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Abstract
A circular shift operator (or cyclic rotation gate) ROT𝑘 applies a rightward (or leftward) shift of 𝑘 positions
to a register of 𝑛 qubits so that the element at position 𝑥 is moved to position (𝑥+ 𝑘) mod 𝑛. While
it is known that there exists a quantum rotation operator that can be implemented in 𝒪(log(𝑛))-time,
through the repeated parallel application of the elementary Swap operators, there is no systematic
procedure that concretely constructs the quantum operator ROT for variable size 𝑛 of the quantum
register and a variable parameter 𝑘. We show a concrete implementation of the cyclic rotation operator
(denoted ROT) in a quantum circuit model of computation. The depth of the obtained circuit implementing
the cyclic rotation operator is upper-bounded by log𝑛; therefore, the operator ROT𝑘 can be implemented
in 𝒪(log(𝑛))-time. When the parameter 𝑘 dictating the magnitude of the rotation is a power of 2,
namely when 𝑘 = 2𝑚 for some 2, the depth of the circuit is exactly log(𝑛)− log(𝑘).
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1. Introduction

Quantum computing represents an avant-garde domain within the realm of computer science,
where the intricate principles of quantum mechanics are harnessed to engineer formidable
computing systems that manifest striking deviations from classical counterparts. In stark
contrast to classical computers, which process information using discrete binary bits constrained
to exclusively one of the states 0 and 1, quantum computing harnesses the power of quantum
bits, or qubits, which effortlessly inhabit superpositions of multiple states. Moreover, the
entangled configuration of two or more qubits bestows upon them the extraordinary ability to
execute synchronized operations, transcending the computational efficiency of classical bits.
These distinctive attributes endow quantum computers with a momentous advantage over their
classical counterparts.

There are several models of quantum computation, with their own advantages and challenges.
These include the adiabatic model [1], based on the adiabatic theorem of quantum mechanics,
the topological model [2], based on the principles of topological quantum field theory, and the
measurement-based model [3], where computation is performed by making measurements on
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an entangled resource state known as a cluster state. However, the circuit model [4] is the
most common and widely used model in quantum computing. It represents computations as
sequences of quantum gates that act on qubits to manipulate and transform quantum information.
Operations are executed sequentially, and measurements are performed to extract classical
information from the quantum system.

The complexity of a quantum circuit can be measured in several ways. One of these is the
number of gates used within the circuit to manipulate the qubits, but since it is often possible
to run two or more gates in parallel when operating on disjoint registers, a more appropriate
measure is the depth of the circuit, i.e., the number of steps performed before the output of the
circuit is obtained.

The design and simulation of efficient quantum circuits capable of solving specific tasks,
including through the use of artificial intelligence models [5], is a particularly active area of
research in recent years.

In this paper, we address the problem constructing of a quantum cyclic shift (or cyclic rotation)
operator, in the quantum circuit model of computation.

Given a vector 𝑥 of length 𝑛 and an input parameter 𝑠 < 𝑛, a cyclic rotation of a vector is a
transformation that shifts the elements of the vector in circular positions, while maintaining
their relative order. In other words, each element of the vector is moved by 𝑠 positions, and the
last 𝑠 elements are brought back to the first positions of the vector.

Cyclic rotations of vectors have various applications, including, for instance, image and signal
processing where they can be employed to perform cyclic shifts on images or signals, such as
image rolling [6] or time delay of a signal. Cyclic rotations can be also used to design efficient
algorithms sorting data [7]. In addition, sequences admitting cyclic rotations are also revalent
in various biological contexts, including viruses [8, 9] and bacteria [10]. Thus, the analysis of
organisms with a cyclic structure can benefit from algorithms designed for strings that allow
for cyclic rotations [11].

In the field of quantum computation, cyclic rotation of a register has been effectively used
in solutions for text processing, and specifically in string matching. The recent algorithm
by Niroula and Nam [12] cleverly uses cyclic rotations of the registers containing the input
strings to achieve a superimposition of all their possible alignments and to perform a parallel
comparison against the pattern. This idea was later used by Cantone et al. [13] to efficiently
solve the string matching problem allowing for swaps of adjacent characters.

Since a cyclic rotation of a vector of 𝑛 elements of 𝑠 positions to the right consists essentially
of a permutation of the input vector in which each element of position 𝑖 is moved to position
(𝑖+𝑠) mod (𝑛), it is easy to construct a classical procedure capable of achieving such a rotation
in linear time.

In quantum computation, on the other hand, it is possible to exploit the parallelism of gate
execution within a circuit to achieve significant speed-up. Niroula and Nam [12] provide insight
into the fact that such a circuit can be executed in time 𝒪(log(𝑛)). The basic idea is that at each
step of the algorithm that accomplishes the permutation, it is possible to place at least half of
the qubits that still need to be moved to their final position. Since the number of qubits to be
placed decreases by at least half at each iteration, 𝒪(log(𝑛)) steps are needed to achieve the
target permutation. However, they do not provide any procedure explaining how to construct
this quantum operator, nor do they provide a more formal proof of its complexity.



In an attempt to fill the gap, this paper aims to provide a precise method for the construction
of a circular rotation operator for a vector of dimension 𝑛 as the parameter 𝑠, indicating the
shift relative to the rotation, varies. As far as we know, this is the first work offering such a
procedure. A proof of the correctness of our procedure is also provided, along with an analysis
of the time complexity of the resulting circuit. We believe that this result may be of interest to
the scientific community concerned with the design and simulation of quantum algorithms,
especially in the area of text processing.

The paper is organized as follows. In Section 2 we recall some basic notions, introduce some
useful notations adopted along the paper and give a more formal definition of the problem.
In Section 3 we present a solution for the specific case where 𝑠 = 2𝑝 for some 𝑝 ∈ N, prove
its correctness and discuss its complexity analysis. In Section 4 we extend our solution to the
general case. Finally we draw our conclusions in Section 5.

2. Preliminaries and Definition of the Problem

The fundamental unit in quantum computation is the qubit. A qubit is a coherent superposition
of the two orthonormal basis states, which are denoted by |0⟩ and |1⟩, using the conventional
bra–ket notation. The mathematical formulation for a qubit |𝜓⟩ is then a linear combination
of the two basis states, i.e., |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, where the values 𝛼 and 𝛽, called amplitudes,
are complex numbers such that |𝛼|2 + |𝛽|2 = 1, representing the probability of finding the
qubit in the state |0⟩ or |1⟩, respectively, when measured. A quantum measurement is the only
operation through which information is gained about the state of a qubit, however causing
the qubit to collapse to one of the two basis states. The measurement of the state of a qubit
is irreversible, meaning that it irreversibly alters the magnitudes of 𝛼 and 𝛽. If 𝑏 is a binary
value, equal to 0 or 1, we use the symbol |𝑏⟩ to indicate the qubit in the corresponding basis
state, |0⟩ or |1⟩, respectively. Multiple qubits taken together are referred to as quantum registers.
A quantum register |𝑞⟩ = |𝑞0, 𝑞1, .., 𝑞𝑛−1⟩ of 𝑛 qubits is the tensor product of the constituent
qubits, i.e., |𝑞⟩ =

⨂︀𝑛−1
𝑖=0 |𝑞𝑖⟩.

If 𝑘 is an integer value that can be represented by a binary string of length 𝑛, we use the
symbol |𝑘⟩ to denote the register of 𝑛 qubits such that |𝑘⟩ =

⨂︀𝑛−1
𝑖=0 |𝑘𝑖⟩, where |𝑘𝑖⟩ takes the

value of the 𝑖-th least significant binary digit of 𝑘. For example, the quantum register |9⟩ with
4 qubits is given by |9⟩ = |1⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |1⟩. The mathematical formulation of a quantum
register is then |𝑞⟩ =

∑︀2𝑛−1
𝑘=0 𝛼𝑘|𝑘⟩, where the values 𝛼𝑘 represent the probability of finding

the register in the state |𝑘⟩ when measured, with
∑︀2𝑛−1

𝑘=0 |𝛼𝑘|2 = 1.
The model of computation we adopt in this paper is that of reversible circuits. Circuits are

networks composed of wires that carry qubit values to gates that perform elementary operations
on qubits. The qubits move through the circuit in a linear fashion, where the input values are
written onto the wires entering the circuit from the left side, while the output values are read-off
the wires leaving the circuit on the right side. At every time step, each wire can enter at most
one gate. In the definition of a circuit, it is often necessary to include ancillæ qubits, which are
needed to achieve some specific tasks in computation that otherwise could not be achieved.

For the circuit model of computation, a natural measure of complexity is the number of
gates used in the circuit. If we assume the circuit as being divided into a sequence of discrete



=

Figure 1: The representation of the CNOT and Swap gates. The Swap gate corresponds to three CNOT
gates.

time-steps, where the application of a single gate requires a single time-step, another measure
of complexity is the depth of the circuit, which is the total number of required time-steps. We
observe that this is not necessarily the same as the total number of gates in the circuit, since
gates that act on disjoint qubits can often be applied in parallel.

There is a variety of quantum operators capable of operating on quantum registers to perform
widely-ranging manipulations. Here we simply list the two gates that will be used in this work:
the CNOT gate and the Swap gate.

The controlled NOT gate (or CNOT) is a quantum logic gate operating on a register of two
qubits |𝑞0, 𝑞1⟩. If the control qubit |𝑞0⟩ is set to 1, it inverts the target qubit |𝑞1⟩, otherwise all
qubits stay the same. Formally, it maps |𝑞0, 𝑞1⟩ to |𝑞0, 𝑞0 ⊕ 𝑞1⟩. The Swap gate is a two-qubit
operator: expressed in basis states, it swaps the state of the two qubits |𝑞0, 𝑞1⟩ involved in
the operation, mapping them to |𝑞1, 𝑞0⟩. Interestingly, the swap gate can be achieved by the
application of three CNOT operators.

Fig. 1 shows the representation of the CNOT and Swap gates.
A circular shift operator (or rotation operator) ROT𝑘 applies a rightward shift of 𝑘 positions

to a register of 𝑛 qubits so that the element at position 𝑥 is moved to position (𝑥+ 𝑘) mod 𝑛.
In other words, the elements whose position exceeds the size 𝑛 of the register are moved, in a
circular fashion, to the first positions of the register. Formally, the operator ROT𝑘 applies the
following permutation

|𝑞0, 𝑞1, . . . , 𝑞𝑛−1⟩ −→ |𝑞𝑛−𝑠, 𝑞𝑛−𝑠+1, . . . , 𝑞𝑛−1, 𝑞0, 𝑞2, . . . , 𝑞𝑛−𝑠−1⟩.

Throughout the document we assume that the size 𝑛 of the qubit to be rotated is of the form
2𝑝 for some 𝑝 ∈ N, observe that this assumption is not restrictive since for quantum registers
made of qubits this is always the case; nevertheless, in Section 4.1 we show how to proceed
seamlessly in the case that the size of the target register is not a power of 2.

3. An Algorithm for 𝑘 = 2𝑚

In this section we describe an algorithm for cyclically rotating a quantum register |𝑞⟩ of 𝑛 qubits
of 𝑘 positions, with 0 < 𝑘 < 𝑛. We recall that we assume 𝑛 = 2𝑝 for some 𝑝 ∈ N. Without
loss of generality, we assume that the rotation operator shifts the qubits to the right. Leftward
rotations can occur symmetrically with respect to what is described in this paper.

We first consider the case in which the parameter controlling the rotation is of the form
𝑘 = 2𝑚, with 𝑚 < 𝑝. Actually, it is enough to assume 𝑘 = 𝑛

2ℎ
for some ℎ : 1 ≤ ℎ ≤ 𝑝 − 1.

The pseudocode of the quantum procedure performing the cyclic rotation is presented in
Algorithm 1.



ALGORITHM 1: Algorithm for 𝑘 = 2𝑚

Input: a 𝑛-qubit register 𝑞 :=
⨂︀𝑛−1

𝑥=0 |𝑞𝑥⟩, and 𝑘 := 2𝑚.
Output: a 𝑛-qubit register 𝑞′ :=

⨂︀𝑛−1
𝑥=0 |𝑞𝑥+𝑘 mod (𝑛)⟩.

1 for 𝑖 = 1, . . . , log(𝑛)− log(𝑘); 𝑖++ do
2 for 𝑗 = 0, . . . , 𝑛

2𝑖𝑘 − 1; 𝑗 ++ do
3 for 𝑥 = 𝑗𝑘2𝑖, . . . , (𝑗2𝑖 + 1)𝑘 − 1; 𝑥++ do
4 Swap(𝑞𝑥, 𝑞𝑥+2𝑖−1𝑘)

The procedure performs a permutation of the qubits contained in the input quantum register.
This is done by means of a sequence of swap operations that exchange the positions of two
qubits inside the register. During the execution of the algorithm we distinguish qubits having
reached their final position, which we indicate with the term placed qubits. Conversely, qubits
having not yet been placed correctly are indicated by the term out-of-place qubits.

In brief, the algorithm works as follows. At the beginning of the procedure the register |𝑞⟩
contains 𝑛 not-in-place qubits and no placed qubit. Then, an iterative cycle starts, where at
each iteration step, the algorithm selects half of the remaining not-in-place qubits and swaps
them to their final positions. This means that the procedure stops in at most log(𝑛) steps.

The worst case is obtained when each swap operation places only one of the two involved
qubits in its final place, terminating in log(𝑛) steps. When each swap succeeds in placing both
qubits in their final positions, then the algorithm obtains its best case (𝑘 = 𝑛

2 ), terminating in
constant time.

We now go into more detail on the design of Algorithm 1. It is based on a main iterative loop
(line 1) that runs log(𝑛)− log(𝑘) times1.

In the first iteration (namely for 𝑖 = 1), the algorithm decomposes the register |𝑞⟩ into 𝑛
2𝑘

intervals, each of size 2𝑘 (line 2). Let 𝐼𝑗 , for 0 < 𝑗 < 𝑛
2𝑘 , be the 𝑗-th interval into which the

register |𝑞⟩ has been divided. The algorithm divides each interval 𝐼𝑗 into two halves of size
𝑘. In this context, let 𝐼ℓ𝑗 be the left half of the interval 𝐼𝑗 and let 𝐼𝑟𝑗 be the right half of the
same interval. The algorithm operates by swapping the qubits in 𝐼ℓ𝑗 with the corresponding
qubits in 𝐼𝑟𝑗 (line 3). Specifically it applies a Swap to the pair of qubits (𝑞𝑥, 𝑞𝑥+𝑘) for every 𝑥
corresponding to a position in 𝐼ℓ𝑗 , that is 𝑥 ∈ {2𝑗𝑘, . . . , (2𝑗 +1)𝑘− 1}. It is important to stress
the fact that the algorithm performs these swaps in parallel for each 𝑗 ∈ {0, . . . , 𝑛

2𝑘 − 1}.
Since this operation shifts the qubits in 𝐼ℓ𝑗 exactly 𝑘 positions to the right, after the first

iteration, half of the qubits are correctly placed. It is immediate to see, indeed, that the algorithm
correcly placed the qubits that have been moved to positions 𝑥+ 𝑘 , for 𝑥 ∈ {2𝑗𝑘, . . . , (2𝑗 +
1)𝑘 − 1} and for 𝑗 ∈ {0, . . . , 𝑛

2𝑘 − 1}.
We can prove (see Section 3.1) that if 𝑘 = 𝑛

2 , that is if 𝑖 = 1, we do not need further iterations
as also the qubits at positions 𝑞𝑥, for 𝑥 ∈ {2𝑗𝑘, . . . , (2𝑗+1)𝑘− 1} and for 𝑗 ∈ {0, . . . , 𝑛

2𝑘 − 1},
are correctly placed and the algorithm correctly terminates. Otherwise, the algorithm starts a
new iteration.

The interval decomposition that we described in the first iteration can be generalized in
subsequent iterations of the main for loop as follows. In the 𝑖th step, being 1 < 𝑖 ≤ log(𝑛)−

1We’ll discuss why the iterative loop on line 1 runs log(𝑛)− log(𝑘) times later.



log(𝑘)), the algorithm decomposes the register |𝑞⟩ into 𝑛
2𝑖𝑘

intervals, each of size 2𝑖𝑘 (line 2).
Now observe that the first 𝑘 elements of the left interval 𝐼ℓ𝑗 are in that position as a result of

a swap of the previous iteration. We are therefore dealing with not-in-place qubits. The same
is true for the first 𝑘 qubits of the interval 𝐼𝑟𝑗 . Thus, the algorithm operates by swapping the
qubits in the first 𝑘 positions of 𝐼ℓ𝑗 with the corresponding qubit in the first 𝑘 positions of 𝐼𝑟𝑗
(line 3). This is done to forbid swaps of qubits that are already correctly placed.

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7

1 1 1 1

2-qubits

𝑖 = 1

𝑞1 𝑞0 𝑞3 𝑞2 𝑞5 𝑞4 𝑞7 𝑞6

2 2

4-qubits

𝑖 = 2

𝑞3 𝑞0 𝑞1 𝑞2 𝑞7 𝑞4 𝑞5 𝑞6

4

8-qubits

𝑖 = 3

𝑞7 𝑞0 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

4

8-qubits

output

Figure 2: Illustration of the iterations of the algorithm implementing the circular shift operator for a
register of 8 qubits in which a rotation of 1 position is performed. The coloured qubits are placed qubits.

More formally, the algorithm applies a swap to the pair of qubits (𝑞𝑥, 𝑞𝑥+2𝑖−1𝑘) for every 𝑥
corresponding to a position in the first half of 𝐼𝑗 , that is 𝑥 ∈ {2𝑖𝑗𝑘, . . . , (2𝑖𝑗+1)𝑘−1}. Also in
this case the algorithm performs these swaps in parallel for each 𝑗 ∈ {0, . . . , 𝑛

2𝑖𝑘
− 1}. Figure 2

illustrates the iteration of the algorithm implementing the circular shift operator for a register
of 8 qubits in which a rotation of 1 position is performed. Figure 3 provides an illustration of the
application of the circular shift operator as prescribed by Algorithm 1, for a register of 8 qubits
in which a rightward circular shift of magnitude 1, 2, and 4 is performed. In the representation
of each operator, the time-steps, within which the swaps are executed in parallel, have been
framed. Each time-step is associated with a label ROT[𝑖]𝑘 , where 𝑘 represents the shift amount
and 𝑖 represents the number of the iterative step.

Regarding the computational complexity, we observe that in a quantum circuit model of
computation the for-loops at lines 2 and 3 of Algorithm 1 can be executed in parallel. To see this
it is enough to check that the aim of line 2 is to partition the register in disjoint intervals, while
the aim of lines 3-4 is to swap disjoint qubits in such intervals. More precisely, each iteration of
line 3 refers to a specific one of the intervals individuated in line 2; because, the intervals are
disjoint, the whole computation described at lines 2-4 happens in parallel in one time-step.

It follows that the running time of Algorithm 1 is log(𝑛)− log(𝑘), which is 𝒪(log(𝑛)).
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Figure 3: The application of the circular shift operator for a register of 8 qubits in which a rotation of 1,
2, and 4 positions is performed, respectively.

3.1. Correctness of Algorithm 1

In this section, we prove the correctness of Algorithm 1. We start by making the following
considerations.

1. At the 𝑖th iteration, with 1 < 𝑖 ≤ log(𝑛)− log(𝑘), a qubit is not involved in any Swap if
and only if it has already been correctly shifted in a previous iteration, i.e. it is a placed
qubit.

2. After log(𝑛)− log(𝑘) iterations of Algorithm 1, every qubit is correctly cyclically shifted
by 𝑘 positions rightwardly, i.e. the 𝑗th qubit has been placed at position 𝑗 + 𝑘 mod (𝑛).

For 𝑖 ∈ {1, . . . , log(𝑛)− log(𝑘)}, the symbol 𝑞𝑖𝑥 denotes the 𝑥th qubit of the register |𝑞⟩ at the
end of the 𝑖th iteration of the algorithm; also, we set 𝑞0𝑥 := 𝑞𝑥, and |𝑞𝑖⟩=

⨂︀𝑛
𝑥=0 𝑞

𝑖
𝑥, accordingly.

The correctness of Algorithm 1 immediately follow from the next lemma.

Lemma 3.1. If 1 ≤ 𝑖 ≤ log(𝑛)− log(𝑘), at the end of the 𝑖th iteration of Algorithm 1, for every
𝑗 ∈ {0, . . . , 𝑛

2𝑖𝑘
− 1} it holds that

• 𝑞𝑖𝑥 = 𝑞0𝑥−𝑘, for 𝑥 ∈ {(2𝑖𝑗 + 1)𝑘, . . . , 2𝑖(𝑗 + 1)𝑘 − 1}, and
• 𝑞𝑖𝑦 = 𝑞0

𝑦+(1−2𝑖)𝑘
, for 𝑦 ∈ {2𝑖𝑗𝑘, . . . , (2𝑖𝑗 + 1)𝑘 − 1}.

In particular, for ℓ = log(𝑛)− log(𝑘) it holds 𝑞ℓ𝑧 = 𝑞0𝑧−𝑘, for 𝑧 ∈ {0, . . . , 𝑛− 1}, that is, after ℓ
iterations of Algorithm 1 every qubit is correctly placed.

Proof. We prove the lemma by induction on the number of iterations 𝑖.
For 𝑖 = 1, it is immediate to see that for every 𝑗 ∈ {0, . . . , 𝑛

2𝑖𝑘
− 1}, every

𝑥 ∈ {2𝑖𝑗𝑘, . . . , (2𝑖𝑗 + 1)𝑘 − 1}, and every 𝑦 = 𝑥 + 21−1𝑘 = 𝑥 + 𝑘, the execution of
Swap(𝑞0𝑥, 𝑞

0
𝑦) yields 𝑞1𝑥 = 𝑞0𝑦 = 𝑞0𝑥−𝑘 and 𝑞1𝑦 = 𝑞0𝑥 = 𝑞0𝑦−𝑘.

Let 1 ≤ 𝑖 ≤ log(𝑛) − log(𝑘); assume the claim true for |𝑞0⟩, . . . ,|𝑞𝑖⟩, and let us prove it is
true for |𝑞𝑖+1⟩.

By inductive hypothesis, for 𝑗 ∈ {0, . . . , 𝑛
2𝑖𝑘

− 1}, it holds

𝑞𝑖𝑥 = 𝑞0𝑥−𝑘, for 𝑥 ∈ {(2𝑖𝑗 + 1)𝑘, . . . , 2𝑖(𝑗 + 1)𝑘 − 1}, and

𝑞𝑖𝑦 = 𝑞0
𝑦+(1−2𝑖)𝑘

, for 𝑦 ∈ {2𝑖𝑗𝑘, . . . , (2𝑖𝑗 + 1)𝑘 − 1}.



It requires no much effort to check that

{2𝑖+1𝑗𝑘, . . . , (2𝑖+1𝑗 + 1)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖+1𝑘
− 1}

= {2𝑖𝑗𝑘, . . . , (2𝑖𝑗 + 1)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖𝑘
− 2 such that 𝑗 is even},

and that

{(2𝑖+1𝑗 + 2𝑖)𝑘, . . . , (2𝑖+1𝑗 + 1 + 2𝑖)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖+1𝑘
− 1}

= {2𝑖𝑗𝑘, . . . , (2𝑖𝑗 + 1)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖𝑘
− 1 such that 𝑗 is odd}.

It follows that all the qubits involved in a swap during the (𝑖+1)st iteration of the algorithm
are of the form 𝑞𝑖𝑦 = 𝑞0

𝑦−(1−2𝑖)𝑘
. Therefore, 𝑞𝑖+1

𝑧 = 𝑞𝑖𝑧 for 𝑧 ∈ {(2𝑖𝑗 +1)𝑘, . . . , 2𝑖(𝑗 +1)𝑘− 1}
and 𝑗 ∈ {0, . . . , 𝑛

2𝑖𝑘
− 1}.

Moreover, during the (𝑖+ 1)th iteration, the algorithm executes the operation Swap(𝑞𝑖𝑥, 𝑞
𝑖
𝑦)

for 𝑥 ∈ {2𝑖+1𝑗𝑘, . . . , (2𝑖+1𝑗 + 1)𝑘 − 1} and 𝑦 = 𝑥+ 2𝑖𝑘, where 𝑗 ∈ {0, . . . , 𝑛
2𝑖+1𝑘

− 1}; such
swapping results in

𝑞𝑖+1
𝑥 = 𝑞𝑖𝑦 = 𝑞𝑖𝑥+2𝑖𝑘 = 𝑞0𝑥−(1−2𝑖)𝑘+2𝑖𝑘 = 𝑞0𝑥−(1−2𝑖+1)𝑘, and

𝑞𝑖+1
𝑦 = 𝑞𝑖+1

𝑥+2𝑖𝑘
= 𝑞𝑖𝑥 = 𝑞0𝑥−(1−2𝑖)𝑘 = 𝑞0𝑥+2𝑖𝑘−𝑘 = 𝑞0𝑦−𝑘.

To complete the proof it is enough to observe that

{(2𝑖𝑗 + 1)𝑘, . . . , 2𝑖(𝑗 + 1)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖𝑘
− 1}

∪{(2𝑖+1𝑗 + 2𝑖)𝑘, . . . , (2𝑖+1𝑗 + 1 + 2𝑖)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖+1𝑘
− 1}

={(2𝑖+1𝑗 + 1)𝑘, . . . , 2𝑖+1(𝑗 + 1)𝑘 − 1 | 0 ≤ 𝑗 ≤ 𝑛

2𝑖+1𝑘
− 1}.

Indeed, the previous equality implies that

𝑞𝑖+1
𝑥 = 𝑞0𝑥−𝑘, for 𝑥 ∈ {(2𝑖+1𝑗 + 1)𝑘, . . . , 2𝑖+1(𝑗 + 1)𝑘 − 1}, and 𝑗 ∈ {0, . . . , 𝑛

2𝑖+1𝑘
− 1}.

Finally, observe that for 𝑖 = ℓ = log(𝑛) − log(𝑘), the variable 𝑗 assumes only the value 0;
furthermore, for 𝑥 ∈ {0, . . . , 𝑘 − 1} it holds

𝑞ℓ𝑥 = 𝑞0𝑥−(1−2ℓ)𝑘 = 𝑞0𝑥−𝑘.

Therefore, after ℓ = log(𝑛)− log(𝑘) iteration of Algorithm 1 every qubit is correctly placed,
that is, rightward cyclically shifted by 𝑘 positions. This completes our proof.

4. The General Algorithm for 1 ≤ 𝑘 ≤ 𝑛− 1

In this section we present the algorithm implementing the cyclic rotation operator, shifting the
input register of 𝑘 positions to the right, for the general case in which 1 ≤ 𝑘 ≤ 𝑛− 1.



ALGORITHM 2: Algorithm for a generic 𝑘 ∈ {1, . . . , 𝑛− 1}
Input: a 𝑛-qubit register 𝑞 :=

⨂︀𝑛−1
𝑥=0 |𝑞𝑥⟩, and 1 ≤ 𝑘 ≤ 𝑛− 1.

Output: a 𝑛-qubit register 𝑞′ :=
⨂︀𝑛−1

𝑥=0 |𝑞𝑥+𝑘 mod (𝑛)⟩.
1 ℓ := min{1 ≤ 𝑖 ≤ log(𝑛) | 2𝑖𝑘 = 0 mod (𝑛)};
2 for 𝑖 = 1, . . . , ℓ; 𝑖++ do
3 for 𝑗 = 0, . . . , 2ℓ−𝑖 − 1; 𝑗 ++ do
4 for 𝑥 = 𝑗 𝑛

2ℓ
2𝑖, . . . , (𝑗2𝑖 + 1) 𝑛

2ℓ
− 1; 𝑥++ do

5 Swap(𝑞𝑥, 𝑞𝑥+2𝑖−1𝑘 mod (𝑛))

The idea behind the general algorithm is very similar to the idea underlying the algorithm
for 𝑘 = 2𝑚. The pseudocode of such general procedure is depicted in Algorithm 2.

Specifically, a new parameter ℓ is defined, by setting

ℓ := min{1 ≤ 𝑖 ≤ log(𝑛) | 2𝑖𝑘 = 0 mod (𝑛)}.

To understand the choice of ℓ, imagine the qubits from |𝑞⟩ arranged circularly. Observe that,
by its definition, ℓ is the smallest positive integer such that an interval of length 2ℓ𝑘 starting at
the qubit 𝑞0 finishes at the qubit 𝑞𝑛−1 when wrapped around |𝑞⟩.

Informally, the main difficulty encountered when trying to extend the approach from Algo-
rithm 1 to the general case consists in the fact that it is not possible to decompose the 𝑛-qubits
register |𝑞⟩ in disjoint intervals of length 2𝑘, 22𝑘, etc., in general. However, once again, we can
imagine that the qubits from |𝑞⟩ are arranged along a circle to which we wrap the decomposition
in intervals of length 2𝑖𝑘 around. Therefore, we can adapt Algorithm 1 to the general case of an
arbitrary 𝑘, by reasoning in the 𝑛-modular arithmetic. Indeed, by comparing the pseudocodes
of the two algorithms, it is immediate to see that in Algorithm 2 we replaced log(𝑛)− log(𝑘)
by ℓ, and 𝑘 by 𝑛

2ℓ
.

Figure 4 illustrates the iterations of the algorithm implementing the circular shift operator for
a register of 8 qubits in which a rotation of 6 position is performed. Figure 5 and Figure 6 provide
an illustration of the application of the circular shift operator as prescribed by Algorithm 2, for
a register of 8 qubits in which a rightward circular shift of magnitude 3, 5, and 6 is performed.

Regarding the computational complexity, we observe that - as in the case of Algorithm 1 - in
a quantum circuit model of computation the for-loops at lines 3 and 4 are executed in parallel.
This means that, once ℓ is known, Algorithm 2 executes ℓ ≤ log(𝑛) time-steps. Furthermore,
to compute the number ℓ of iterations needed, the algorithm has to perform at most log(𝑛)
multiplications. Therefore, the overall time-complexity of Algorithm 2 is 𝒪(log(𝑛)).

Regarding the correctness of the general algorithm, it can be reduced to the following theorem.

Theorem 4.1. Algorithm 2 correctly outputs the rightward circular shifting of an input 𝑛-qubits
register 𝑞 by 𝑘 positions.

Proof. Correctness of Algorithm 2 follows from the correctness of Algorithm 1 and in particular
from Lemma 3.1. To verify this claim, it is enough to observe that, by the definition of ℓ, in the
𝑛-modular arithmetic it holds that 𝑛

2ℓ
= 𝑘, 2ℓ−𝑖 𝑛

2𝑖𝑘
, and log(𝑛)− log( 𝑛

2ℓ
) = ℓ.
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Figure 4: Illustration of the iterations of the algorithm implementing the circular shift operator for a
register of 8 qubits in which a rotation of 6 position is performed. The coloured qubits are placed qubits.
In this circular representation of the register is evident that all swapped pairs have the same distance.
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Figure 5: The application of the circular shift operator for a register of 8 qubits in which a rotation of
3 positions is performed. Observe that all the pairs of qubits swapped in the same iteration have the
same distance. For instance, in ROT

[1]
3 , the pair 𝑞6 and 𝑞1 have distance 1− 6 = 3 mod (8), which is

the same distance between the other swapped pairs of qubits. Similarly, all the swapped pairs of qubits
in ROT

[2]
3 have distance 6 mod (8).

4.1. Adapting the Algorithm to Registers of Any Size

In Section 2, we assumed to work with registers whose length is a power of 2. This does not
make our method less general. It is easy to check, indeed, that the following slight modification
of Algorithm 2 realizes the circular shift by 𝑘 position of a qubit-register 𝑞 of any size. It is
enough to replace the register 𝑞 of arbitrary size 𝑛 by the register 𝑞′ that has size 2⌈log(𝑛)⌉ and
such that

𝑞′𝑖 = 𝑞𝑖, for 0 ≤ 𝑖 < 𝑛, and 𝑞′𝑖 = ⋆, for 𝑛 ≤ 𝑖 < 2⌈log(𝑛)⌉ − 1,
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Figure 6: The application of the circular shift operator for a register of 8 qubits in which a rotation of 5
and 6 positions is performed, respectively.

where ⋆ is a special symbol that does not belong to the working alphabet. At this point, it
is sufficient to rotate 𝑞′ by 𝑘 positions, as dictated by Algorithm 2, and drop from the output
register the qubits whose state is equal to ⋆. The resulting register will have size 𝑛 and be equal
to

⨂︀𝑛−1
𝑥=0|𝑞𝑥+𝑘 mod (𝑛)⟩, namely the circular shift of 𝑞 by 𝑘 positions.

5. Discussion and Conclusions

We have presented a quantum algorithm that performs the rightward circular shift of a quantum
register of arbitrary size 𝑛 by 𝑘 positions. As we already discussed, the circular shift operator is
a staple ingredient of many quantum recipes. For example, in the framework of quantum text
processing, it is employed to get all possible portions of a certain fixed length of a text in the
[12, 13]. Whereas it was already known that such a gate can be implemented in at most log(𝑛)
steps, a systematic way to build it was missed, and this motivated our work.

Algorithm 2 can be modified to get an algorithm that constructs a quantum gate that imple-
ments the rightward circular shift operator ROT𝑘, for any 1 ≤ 𝑘 ≤ 𝑛− 1, in an obvious way,
i.e., replacing line 4 of the algorithm by add Swap(𝑞𝑥, 𝑞𝑥+2𝑖−1𝑘 mod (𝑛)). We observe that the
quantum gate obtained has still depth equal to 𝒪(log(𝑛)). However, there is a non-significant
difference between the quantum gate performing ROT and the algorithm that builds it. In fact,
during the execution of the quantum gate, there is no need to get the knowledge about the
number of needed iterations ℓ (which is already encoded in the circuit implementing the gate),
whereas the building algorithm needs to compute it.

We assumed to work with registers of qubits, that is, the register is made of 2-dimensional
quantum systems. In the quantum computation landscape, this is however not always the case.
For example, qutrits are quantum systems of dimension 3 that have attracted some interest in
quantum cryptography [14, 15]. We think that it makes sense and would be interesting - at
least from a purely theoretical perspective - to define the 𝑑-dimensional generalisation of the
Swap elementary gate and to understand how to use it to implement non-elementary gates
performing 𝑑-dimensional rotations. To be more concrete, in the framework of qutrits we could
define some swap-like elementary gate permuting in some way the states of three qutrits, and
then employ it to perform some kind of spherical shift.
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