑓𝑗(𝑘𝑗)

)︂⎤⎦+

⎡⎣ ∑︁
𝑗:𝑘𝑗<𝑜𝑗

𝑤𝑗𝑘𝑗𝑓𝑗(𝑘𝑗)

⎤⎦ (9)

≤

⎡⎣ ∑︁
𝑗:𝑘𝑗≥𝑜𝑗

𝑤𝑗

(︂
1

𝛼
+ 𝛽𝑛,𝛼(𝒟)

)︂
𝑘𝑗𝑓𝑗(𝑘𝑗)

⎤⎦+

⎡⎣ ∑︁
𝑗:𝑘𝑗<𝑜𝑗

𝑤𝑗

(︂
1

𝛼
+ 𝛽𝑛,𝛼(𝒟)

)︂
𝑘𝑗𝑓𝑗(𝑘𝑗)

⎤⎦ (10)

=

(︂
1

𝛼
+ 𝛽𝑛,𝛼(𝒟)

)︂∑︁
𝑗∈𝑅

𝑘𝑗𝑤𝑗𝑓𝑗(𝑘𝑗), (11)



where (8) follows from (7), (9) follows from (2) and (3), and (10) holds since 1/𝛼+ 𝛽𝑛,𝛼(𝒟) ≥ 1
(indeed, we already observed at the beginning of this section that 1− 1/𝛼 ≤ 𝛽𝑛,𝛼(𝒟)).

Therefore, from (11) we have that
∑︀

𝑗∈𝑅 𝑜𝑗𝑤𝑗𝑓𝑗(𝑜𝑗) ≤
(︂
1

𝛼
+ 𝛽𝑛,𝛼(𝒟)

)︂∑︀
𝑗∈𝑅 𝑘𝑗𝑤𝑗𝑓𝑗(𝑘𝑗),

and we can conclude that

PoA(SG,Π𝛼(𝜎
*)) =

∑︀
𝑗∈𝑅 𝑢𝑗(𝑜𝑗)∑︀
𝑗∈𝑅 𝑢𝑗(𝑘𝑗)

=

∑︀
𝑗∈𝑅 𝑜𝑗𝑤𝑗𝑓𝑗(𝑜𝑗)∑︀
𝑗∈𝑅 𝑘𝑗𝑤𝑗𝑓𝑗(𝑘𝑗)

≤ 1

𝛼
+ 𝛽𝑛,𝛼(𝒟).

Remark 1 (Optimal PoA via 𝛼-SMs). Given a class of payoff-regular functions 𝒟 and a game
SG = (𝑁,𝑀, (𝑢𝑟)𝑟∈𝑀 ) with utility functions in ℒ(𝒟), if we apply to SG an optimal-based-

congestion SM𝛼 with 𝛼 >
max𝑟∈𝑅,𝑙∈[𝑛](𝑢𝑟(𝑙)/𝑙)

min𝑟∈𝑅,𝑙∈[𝑛](𝑢𝑟(𝑙)/𝑙)
, we have that the resulting pure Nash equilibrium

𝜎 necessarily coincides with the optimal strategy profile 𝜎* which the SM𝛼 is based on (the
proof of this property is deferred to the full version). Thus, the price of anarchy becomes 1, and
we re-obtain the optimal performance of the subsidy mechanisms considered in [8].

The following corollary of Theorem 2 provides a tight bound on the price of anarchy that
depends on the number of players only, under mild assumptions on the considered utility
functions.

Corollary 1. Let SG be a utility-sharing game with at most 𝑛 ≥ 2 players and utility functions
in a class ℒ(𝒟), with 𝒟 containing payoff-regular functions only. For any optimal-congestion-
based 𝛼-SM Π𝛼(𝜎

*) for SG, we have that

PoA(SG,Π𝛼(𝜎
*)) ≤ 1 +

1

𝛼

(︂
1− 1

𝑛

)︂
≤ 1 +

1

𝛼
.

Proof. To prove the claim it is sufficient to show that

𝑦
(︀
𝑓(𝑦)− 1

𝛼𝑓(𝑥)
)︀

𝑥𝑓(𝑥)
≤ 1− 1

𝛼𝑛
∀𝑥, 𝑦 : 𝑛 ≥ 𝑥 ≥ 𝑦 ≥ 0, 𝑥 > 0. (12)

Indeed, by combining the previous inequality with Theorem 2, we get

PoA(SG) ≤ 1

𝛼
+ 𝛽𝑛,𝛼(𝒟) ≤ 1

𝛼
+

(︂
1− 1

𝛼𝑛

)︂
= 1 +

1

𝛼

(︂
1− 1

𝑛

)︂
.

If 𝑦 = 0, inequality (12) trivially holds. If 𝑦 ≥ 1, we have that

𝑦(𝑓(𝑦)− 1
𝛼𝑓(𝑥))

𝑥𝑓(𝑥)
=

𝑦𝑓(𝑦)− 1
𝛼𝑦𝑓(𝑥)

𝑥𝑓(𝑥)
≤

𝑥𝑓(𝑥)− 1
𝛼𝑦𝑓(𝑥)

𝑥𝑓(𝑥)
= 1− 𝑦

𝛼𝑥
≤ 1− 1

𝛼𝑛
, (13)

where the first inequality follows from the fact that the functions of the type 𝑡 · 𝑓(𝑡) are
necessarily non-decreasing (as they belong to a class ℒ(𝒟) that contains, by assumptions,
proper utility functions only) and (13) holds since 𝑦 ≥ 1 and 𝑥 ≤ 𝑛.



PoA Lower Bounds. In the following theorem, whose full proof is deferred to the full version,
we show that no 𝛼-SM can outperform the worst-case efficiency achieved by optimal-based-
congestion 𝛼-SMs.

Theorem 3. Let 𝒟 be a class of payoff-regular functions. For any 𝜖 > 0 and 𝑛 ∈ N≥2, there
exists a utility-sharing game SG with at most 𝑛 players such that, for any 𝛼-SM Π𝛼 for SG, the
price of anarchy of SG under Π𝛼 is higher than 1/𝛼+ 𝛽𝑛,𝛼(𝒟)− 𝜖.

Sketch. Fix 𝜖 > 0 and 𝑛 ∈ N≥2. By definition of supremum, we have that there exist 𝑥, 𝑦 ∈ N0

with 𝑛 ≥ 𝑥 ≥ 𝑦 and 𝑥 > 0, and 𝑓 ∈ 𝒟 such that 1
𝛼 +

𝑦(𝑓(𝑦)− 1
𝛼𝑓(𝑥))

𝑥𝑓(𝑥)
> 1 + 𝛽𝑛,𝛼(𝒟) − 𝜖.

Consider a game SG = (𝑁,𝑅, (𝑢𝑟)𝑟∈𝑅) with 𝑥 = |𝑁 | ≤ 𝑛 players and a set 𝑅 of 𝑥 − 𝑦 + 1
resources. Set 𝑅′ := 𝑅 ∖ {𝑟1} = {𝑟2, . . . , 𝑟𝑥−𝑦+1}. The utility function of resource 𝑟1 is
𝑢1(𝑡) := 𝑤1 · 𝑡 · 𝑓(𝑡), with 𝑤1 := 1, while the utility function of each resource 𝑟𝑗 ∈ 𝑅′ is
𝑢𝑗(𝑡) := 𝑢2(𝑡) =: 𝑤2 · 𝑡 · 𝑓(𝑡), with 𝑤2 := 𝑓(𝑥)

𝛼𝑓(1) . One can show that, for any 𝛼-SM Π𝛼, the
strategy profile 𝜎 in which all players choose resource 𝑟1 is a pure Nash equilibrium under the
application of Π𝛼. Now, let 𝜎* be the strategy profile in which 𝑦 players choose resource 𝑟1,
while each of the remaining 𝑥− 𝑦 players chooses a different resource in 𝑅′. By estimating the
ratio between the total utilities of 𝜎* and 𝜎, the claim follows.

We also have the following corollary of Theorem 3, that provides a lower bound that does
not depend on the maximum number of players (the proof is deferred to the full version).

Corollary 2. Let 𝒟 be a class of payoff-regular functions. For any 𝜖 > 0, there exists a utility-
sharing game SG such that, for any 𝛼-SM Π𝛼 for SG, the price of anarchy of SG under Π𝛼 is
higher than 1/𝛼+ 𝛽𝛼(𝒟)− 𝜖.

Finally, the following corollary of Theorem 3 and Corollary 2 shows that the upper bound
provided in Corollary 1 is tight (the proof is deferred to the full version).

Corollary 3. (i) For any 𝑛 ∈ N≥2, there exists a utility-sharing game SG with at most 𝑛 players
such that, for any 𝛼-SM Π𝛼 for SG, the price of anarchy of SG under Π𝛼 is at least 1+ 1

𝛼

(︀
1− 1

𝑛

)︀
.

(ii) Furthermore, for any 𝜖 > 0, there exists a game SG such that the price of anarchy of SG
under Π𝛼 is higher than 1 + 1

𝛼 − 𝜖.

Remark 2 (PoA without subsidies). If 𝛼 = 1, an optimal-congestion-based 𝛼-SM does not change
the utility functions of the original game. Thus, the tight bounds provided in Theorems 2-3
and Corollaries 1-3 with 𝛼 = 1 are also tight bounds on the price of anarchy of utility-sharing
games without the use of any subsidy mechanism, that is, we can re-obtain the tight bounds on
the price of anarchy provided in [8, 17].

4. The Case of Monomial Utility Functions

In the following result, we apply Theorems 2 and 3 to characterize the price of anarchy under
optimal-congestion-based 𝛼-SMs of games with monomial utility-functions of fixed degree
𝑝 ∈ (0, 1) (the proof is deferred to the full version).
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Figure 1: The red line represents, for any 𝛼 ≥ 1, the price of anarchy under optimal-based-congestion
𝛼-SMs for games when the underlying utility functions are not specified (Corollaries 1 and 3), while
the blue line represents the price of anarchy of games whose utility functions are monomials of degree
1/2 (a case of Theorem 4). From this comparison, we observe that the bounds on the price of anarchy
that depend on the specific class of utility functions (Theorems 2 and 3) may be definitely more precise
than the bounds which depend on 𝛼 only (Corollaries 1 and 3).

Theorem 4. . Given 𝑝 ∈ (0, 1), a utility-sharing game SG with utility functions of type
𝑢(𝑥) = 𝑤 · 𝑥𝑝 for some 𝑤 > 0 and an optimal-congestion-based 𝛼-SM Π𝛼(𝜎

*) for SG, we

have PoA(SG,Π𝛼(𝜎
*)) ≤ 1− 𝑡

𝛼
+ 𝑡𝑝, with 𝑡 = min

{︁
(𝛼𝑝)

1
1−𝑝 , 1

}︁
. Furthermore, no 𝛼-SM can

achieve, in general, a better price of anarchy.

Remark 3 (PoA without subsidies (cont.)). For 𝛼 = 1, the tight bounds provided in Corollary 4
are also tight bounds on the price of anarchy of utility-sharing games with monomial profit
functions without the use of any 𝛼-SM, that is, we can re-obtain the tight bounds on the price
of anarchy provided in [17].

In the following example we show an application of Theorem 4 with 𝑝 = 1
2 .

Example 1. By applying Theorem 4, we have that the price of anarchy under optimal-congestion-
based 𝛼-SMs of games SG with monomial utility functions of type 𝑢(𝑥) = 𝑤 · 𝑥1/2 is equal to
𝛼2+4
4𝛼 for 𝛼 < 2, and equal to 1 for 𝛼 ≥ 2. In Figure 1, we see how the price of anarchy varies

over 𝛼 ≥ 1, and we compare it with the case of general functions.

5. Conclusion and Future Works

In this work, we have shown how to reduce the price of anarchy in a large class of resource-
selection games with utility-maximizing players, by resorting to a limited amount of subsidies
that can be distributed among resources and is subsequently shared among the players who use
them.

Our work leaves several research directions on the problem of improving the efficiency in
utility sharing games via limited subsidies.

First of all, our subsidy mechanisms dynamically depend on the actual congestion of each
resource. Thus, it would be interesting to show how the efficiency can be improved if subsidies
do not depend on the current game configuration. Another research direction could be that



of finding subsidy (or taxing) mechanisms with limited budget for more general variants of
utility-sharing games, where players can also be cost-minimizers (as in congestion games [21])
and/or have different weights and/or can select different subsets of resources).

Finally, still with the aim of improving the efficiency of the considered games, it would be
also interesting to consider other mechanisms than subsidy disbursements (e.g., Stackelberg
strategies [47]).
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