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Abstract
Given a graph 𝐺 = (𝑉,𝐸) of maximum degree Δ, denoting by 𝑑(𝑥, 𝑦) the distance in 𝐺 between nodes
𝑥, 𝑦 ∈ 𝑉 , an 𝐿(3, 2, 1)-labeling of 𝐺 is an assignment 𝑙 from 𝑉 to the set of non-negative integers such
that |𝑙(𝑥)− 𝑙(𝑦)| ≥ 3 if 𝑥 and 𝑦 are adjacent, |𝑙(𝑥)− 𝑙(𝑦)| ≥ 2 if 𝑑(𝑥, 𝑦) = 2, and |𝑙(𝑥)− 𝑙(𝑦)| ≥ 1 if
𝑑(𝑥, 𝑦) = 3, for all 𝑥 and 𝑦 in 𝑉 . The 𝐿(3, 2, 1)-number 𝜆(𝐺) is the smallest positive integer such that
𝐺 admits an 𝐿(3, 2, 1)-labeling with labels from {0, 1, . . . , 𝜆(𝐺)}.

In this paper, the 𝐿(3, 2, 1)-number of certain planar graphs is determined, proving that it is linear
in Δ, although the general upper bound for the 𝐿(3, 2, 1)-number of planar graphs is quadratic in Δ.
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1. Introduction

Given a graph 𝐺 = (𝑉,𝐸), denote by Δ its maximum degree, and let 𝑑(𝑥, 𝑦) be the distance in
𝐺 between nodes 𝑥, 𝑦 ∈ 𝑉 . An 𝐿(3, 2, 1)-labeling of 𝐺 is an assignment 𝑙 from 𝑉 to the set of
non-negative integers such that |𝑙(𝑥)− 𝑙(𝑦)| ≥ 3 if 𝑥 and 𝑦 are adjacent, |𝑙(𝑥)− 𝑙(𝑦)| ≥ 2 if
𝑑(𝑥, 𝑦) = 2, and |𝑙(𝑥)− 𝑙(𝑦)| ≥ 1 if 𝑑(𝑥, 𝑦) = 3, for all 𝑥 and 𝑦 in 𝑉 . The 𝐿(3, 2, 1)-number
𝜆(𝐺) is the smallest positive integer such that 𝐺 admits an 𝐿(3, 2, 1)-labeling with labels from
{0, 1, . . . , 𝜆(𝐺)}.

In the context of frequency assignment problems in ad-hoc wireless networks, transmitters
are assigned frequencies so that they are at a mutual distance at least equal to a minimum
allowed separation, and the aim is to minimize the used bandwidth. Hale [14] introduced a
graph model for this problem already in 1980. Roberts [19] introduced the concept of ‘very close’
and ‘close’ stations (respectively at a distance 1 and 2 in the corresponding communication
graph) and, in 1992, Griggs and Yeh [13] formulated the problem in terms of a special graph
coloring problem called 𝐿(2, 1)-labeling problem. The 𝐿(2, 1)-labeling problem and its more
general version, the 𝐿(ℎ, 𝑘)-labeling problem, have been the subject of a huge number of papers,
most of them devoted to proving the very well known Griggs and Yeh’s conjecture, concerning
the maximum possible value of the bandwidth (for a survey, see [5]).
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In practice, interference among frequencies could go beyond distance two so, in 2004, Liu
and Shao [17] generalized the 𝐿(2, 1)-labeling problem to the 𝐿(3, 2, 1)-labeling problem to
take into account even stations at a distance 3.

Since its definition, the technology has changed, and the 𝐿(3, 2, 1)-labeling problem has
become outdated in practice; nevertheless, it has been considered attractive by researchers even
only from a purely theoretical point of view, and many papers have been published on this
topic, in an attempt to clarify which is the maximum necessary bandwidth; indeed, it is still
worth studying the problem due to its many implications in the world of graph theory. This
paper goes in this direction.

The problem of deciding whether 𝜆(𝐺) is upper bounded by a given parameter 𝑘 is trivially
NP-complete because, for example, it coincides with the decisional version of the𝐿(2, 1)-labeling
problem on diameter 2 graphs, which is difficult [13].

In general, if 𝐺 is a graph with maximum degree Δ, Clipperton et al. [8] proved that
𝜆(𝐺) ≤ Δ3 +Δ2 + 3Δ; later, this upper bound was improved to Δ3 + 2Δ [7].

The 𝐿(3, 2, 1)-number of many graphs is known; for example, paths, cycles, caterpillars,
complete and complete bipartite graphs [8]; fans and wheels [18]; interval [1], permutation [2]
and trapezoid graphs [3]; power of paths [7]; the cartesian product of paths and cycles [7], of a
complete bipartite graph and a path or a cycle [12], and of a triangle and a cycle [16].

Liu and Shao [17] showed that 𝜆(𝐺) ≤ 15(Δ2 −Δ+ 1) if 𝐺 is a planar graph of maximum
degree Δ.

Nevertheless, for interesting subclasses of planar graphs, better results are known:

• 𝑛-length paths 𝑃𝑛 and cycles 𝐶𝑛, 𝑛 ≥ 8: 𝜆(𝑃𝑛) = 3Δ + 1 = 7, 𝜆(𝐶𝑛) = 3Δ + 1 = 7 if
𝑛 is even and = 3Δ+ 2 = 8 if 𝑛 odd (but also the results for small values of 𝑛 are found)
[8];

• ladders 𝐿𝑛 = 𝑃𝑛 × 𝑃2: 𝜆(𝐿𝑛) = 2Δ + 3 = 9 if 𝑛 ≥ 5 (but also the results for small
values of 𝑛 are found) [7];

• caterpillars 𝐶 : 𝜆(𝐶) ≤ 2Δ + 2 [8];
• trees 𝑇 : 2Δ + 1 ≤ 𝜆(𝑇 ) ≤ 2Δ + 3, deciding which is the exact value for the 𝐿(3, 2, 1)-

number is NP-complete in general, while the upper bound is tight for complete (Δ−1)-ary
trees and the lower bound is tight for stars with 𝑛+1 nodes [7];

• wheels 𝑊𝑛 with 𝑛+ 1 nodes (and of degree Δ = 𝑛): 𝜆(𝑊𝑛) = 2Δ + 1 [18]; particular
star- and wheel-related graphs that turn out to be planar are studied in [11] and their
𝐿(3, 2, 1)-number is also linear in Δ;

• friendship graphs 𝐹𝑟𝑛 = 𝑛𝐾2 +𝐾1: 𝜆(𝐹𝑟𝑛) = 4𝑛+ 1 = 2Δ+ 1 [18].

It is evident that, despite the general quadratic upper bound, for some classes of planar graphs,
the upper bound on 𝜆(𝐺) is linear in Δ. We will prove this is true also for other important
subclasses of planar graphs, i.e., regular grids, the square of cycles, and outerplanar graphs.

2. Definitions and Preliminary Results

Given a graph 𝐺 = (𝑉,𝐸), we denote by 𝑛 the number of its nodes and by 𝑚 the number of its
edges. For each 𝑣 ∈ 𝑉 , 𝑑𝑒𝑔(𝑣) represents the degree of 𝑣, and Δ is the maximum degree of 𝐺.



Definition 1. Let 𝐺 = (𝑉,𝐸) be a graph and 𝑙 be a mapping 𝑙 : 𝑉 → N ∪ {0}. 𝑙 is an
𝐿(3, 2, 1)-labeling of 𝐺 if, for all 𝑥, 𝑦 ∈ 𝑉 ,

|𝑙(𝑥)− 𝑙(𝑦)| ≥

⎧⎪⎨⎪⎩
3, i𝑓𝑑(𝑥, 𝑦) = 1

2, i𝑓𝑑(𝑥, 𝑦) = 2

1, i𝑓𝑑(𝑥, 𝑦) = 3

Definition 2. Given a graph 𝐺 = (𝑉,𝐸) and an 𝐿(3, 2, 1)-labeling 𝑙 of it, the value 𝜎(𝑙, 𝐺) =
max𝑣∈𝑉 𝑙(𝑣) is called span of 𝑙. The minimum value of 𝜎(𝑙, 𝐺) over all mapping functions 𝑙 for 𝐺
is called the 𝐿(3, 2, 1)-number of 𝐺 and denoted by 𝜆(𝐺) (simply 𝜆 for short, where no confusion
arises).

It is not restrictive to assume that, given a graph 𝐺, there exists a node 𝑤 of 𝐺 such that
𝑙(𝑤) = 0, otherwise it is possible to obtain a new labeling with this property by shifting the
values of all the labels from 𝑙(𝑣) to 𝑙(𝑣)−min𝑢∈𝑉 𝑙(𝑢) for each 𝑣 ∈ 𝑉 .

This concept has been introduced in [15] concerning another labeling function, the 𝐿(2, 1)-
labeling.

Given a graph 𝐺, the values of 𝑙(𝑣), for any 𝑣 ∈ 𝑉 , are interchangeably called labels and
colors. Because of this name, it is common to define palette of an 𝐿(3, 2, 1)-labeling function 𝑙
of 𝐺 the set 𝑃 = {0, 1, . . . , 𝜎(𝑙, 𝐺)}.

For each graph 𝐺, it holds the symmetry property of the palette: it is always possible to get a
new labeling 𝑙′ starting from a given one 𝑙 by simply assigning 𝑙′(𝑣) = 𝜎(𝑙, 𝐺)− 𝑙(𝑣); trivially,
𝜎(𝑙, 𝐺) = 𝜎(𝑙′, 𝐺).

Given an 𝐿(3, 2, 1)-labeling function 𝑙 for 𝐺, if 𝑙(𝑣) has already been determined for some
𝑣, then we will choose the colors to label the nodes at a distance ≤ 3 from 𝑣 in 𝐺 among the
ones in a subset obtained from the palette by temporarily eliminating 𝑙(𝑣) and possibly other
close colors. Some proofs in the following will exploit this concept of temporarily deleting some
colors from the palette.

In this paper, we consider the following subclasses of planar graphs.

The infinite hexagonal grid is the graph naturally derived from a tassellation of the plane with
regular hexagons. Since it is a regular graph of degree 3, we will name it 𝐺3. For the sake of
completeness, we analogously define the infinite squared and triangular grids as derived from a
tassellation of the plane with squares and equilateral triangles, respectively, which are regular
graphs of degree 4 and 6, and hence denoted 𝐺4 and 𝐺6. Finally, it is also possible to generalize
the concept of regular grid to not planar graphs and define the infinite octagonal grid, which
does not come from any tassellation but is a regular graph of degree 8, call it 𝐺8.

A cycle is an ordered sequence of nodes 𝑣1, . . . , 𝑣𝑛 connected by edges {𝑣𝑖, 𝑣𝑖+1}, 𝑖 =
1, . . . , 𝑛− 1, and {𝑣𝑛, 𝑣1}. 𝐶𝑛 denotes an 𝑛 node cycle.

The square of a graph 𝐺 is a graph 𝐺2 that has the same set of nodes as 𝐺, and two nods are
adjacent when their distance in 𝐺 is at most 2. We focus on the square of cycles 𝐶2

𝑛, which are
planar graphs when 𝑛 is even and when 𝑛 = 3.



A graph is outerplanar if it can be embedded in the plane so that every node lies on the
boundary of the outer face. It follows that once the first node has been chosen, clockwise order
around this face induces a total order on the graph nodes.

We now present some preliminary results that will be exploited in the following, although
are of their own interest.

Theorem 1. For any graph 𝐺 with maximum degree Δ ≥ 2, 𝜆(𝐺) ≥ 2Δ + 1.

Proof. This lower bound trivially comes from observing that the Δ neighbors of a maximum
degree node 𝑣 must be labeled with Δ labels at mutual distance 2 (so at least 2Δ− 1 colors)
and that 𝑣 must receive a different label at a distance 3 from any one of its neighbors. So, at
least 2Δ + 2 colors are necessary. □

A fan 𝐹𝑛 has 𝑛+ 1 nodes; 𝑛 of them, called 𝑣1, . . . , 𝑣𝑛, constitute a path, while one, called 𝑐,
is connected by an edge to all the other 𝑛.

Murugan and Surija [18] proved that, for 𝑛 ≥ 5, 𝜆(𝐹𝑛) = 2𝑛 + 1. Here we complete this
result also for small values of 𝑛:

Lemma 1. 𝜆(𝐹𝑛) = 2𝑛+ 1 if 𝑛 ≥ 4 while 𝜆(𝐹𝑛) = 2𝑛+ 2 if 𝑛 = 2, 3.

Proof. First, observe that a possible general labeling of 𝐹𝑛 assigns to 𝑐 label 0, and ordinately
from left to right the following sequence of labels to 𝑣1, . . . , 𝑣𝑛:
it starts with color 3 and hops colors 4 by 4; when the end of the palette is reached, it begins
again from color 5 and hops again 4 colors by 4. (For example, if 𝑛 = 5, 𝑣1, . . . , 𝑣5 will be
labeled by labels 3, 7, 11, 5, 9 in this order.)

If 𝑛 = 2, 𝐹𝑛 is a triangle, all three nodes must get labels at mutual distance 3, i.e., 0, 3, and 6.
Hence 𝜆(𝐹2) = 2𝑛+ 2 = 6.

If 𝑛 = 3, we prove that 𝜆(𝐹3) = 8.
First we prove that 𝜆(𝐹3) > 7. By contradiction, assume that the palette 𝑃 = {0, 1, . . . , 7}.

If 𝑙(𝑐) = 0, then 𝑣1, 𝑣2 and 𝑣3 must necessarily be labeled with 3, 5, 7 in some order; but no one
among these three colors is suitable to be the label of 𝑣2, that is adjacent both to 𝑣1 and to 𝑣3. If
𝑙(𝑐) = 7, similar reasonings hold. If finally, 𝑐 is labeled with a color different both from 0 and
from 7, it is easy to see that there are not three available labels at mutual distance 2.

On the other hand, 𝜆(𝐹3) ≤ 8 because a possible feasible labeling of this graph assigns 0 to
node 𝑐 and the labels 6, 3, 8 to 𝑣1, 𝑣2, 𝑣3.

So, 𝜆(𝐹3) = 2𝑛+ 2 = 8.

If 𝑛 = 4, we apply Theorem 1, deducing that 𝜆(𝐹4) ≥ 9. A possible labeling assigns 0 to node 𝑐
and the sequence 7, 3, 9, 5 to 𝑣1, . . . , 𝑣4 in this order. It follows that 𝜆(𝐹4) = 2𝑛+ 1 = 9. (Note
that the labeling procedure used for 𝑛 ≥ 5 would produce for 𝑣1, . . . , 𝑣4 the sequence 3, 7, 5, 9
that is not feasible because colors 5 and 7 are assigned to adjacent nodes.) □

Since we want to exploit a feasible 𝐿(3, 2, 1)-labeling of a fan as a building block for more
general results, we now assume that 𝑐 is pre-colored and provide a labeling algorithm in the
proof of the following result.



Theorem 2. Let be given a fan 𝐹𝑛 whose node 𝑐 has been pre-colored with label 𝑙(𝑐). Then,
the 𝐿(3, 2, 1)-labeling 𝑙 of 𝐹𝑛 can be completed with span 𝜎(𝑙, 𝐹𝑛) ≤ 2𝑛 + 3 if 𝑛 ≥ 4 while
𝜎(𝑙, 𝐹𝑛) ≤ 2𝑛 + 4 if 𝑛 = 2, 3. If 𝑙(𝑐) ̸= {0, 1, 𝜎(𝑙, 𝐹𝑛) − 1, 𝜎(𝑙, 𝐹𝑛)} then 𝜆(𝐹𝑛) = 2𝑛 + 3 if
𝑛 ≥ 4 and 𝜆(𝐹𝑛) = 2𝑛+ 4 if 𝑛 = 2, 3.

Proof. We provide an 𝐿(3, 2, 1)-labeling procedure for nodes 𝑣1, . . . , 𝑣𝑛; the resulting span is
trivially obtained by considering the largest used label.

Assume 𝑛 ≥ 5, first. In the reasonings under the proof of the previous lemma, colors 3, 4,
. . . , 2𝑛 + 1 were available and sufficient for labeling 𝑣1, . . . , 𝑣𝑛. If, instead of having 2𝑛 − 1
(i.e., 2𝑛 + 1 + 1 − 3) consecutive colors, we have the same number of colors possibly not
consecutive (because the colors around 𝑙(𝑐) are forbidden), a fortiori they will be sufficient for
𝐿(3, 2, 1)-labeling 𝑣1, . . . 𝑣𝑛.

So, consider palette 𝑃 = {0, 1, . . . , 2𝑛+3} and remove from it colors 𝑙(𝑐)− 2, 𝑙(𝑐)− 1, 𝑙(𝑐),
𝑙(𝑐) + 1, and 𝑙(𝑐) + 2 whenever they are in 𝑃 because these are all the colors that cannot be
used to label 𝑣1, . . . 𝑣𝑛. At least 𝑛 + 4 − 5 colors remain available for 𝑣1, . . . , 𝑣𝑛, that are all
at mutual distance 2 via 𝑐. Hence, the procedure that starts from the first available color and
then hops 4 by 4 on the colors remaining in 𝑃 after removing 𝑓(𝑐) and the colors too close to it
produces a feasible 𝐿(3, 2, 1)-labeling.

The equality holds given reasonings analogous to those used to justify Lemma 1, together
with the hypothesis that 𝑙(𝑐) eliminates from the palette exactly 5 colors.

If 𝑛 ≤ 4, the reasoning is the same, but the labeling is different. We omit the details here not
to overburden the exposition, but they can be easily deduced from the proof of the previous
lemma. □

We conclude this section by giving some general lower bounds that, besides being of interest
in itself, will be exploited when dealing with the considered subclasses of planar graphs.

Theorem 3. For any graph 𝐺 with maximum degree Δ ≥ 2, if a maximum degree node with
two neighbors of degree Δ exists, then 𝜆(𝐺) ≥ 2Δ + 2.

Proof. Let 𝑣 be the node of degree Δ, and 𝑢 and 𝑤 the nodes adjacent to 𝑣 and of degree Δ, too.
Consider a labeling function for 𝐺, and particularly the label 𝑙(𝑣) assigned to 𝑣. If 𝑙(𝑣) is

different from 0, 1, 𝜆(𝐺)− 1 and 𝜆(𝐺), then the label of 𝑣 excludes 5 labels from the palette
used to label all its neighbors; each one of the Δ 𝑣’s neighbors have a different color, and these
must be at a mutual distance of two; since 𝑙(𝑣) could lay between two colors assigned to two
of the 𝑣’s neighbors, the number of used colors cannot be less than Δ+Δ− 2 + 5, obtaining
𝜆(𝐺) ≥ 2Δ + 2.

If, on the contrary, the label assigned to 𝑣 belongs to {0, 1, 𝜆(𝐺)− 1, 𝜆(𝐺)}, then consider
node 𝑢. If the label assigned to 𝑢 is different from 0, 1, 𝜆(𝐺)− 1 and 𝜆(𝐺), repeat the previous
reasoning, getting 𝜆(𝐺) ≥ 2Δ + 2; otherwise, since both 𝑣 and 𝑢 are nodes at a distance two
from 𝑤 with labels in {0, 1, 𝜆(𝐺) − 1, 𝜆(𝐺)}, then necessarily 𝑤 has a label outside this set.
Hence, repeat the previous reasoning on 𝑤. □



3. Hexagonal Grids

It is known that 𝜆(𝐺4) = 2Δ + 3 = 11 [7] and 𝜆(𝐺8) = 23 [4]; more recently, it has been
proved that 𝜆(𝐺6) = 19 [9]. So, in the following, we study the remaining grid 𝐺3, closing the
problem of 𝐿(3, 2, 1)-labeling for all the infinite regular grids.

Theorem 4. 𝜆(𝐺3) = 2Δ + 3 = 9.

Proof. We first prove that 𝜆(𝐺3) ≥ 9. Preliminarily, observe that 𝐺3 satisfies the hypothesis of
Theorem 3 implying only 𝜆(𝐺3) ≥ 2Δ + 2 = 8, that is not enough, so we proceed differently.

Assume by contradiction that 𝜆(𝐺3) = 8. Consider an optimal labeling l of span 𝜎(𝑙, 𝐺3) =
𝜆(𝐺3). Pick a 𝑣 labeled 𝑙(𝑣) = 0. Then, in order to remain inside the palette {0, . . . , 8}, there
must be one neighbor 𝑣′ of 𝑣 labeled 𝑙(𝑣′) ∈ {3, 4}. We consider the two cases separately.

Case 1: if 𝑙(𝑣′) = 4, it is not possible to assign 3 labels at a mutual distance of at least two to
the three neighbors of 𝑣′.

Case 2: if 𝑙(𝑣′) = 3, the three neighbors of 𝑣′ must have labels 0, 6, and 8. So, there is a
neighbor 𝑣′′ of 𝑣′ such that 𝑙(𝑣′′) = 6, but it is not possible to assign 3 labels at a mutual distance
of at least two to the three neighbors of 𝑣′′. It follows that in any case 𝜆(𝐺3) ≥ 9.

Now, we provide a feasible 𝐿(3, 2, 1)-labeling using 𝑃 = {0, 1, . . . , 8, 9} and this will prove
that 𝜆(𝐺3) ≤ 2Δ + 3.

We exploit the general technique introduced in [6], consisting in labeling one hexagon and
then shifting this labeling, adding a coefficient mod 2Δ + 4.
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Figure 1: a. A portion of the hexagonal grid with the names associated with some of its nodes; b.
𝐿(3, 2, 1)-labeling of a portion of the hexagonal grid.

Refer to Fig. 1.a. To determine the labeling 𝑙 of a first hexagon and the coefficients 𝑏𝑏, 𝑏𝑟, and
𝑏𝑙, shifting the labels toward the bottom, bottom-right and bottom-left, respectively, we call the
nodes of a hexagon 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 in this order; in view of the symmetry of the grid, it is not
restrictive to assume that 𝑙(𝑎) = 0; moreover, it must hold:
- 𝑙(𝑒) = 𝑙(𝑎) + 𝑏𝑏 = 𝑏𝑏 and 𝑙(𝑑) = 𝑙(𝑏) + 𝑏𝑏;
- 𝑙(𝑓) = 𝑙(𝑏) + 𝑏𝑙 and 𝑙(𝑒) = 𝑙(𝑐) + 𝑏𝑙;
- 𝑙(𝑐) = 𝑙(𝑎) + 𝑏𝑟 = 𝑏𝑟 and 𝑙(𝑑) = 𝑙(𝑓) + 𝑏𝑟;
where the sums are mod 10.



Adding all the constraints required by the 𝐿(3, 2, 1)-labeling, and thanks to exhaustive
reasoning we omit here for the sake of brevity, there are two possible solutions. The first one
initially labels the nodes 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 of the first hexagon with labels 0, 7, 4, 9, 2, 5 in
this order, and chooses +2, +4, and -2, as coefficients shifting the labels toward the bottom,
bottom-right and bottom-left, respectively. The second one initially labels 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓
with 0, 3, 6, 1, 8, 5, respectively, and chooses 𝑏𝑏 = −2, 𝑏𝑟 = +6 and 𝑏𝑙 = +2. Without loss of
generality, we focus on the first solution, leading to the labeling shown in Fig. 1.b.

This method produces a labeling containing a pattern repeated along the grid; it is easy to
verify that it is a feasible 𝐿(3, 2, 1)-labeling of 𝐺3 with span 9. □

It is worth noting that the above proof of the lower bound provides 𝜆(𝐺) ≥ 9 for every graph
of minimum degree 3, including 3-regular graphs, that is a bound better than the ones given by
Theorems 1 and 3.

4. Square of cycles

The exact value of 𝜆 for cycles is known from [8]. Namely, when 𝑛 ≥ 8, 𝜆(𝐶𝑛) = 7 if 𝑛 is even,
while 𝜆(𝐶𝑛) = 8 if 𝑛 is odd.

Here, we determine the 𝐿(3, 2, 1)-number of the square of all cycles, although they are planar
graphs only when 𝑛 is even or 𝑛 = 3.

Let us consider the small values of 𝑛 first.

If 𝑛 = 3, 𝐶𝑛 and 𝐶2
𝑛 coincide with 𝐾3, and hence 𝜆(𝐶2

𝑛) = 𝜆(𝐾3) = 3𝑛− 3 = 6.

When 𝑛 = 4 and 𝑛 = 5, 𝐶2
𝑛 coincide with 𝐾𝑛 and again 𝜆(𝐶2

𝑛) = 3𝑛− 3.

When 𝑛 = 6, each node 𝑣 and its neighbors induce in 𝐶2
𝑛 a fan 𝐹4, from which we easily deduce

𝜆(𝐶2
𝑛) ≥ 𝜆(𝐹4) = 10. Because of the generality of the choice of 𝑣, we can apply Theorem 2 so

having 𝜆(𝐶2
6 ) ≥ 11. This lower bound is unfortunately not tight; indeed, 𝜆(𝐶2

6 ) = 12. We omit
the proof due to space reasons.

Lemma 2. 𝜆(𝐶2
𝑛) ≥ 12 when 𝑛 ≥ 7.

Proof. Preliminarily, observe that we can focus on 𝑣1 and its neighbors for simplicity: it is easy
to shift the same reasonings on any other node of 𝐶2

𝑛.
If 𝑙 assigns a color 𝑐 to 𝑣1, the same color cannot be assigned to another node 𝑣𝑖 if 𝑖 < 8

because 𝑣1 is at a distance ≤ 3 from 𝑣𝑖 for all 𝑖 < 8. Hence we need at least 7 different colors to
label the nodes of 𝐶2

𝑛. Assume by contradiction that there exists a feasible 𝐿(3, 2, 1)-labeling
𝑙 of 𝐶2

𝑛 with span 𝜎(𝑙, 𝐶2
𝑛) = 11. We will show that in this case some colors cannot be used

anywhere, so implying the impossibility of this assumption.
Let 𝑙(𝑣1) = 4. Then, its four neighbors (that are at a mutual distance of at least two) are forced

to receive colors 7, 9, 11, and one between 0 and 1 in some order. We list all the possibilities:

• if 𝑙(𝑣2) = 9, then 𝑙(𝑣3) is neither 7 nor 11 and will be either 0 or 1; 𝑣𝑛 is adjacent to both
𝑣1 and 𝑣2 so also 𝑙(𝑣𝑛) is neither 4 nor 7 nor 11 and can only be either 0 or 1; since 𝑣3
and 𝑣𝑛 are at distance 2, this configuration is unfeasible;



• if 𝑙(𝑣3) = 9, then 𝑙(𝑣2) is neither 7 nor 11, so it must be either 0 or 1; in this way, colors 7
and 11 will be assigned to 𝑣𝑛 and 𝑣𝑛−1 in some order. In both cases, 𝑙(𝑣𝑛−2) is necessarily
equal to 2 (if 𝑙(𝑣2) = 0, indeed if 𝑙(𝑣𝑛−2) = 1, no possibility remains for 𝑙(𝑣𝑛−2)); no
available colors are for 𝑙(𝑣𝑛−3).

• analogously, we discard the possibilities of assigning color 9 to either 𝑣𝑛−1 or 𝑣𝑛 because
of the symmetry between 𝑣2, 𝑣3 and 𝑣𝑛, 𝑣𝑛−1 w.r.t. 𝑣1.

Given the possibility of shifting 𝑣1 in any position of 𝐶2
𝑛, we conclude that label 4 cannot be

assigned to any node.
Let now 𝑙(𝑣1) = 9. Then, its four neighbors are forced to receive colors 0, 2, 4, and 6 in some

order. Nevertheless, label 4 has already been excluded, so it is impossible to conclude a feasible
labeling. Hence, label 9 cannot be assigned to any node.

If 𝑙(𝑣1) = 6, then its four neighbors are forced to receive colors 9, 11, one between 0 and 1,
and one between 2 and 3. But we already know that 9 cannot be assigned to any node, so also
label 6 leads to an unfeasible situation and hence cannot be assigned to any node.

Given the symmetry of the palette, it follows that also colors𝜎(𝑙, 𝐶2
𝑛)−9 = 2, 𝜎(𝑙, 𝐶2

𝑛)−6 = 5,
and 𝜎(𝑙, 𝐶2

𝑛)− 4 = 7 cannot be assigned to any node; otherwise, we could start from a feasible
𝐿(3, 2, 1)-labeling 𝑙 using labels 2, 5, and 7 and get a feasible 𝐿(3, 2, 1)-labeling 𝑙′ using labels
4, 6, and 9.

In view of the previous reasonings, if it were 𝜆(𝐶2
𝑛) ≤ 11, the remaining colors would be only

six (i.e., 0, 1, 3, 8, 10 and 11) and hence not enough, implying a contradiction, hence 𝜆(𝐶2
𝑛) ≥ 12.

□

The previous lower bound is tight in some cases, as shown in the following result. Neverthe-
less, there are some values of n for which more colors are necessary (see Lemma 4).

Lemma 3. 𝜆(𝐶2
𝑛) = 12 when 𝑛 ≡ 0 mod 7.

Proof. The lower bound comes from Lemma 2, while the upper bound derives from the following
labeling:

𝑙(𝑣7𝑖+1) = 0, 𝑙(𝑣7𝑖+2) = 4, 𝑙(𝑣7𝑖+3) = 8,

𝑙(𝑣7𝑖+4) = 12, 𝑙(𝑣7𝑖+5) = 2, 𝑙(𝑣7𝑖+6) = 6, 𝑙(𝑣7𝑖+7) = 10,

for each 𝑖 = 0, . . . 𝑛7 − 1. It is immediate to check its feasibility. □

Lemma 4. 𝜆(𝐶2
11) = 15 and 𝜆(𝐶2

12) = 16.

Proof. To prove the lower bound, observe that both 𝐶2
11 and 𝐶2

12 are diameter 3 graphs, so
every node must receive a different color. W.l.o.g., let 𝑙(𝑣1) be a color in {0, . . . , 𝜎(𝑙, 𝐶2

𝑛)− 2},
𝑛 = 11, 12. Only 𝑣6, 𝑣7 and 𝑣8 are at distance 3 from 𝑣1 in 𝐶2

12, and only 𝑣6 and 𝑣7 are at
distance 3 from 𝑣1 in 𝐶2

11; so, if color 𝑙(𝑣1) + 1 is assigned to some node, it is one of them.
In all cases, it is not difficult to see that color 𝑙(𝑣1) + 2 cannot be assigned to any other node

(because it is too close either to 𝑣1 or to the node labeled with 𝑙(𝑣1) + 1), and hence 𝑙(𝑣1) + 2 is
unused.



For the generality of the choice of 𝑙(𝑣1), we can say that for any two consecutive used colors,
the next one must remain unused; in other words, it is possible to use at most two colors out of
any three consecutive ones, so 𝜆(𝐶2

11) ≥ 15 and 𝜆(𝐶2
12) ≥ 16.

The upper bounds follow by labelings the nodes of𝐶2
12 with the sequence 0, 3, 6, 9, 12, 15, 1, 4,

7, 10, 13, 16 and the nodes of 𝐶2
11 with the sequence 0, 3, 6, 9, 12, 15, 1, 4, 7, 10, 13. □

Lemma 5. 12 ≤ 𝜆(𝐶2
𝑛) ≤ 14 when 𝑛 = 7𝑚+ 𝑞 with 𝑚 ≥ 𝑞 ≥ 1.

Proof. The lower bound still comes from Lemma 2. The upper bound on 𝜆 derives from the
labeling that repeats the sequence 0, 4, 8, 12, 2, 6, 10 for exactly 𝑚 times; for 𝑞 times, between
two consecutive 7-long sequences, color 14 is used. It is immediate to check the feasibility of
this labeling. □

We conclude this section with the following summarizing theorem, covering all large values
of n:

Theorem 5. 3Δ = 12 ≤ 𝜆(𝐶2
𝑛) ≤ 3Δ + 2 = 14 when 𝑛 ≥ 42; moreover 𝜆(𝐶2

𝑛) = 3Δ = 12
when 𝑛 ≡ 0 mod 7.

It is worth noting that we have got exact results for all the small values of 𝑛, but we omit
them here due to space reasons.

5. Outerplanar graphs

In this section, we propose an 𝐿(3, 2, 1)-labeling algorithm for outerplanar graphs that provably
uses a linear number of colors in Δ. Due to space reasons, we omit the proof.

Consider an embedding of an outerplanar graph 𝐺 = (𝑉,𝐸), choose a node 𝑟, and induce a
total order on the nodes by walking clockwise around the external face. Compute a Breadth
First Search starting from node 𝑟 so that nodes coming first in the ordering are visited first. As
in [6], in the following, such computation will be called Ordered Breadth First Search (OBFS)
while Ordered Breadth First Tree (OBFT) is the (unique) tree resulting from this special kind of
breadth first search (for an example, see Fig. 2.b). The left-to-right order on each layer 𝑙 of the
OBFT induces a numbering of the nodes: we will call 𝑣𝑙,𝑖 a node of 𝐺 lying on layer 𝑙 of the
tree and occupies the 𝑖-th position in the left-to-right ordering on the layer (see Fig. 2.c).

In [6], an attractive property has been introduced for the OBFT of an outerplanar graph,
extending the very well-known one holding for every BFT.

Lemma 6. Let (𝑣𝑙,ℎ, 𝑣𝑙′,𝑘), 𝑙′ ≤ 𝑙, be a non-tree edge in an OBFT of an outerplanar graph 𝐺.
Then:

• either 𝑙′ = 𝑙 and (if, w.l.o.g., 𝑘 > ℎ) 𝑘 = ℎ+ 1 – see, e.g., edges (𝑣4,1, 𝑣4,2) and (𝑣3,3, 𝑣3,4)
in Fig. 2.c;

• or 𝑙′ = 𝑙−1 and 𝑘 = 𝑟+1, where 𝑟 is the index of the parent of 𝑣𝑙,ℎ at layer 𝑙−1; moreover,
𝑣𝑙,ℎ is the rightmost child of 𝑣𝑙−1,𝑟 (see, e.g., edges (𝑣5,2, 𝑣4,2) and (𝑣3,3, 𝑣2,3) in Fig. 2.c).



edges in such a way that any two such curves do not
meet anywhere other than at their endpoints. A
representation of G on the plane, according to the
mentioned conditions, is called an embedding. A graph is
outerplanar if it can be embedded in the plane so that
every node lies on the boundary of the outer face. It
follows that, once the first node has been chosen,
clockwise order induces a total order on the nodes of the
graph.

In the following, we assume that the graphs we handle
are loopless, simple and connected.

3.1. Ordered breadth first search

Consider an embedding of an outerplanar graph G;
choose a node r and induce the total order on the
nodes clockwise. Now, compute a breadth first
search starting from node r in such a way that nodes
coming first in the ordering are visited first. In the
following we will call ordered breadth first search
(OBFS) such a computation and ordered breadth first
tree (OBFT) the (unique) resulting tree (for an
example, see Fig. 4(b)). The left to right direction on
each layer l of the OBFT induces a numbering of the
nodes: we will call vl;i a node lying on layer l that
occupies the ith position in the left to right ordering on
the layer (see Fig. 4(c)).

Before characterizing OBFTs for outerplanar graphs,
we have to recall the properties of a general breadth first
tree.

Fact 3.1. Let T ¼ ðV ;E0Þ be a breadth first tree for a
general graph G ¼ ðV ;EÞ; for each non-tree edge
ðvl;h; vl0;kÞ; l0Xl; it holds:

* either l0 ¼ l or
* l0 ¼ l $ 1 and rok; where r is the index of the father of

vl;h at layer l $ 1:

Lemma 3.2. Every OBFT of an outerplanar graph G has
the following properties:

* if a non-tree edge connects nodes vl;h and vl;k; hok;
then k ¼ hþ 1 (e.g. see edges ðv4;1; v4;2Þ and ðv3;3; v3;4Þ
in Fig. 4ðcÞ);

* if a non-tree edge connects nodes vl;h; child of vl$1;r;
and vl$1;k; then k ¼ rþ 1 and vl;h is the rightmost child
of vl$1;r (e.g. see edges ðv5;2; v4;2Þ and ðv3;3; v2;3Þ in
Fig. 4ðcÞ).

Proof. We prove the two properties separately, starting
from the first one.

Let us suppose, by contradiction, k4hþ 1:
First, consider the case vl;h and vl;k children of the

same node vl$1;r; it follows that vl;hþ1 is child of vl$1;r;
too. Consider the subgraph induced by vl;h; vl;hþ1 and
vl;k; that appear on the outer face of G in this order
clockwise for the definition of OBFT. Node vl$1;r can lie
either outside or inside this sequence. In the first case a
crossing occurs between edges ðvl$1;r; vl;hþ1Þ and
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Fig. 4. An outerplanar graph and its OBFT.
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Figure 2: An outerplanar graph and its OBFT. (Figure from [6].)

Given an outerplanar graph 𝐺 = (𝑉,𝐸) and a palette 𝑃 , a greedy coloring algorithm able to
produce a feasible 𝐿(3, 2, 1)-labeling for 𝐺 is the following:

Algorithm GreedyLabelOuterplanarGraphs
Input: an outerplanar graph 𝐺 = (𝑉,𝐸)
Output: an 𝐿(3, 2, 1)-labeling 𝑓 for 𝐺
choose a node as 𝑟;
compute an OBFS of 𝐺 and generate its OBFT 𝑇;
label the nodes of the subgraph induced by 𝑟 and its children, that is,
a subgraph of a fan, according to Lemma 1;
for each layer 𝑙 from the children of the root to the leaves:

for each (labeled) node 𝑣𝑙,𝑘 from left to right:

– let 𝑆𝑙,𝑘 be the set of 𝑣𝑙,𝑘’s children;

– consider the subgraph induced by 𝑣𝑙,𝑘 and 𝑆𝑙,𝑘;

– remove from 𝑃 all the colors that cannot be used for labeling
any node of 𝑆𝑙,𝑘 because of a too close already labeled node;

– label set 𝑆𝑙,𝑘 according to the proof of Theorem 2 with the first
colors remained in 𝑃;

– restore 𝑃 with all colors;

return the 𝐿(3, 2, 1)-labeling 𝑓 for 𝐺.



Theorem 6. Algorithm GreedyLabelOuterplanarGraphs correctly 𝐿(3, 2, 1)-labels an out-
erplanar graph with a span of at most 4Δ+8+𝐾 if Δ ≥ 9, and of at most 4Δ+9+𝐾 if Δ ≤ 8,
where 𝐾 is a constant upper bounded by 12. The computational cost of this algorithm is Θ(Δ𝑛).

It is worth noticing that it was not the aim of this author to determine a tight value for 𝜆
but to prove that it is linear in Δ. For this reason, we avoided making the (omitted) proof even
more intricate just to decrease the upper bound by a constant number of colors.

6. Conclusions

In this paper, the 𝐿(3, 2, 1)-labeling problem on some subclasses of planar graphs is tackled,
adding some relevant pieces to the general picture concerning this problem. Indeed, while the
general upper bound on 𝜆 is quadratic in the maximum degree, it comes out to be linear in Δ
for all the considered graph classes.

In particular, the exact 𝐿(3, 2, 1)-number of infinite hexagonal grids is determined in Section
3. Then, the problem on the square of 𝑛 cycles is approached in Section 4, determining close
upper and lower bounds on 𝜆 when 𝑛 is large enough; for some special values of 𝑛 the exact
value of 𝜆 is determined. Finally, the 𝐿(3, 2, 1)-labeling on outerplanar graphs is studied in
Section 5, providing even in this case a linear upper bound on 𝜆.
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