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Abstract
Reversible Boolean Circuits are an interesting computational model under many aspects and in different
fields, ranging from Reversible Computing to Quantum Computing. Our contribute is to describe a specific
class of Reversible Boolean Circuits - which is as expressive as classical circuits - as a bi-dimensional
diagrammatic programming language. We uniformly represent the Reversible Boolean Circuits we focus
on as a free 3-category Toff. This formalism allows us to incorporate the representation of circuits and
of rewriting rules on them, and to prove termination of rewriting. Termination follows from defining a
non-identities-preserving functor from our free 3-category Toff into a suitable 3-category Move that
traces the “moves" applied to wires inside circuits.
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1. Introduction

The class of Reversible Boolean circuits (from now on, RBC) constitutes an interesting com-
putational model, for many reasons. We name just some of them: once implemented, they
may help to reduce electronic devices energy consumption [1], easing miniaturization, due to a
limited heat dissipation; they are at the core of cryptographic block cyphers analysis [2], and of
quantum circuits synthesis [3, 4]. Moreover, reversibility means that if we execute the circuits
in the opposite direction, e.g. bottom-up instead of top-down, we are able to recover the input.
RBC can nevertheless simulate all non-reversible classical circuits [5].
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Figure 1: Generators of Reversible Boolean Circuits and a reduction on them
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Our focus is to study a class of RBC in the lines of [6], i.e. as a bi-dimensional diagrammatic
formal language built by series and parallel composition of the generators; the diagrams can
be rewritten by rewriting rules preserving generator interpretation, as given in Fig. 1a. The
inputs of the generators are on top. We assume 𝑥, 𝑦, 𝑐 ∈ {0, 1}, and from left to right we have
the gates: “Identity”, “Swap”, “Negation” (which we also call “Toffoli-one”), “Toffoli-two”, and
“Toffoli-three”. We denote the boolean XOR operation with +; the AND is by juxtaposition.
Toffoli-two performs a controlled negation (CNOT): when the controller 𝑐 is set to 1, 𝑥 is negated,
and is unchanged otherwise. The input 𝑥 is always carried over as an output. Toffoli-three can
be used to build conjuctions: if 𝑐 = 0, (𝑥, 𝑦, 0) ↦→ (𝑥, 𝑦, 𝑥𝑦).

All classical boolean functions can be expressed in RBC, provided we add extra inputs/outputs
in order to make the boolean functions invertible: in a reversible setting, the number of ouputs
must be always equal to that of inputs.

All gates depicted in Fig. 1a represent invertible functions; moreover, they are self-inverse,
i.e., if they yield an identity when applied twice.

Our goal in the long term is to answer specific domain questions related to the reversible
language purposes. Such questions in the short term require to answer more classical questions
about rewriting.

An example of specific reversibility question is: “Can we partition RBC into equivalence
classes to find those containing the most efficient circuits, according to measures which depend
on ancillae or the number of generators involved?”. We recall that “ancillae” is a technical
notion, to identify variables used as temporary storage in a circuit 𝐶 ∈ RBC. Ancillae allow 𝐶
to compute the desired function while preserving the possibility of reverting the computation.
A good reference to frame the role of ancillae in various contexts can be [7].

Another specific reversibility question can be: “How can we decide the equivalence of
reversible circuits that we obtain by compilers which translate classical boolean circuits into
reversible ones, driven by some heuristic aimed at optimizing specific parameters of the output?”.
The heuristic in [8] is just an example, of the many proposed in the literature, whose purpose,
for instance, is to obtain good translations minimizing the quantity of ancillae.

Answering questions like the two above requires to formally and unambiguously know the
representatives of equivalence classes in RBC. This amounts to asking basic questions about
rewriting, such as: “What is and how do we get normal forms of RBC?”

Contributions. A natural strategy to answer the last question is to look for normal forms w.r.t.
an interpretation-preserving rewriting on the circuits of RBC. Fig. 1b suggests what we mean
by a simple example, in which we move a Toffoli-three gate next to another Toffoli-three so that
they annihilate each other, because Toffoli-three are self-inverse operators. All base reversible
gates are self-inverse, while, in general, reversible circuits do not need to be self-inverse.

Rewriting bi-dimensional diagrammatic formal languages has well-know difficulties, mainly
concerning their relations with the usual (linear) syntaxes expressing the same problem.

We here explore the use of a free 3-category to represent both the reversible circuits and
the rewriting rules on them. We build over Burroni’s work [9], who introduced the notion
of polygraphs to express algebraic theories and their reductions. Lafont [6] used bidimen-



sional diagrammatic syntax on product categories and an informal measure on them to prove
termination results on several classes of boolean functions; Guiraud used 3-polygraphs and
diagrammatic reasoning to represent rewriting of circuit-like objects in [10, 11], together with
a formal method to build terminating measures. We focus on freely generated 3-categories
instead of polygraphs, to have access to the rewriting paths as 3-morphisms; we call “Toffoli
3-category” the free 3-category we introduce, and we denote it with Toff.

We remind the reader that an Abstract Rewriting System (ARS) is said to be terminating when
there are no infinite chains of subsequent reductions, i.e. all reductions eventually yield a
(not necessarily unique) normal form. We show termination of the rewriting system in Toff:
termination follows from defining a functor from Toff into a suitable 3-category Move of moves
applied to wires inside circuits.

We remark that the functor we introduce simplifies the functorial and differential interpreta-
tions in [12, 10, 11]: our approach does not require to identify both a non-increasing measure
on diagrams, which recalls a current flowing, and a strictly decreasing measure, connected to
the “current”, which recalls heat, generated by the “current” itself. We just need to identify a
decreasing measure on a monoid of strings. The measure keeps track of the “moves” being
applied to each individual wire, and assigns them a cost.

Plan of our work. We sketch the definition of 3-categories (§2), then we provide a
bi-dimensional graphic representation for 3-categories representing circuits (§3). Next, we
formally define the free 3-category Toff (§4), and a functor from Toff to a 3-category Move of
movements through circuits (§5),which we show to be a decreasing measure of reductions.
Eventually we prove termination of reductions on RBC (§6). The reduction rules we utilized are
syntactic in nature; the normal form under algebraic equivalences remains an open problem [6].

2. 3-Categories, 3-Functors and Free 3-Categories

In this section we will briefly go over the definition of 𝑛-categories. We provide enough details
for the purposes of representing circuits and syntactic reductions on them (level 3). For a
complete description of higher categories we refer to e.g. [13, 14].

Motivations for using categories. The literature using product categories to describe
circuits is extensive; we follow Burroni and Guiraud and use higher category theory to describe
reduction systems on algebraic structures, with particular attention to circuits [9, 11, 6]. The
“multi-level” structure of 𝑛-categories provides a suitable model for bi-dimensional objects such
as circuits; the third level effortlessly captures the notion of a rewriting system on circuits.
Moreover, the use of categories allows us to reason up to “bureaucratic” identities such as those
invoked when shortening/lengthening the wires by adding/removing identities.

We give an anticipation on our 3-categorial model.

• The “base” level will contain a single token object * representing the empty space between
wires in a circuit.



• A first level will contain input and output wires, with a “monoidal” product to generate
bundles of multiple wires. In our model, we will consider a single wire as a formal cell
* → * between two “empty spaces” *.

• A second level will contain circuits as morphisms between 𝑛 input wires and 𝑚 output
wires (in our context 𝑛 = 𝑚 because of reversibility), with appropriate series and parallel
compositions.

• A third level will contain syntactic rewriting rules, considered as morphisms between
circuits. Reductions should preserve the number of input/output wires of a circuit.

We have that each level consists of morphisms, named cells, with domain and codomain (here
source and target) objects at the adjacent lower level. Source/target of a reduction is a circuit,
source/target of a circuit is a set of I/O wires, and source/target of a wire is the empty space
*. The 𝑖-compositions will provide an unified entity that captures both concatenation of wires,
series and parallel composition of circuits, as well as three different ways to compose reductions.
Also, the properties of 0-, 1-, 2-composition will capture equations between circuits and between
reductions. The levels up to the second one yield a description of circuits isomorphic to the
product categories formalization.

We now provide an equational definition for 𝑛-categories following [15].

Definition 1 (𝑛-categories). A (strict) 𝑛-category 𝒞 contains the following.

• A list of sets 𝐶𝑖, 0 ≤ 𝑖 ≤ 𝑛, called levels, whose elements are called 𝑖-cells.
• The maps s𝑖, called 𝑖-source, and t𝑖, called 𝑖-target, that associate to each 𝑗-cell 𝑥 with
0 ≤ 𝑖 < 𝑗 ≤ 𝑛 two 𝑖-cells s𝑖(𝑥), t𝑖(𝑥) we respectively call the 𝑖-source and the 𝑖-target
of 𝑥;

• The 𝑗-cells 𝑥 ⋆𝑖 𝑦, defined for all 𝑗-cells 𝑥, 𝑦 and indices 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that
t𝑖(𝑥) = s𝑖(𝑦), called the 𝑖-composition of 𝑥 and 𝑦, with 𝑘-source/target given by:

1. s𝑘(𝑥 ⋆𝑖 𝑦) = s𝑘(𝑥) and t𝑘(𝑥 ⋆𝑖 𝑦) = t𝑘(𝑦) when 0 ≤ 𝑘 ≤ 𝑖;

2. s𝑘(𝑥 ⋆𝑖 𝑦) = s𝑘(𝑥) ⋆𝑖 s𝑘(𝑦) and t𝑘(𝑥 ⋆𝑖 𝑦) = t𝑘(𝑥) ⋆𝑖 t𝑘(𝑦) when 𝑗 > 𝑘 > 𝑖.

The 𝑖-composition is denoted in diagrammatic order (left-to-right).

The data above define an 𝑛-category if they satisfy the following further conditions.

• Globularity.

s𝑖−2(s𝑖−1(𝑥)) = s𝑖−2(t𝑖−1(𝑥)), t𝑖−2(s𝑖−1(𝑥)) = t𝑖−2(t𝑖−1(𝑥))

for all 𝑖-cells 𝑥 with 2 ≤ 𝑖 ≤ 𝑛. Globularity means that all 𝑖-cells connect two (𝑖−1)-cells
with the same (𝑖− 2)-source and (𝑖− 2)-target.

• Associativity of each ⋆𝑖.
• Local Units. For all 𝑖-cells 𝐴 with 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, there exists an identity 𝑗-cell id𝑖,𝑗,𝐴,

or id𝐴 for short, such that s𝑖(id𝑖,𝑗,𝐴) = t𝑖(id𝑖,𝑗,𝐴) = 𝐴, the lower index source/targets
of id𝑖,𝑗,𝐴are those of 𝐴, and for all 𝑗-cells 𝑓 we have

– if 𝐴 = s𝑖(𝑓) then id𝑖,𝑗,𝐴 ⋆𝑖 𝑓 = 𝑓 , and



– if 𝐴 = t𝑖(𝑓) then 𝑓 ⋆𝑖 id𝑖,𝑗,𝐴 = 𝑓 .

Any 𝑖-composition of 𝑗-identity is a 𝑗-identity, for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.
• Exchange Rule.

(𝛼 ⋆𝑗 𝛽) ⋆𝑖 (𝛾 ⋆𝑗 𝛿) = (𝛼 ⋆𝑖 𝛾) ⋆𝑗 (𝛽 ⋆𝑖 𝛿)

for 𝛼, 𝛽, 𝛾, 𝛿 𝑘-cells such that the above compositions are defined and all 0 ≤ 𝑖 < 𝑗 <
𝑘 ≤ 𝑛.

In order to build the measure that proves termination of circuits reductions, we need the
notion of 3-functor which we define for the general case.

Definition 2 (𝑛-functor). Let 𝒞, 𝒟 be 𝑛-categories. An 𝑛-functor 𝜙 : 𝒞 → 𝒟 is a map such
that for all 0 ≤ 𝑖 ≤ 𝑛, 𝜙 sends 𝑖-cells of 𝒞 into 𝑖-cells of 𝒟, and such that for all 𝑖-cells 𝑓, 𝑔 of 𝒞,
for all 0 ≤ 𝑗 < 𝑖 ≤ 𝑛, and for all 𝑗-cells 𝐴 we have:

1. Source/Target preservation. s𝑗(𝐹 (𝑓)) = 𝐹 (s𝑗(𝑓)), t𝑗(𝐹 (𝑓)) = 𝐹 (t𝑗(𝑓))

2. Identity preservation (for 𝑖-cells and ⋆𝑗). 𝐹 (id𝑗,𝑖,𝐴) = id𝑗,𝑖,𝐹 (𝐴)

3. Composition preservation. 𝐹 (𝑓 ⋆𝑗 𝑔) = 𝐹 (𝑓) ⋆𝑗 𝐹 (𝑔)

Free 𝑛-Categories

In the next section, we will represent circuits and reductions on them with a free 3-category. A
free 𝑛-category consists of all well-formed expressions for objects in an 𝑛-category that are
generated by a set of names for cells, identities and compositions, modulo all the equations we
have for 𝑛-categories.

Definition 3 (Free 𝑛-Categories). Let �⃗�𝑛 be a signature, i.e. a list of sets �⃗�𝑛 = (𝐺0, . . . , 𝐺𝑛),
with 𝐺𝑖 sets of names for 𝑖-cells for 1 ≤ 𝑖 ≤ 𝑛, equipped with two maps s, t : 𝐺𝑖 → 𝐺𝑖−1,
1 ≤ 𝑖 ≤ 𝑛 such that the globularity requirement is met. We define the free 𝑛-category 𝒞𝑛
generated by the signature �⃗�𝑛 by induction on 𝑛.

The 0-category 𝒞0 is just the set 𝐺0. Assume we have defined the free (𝑛− 1)-category 𝒞𝑛−1

generated by the signature �⃗�𝑛−1 as the (𝑛− 1)-category with levels 𝐶0, 𝐶1, . . . , 𝐶𝑛−1.

• An 𝑛-generator of 𝐶𝑛 is any name 𝑓 ∈ 𝒞𝑛−1 such that 𝑛 = 1 or 𝑛 ≥ 2 and 𝑓 satisfies
the Globularity condition: s𝑛−2(s𝑛−1(𝑓)) = s𝑛−2(t𝑛−1(𝑓)) and t𝑛−2(s𝑛−1(𝑓)) =
t𝑛−2(t𝑛−1(𝑓)).

• Let 𝐸𝑛 be the set of 𝑛-constants of 𝐶𝑛, containing all 𝑛-generators and all expressions
id𝑖,𝑛,𝐴 denoting the 𝑖-identity on 𝐴, for 0 ≤ 𝑖 ≤ 𝑛− 1, 𝐴 ∈ 𝐶𝑖.

• Let 𝐸*
𝑛 be the smallest set containing 𝐸𝑛 and all expressions 𝑓 ⋆𝑖 𝑔 such that 𝑓, 𝑔 ∈ 𝐸*

𝑛,
0 ≤ 𝑖 ≤ 𝑛 − 1 and t𝑖(𝑓) = s𝑖(𝑔). Source/target maps are defined on 𝐸*

𝑛 by the
source/target equations for 𝑛-categories.



𝒞𝑛 is defined as the 𝑛-category with levels 𝐶0, . . . , 𝐶𝑛−1, 𝐶𝑛 and 𝐶𝑛 = 𝐸*
𝑛/ ∼, where ∼

is the smallest equivalence relation compatible with ⋆0, . . . , ⋆𝑛−1 and including Associativity,
Local Units and Exchange.

Alternatively, the readers who are familiar with the definition of polygraphs [9, 10, 12] will
notice that the free 𝑛-category generated by the signature 𝐺 is isomorphic to the 𝑛-category
generated by the corresponding 𝑛-polygraph, which itself lacks categorial structure at the 𝑛-th
level [16].

3. A Bi-dimensional Diagrammatic Syntax for 3-Categories

In this section we restrict to free 3-categories with a single 0-cell * and a unique generator for
1-cell, i.e. the wire , and we describe them as formal circuits and circuit reductions, by specifying
what role the 𝑖-compositions take in the context of circuits. We introduce a diagrammatic syntax
that represents such free 3-categories and the associated circuits. A great incentive to use a
bi-dimensional syntax is that diagrams actually look like circuits. We stress the fact that the
categorial setting together with a diagrammatic formalism give a thorough, compact and sound
presentation for circuital theories. We invite the reader to think of 𝑖-compositions as a gluing
operator of two objects along their common 𝑖-target and source, respectively.

Definition 4 (Diagrams for a free 3-category). Let us assume that 𝐺 is a free 3-category with
generator sets �⃗� = (𝐺0, 𝐺1, 𝐺2), source and target maps s𝑖, t𝑖, a single 0-cell and a unique
generator for 1-cells. The diagrammatic representation of 𝐺 is as follows.

• Generators.
– 𝐺0 = {*} consists of a unique 0-cell, representing a separator between input/output

wires. We depict * as a white area in the sheet of paper the diagram is drawn on.
– 𝐺1 = { } consists of a unique 1-cell, which we call a wire. A wire is a formal cell

between the two portions of sheet that it divides, both marked with *.
– Each gate in 𝐺2 is depicted as a circuit-like box with input and output wires repre-

senting 1-source and 1-target of the circuit.

𝐺2 =
¶

, . . . , , . . . , , . . . , , . . .
©
.

If 𝑔 is a gate with 𝑛 input and output wires, we write 𝑔 : 𝑛 ⇒ 𝑛. The diagrams
depicting gates preserve the meaning of 2-cells as formal maps between 1-cells
(wires).

– 3-cells in 𝐺3, or reductions, are written as 𝑓 ⇛ 𝑔 . We include no diagram for
3-cells: this would involve 3-dimensional objects [10].

• 𝑖-cells.
– The set 𝐺*

0 of all 0-cells is again 𝐺0 = {*}.
– The set 𝐺*

1 of all 1-cells consists of all possible 0-compositions ⋆0 between 1-cell
generators. Any element of 𝐺*

1 has the form * * · · · * or simply . . . , freely
generated as 0-composition along their common * white area.



– The set 𝐺*
2 of all 2-cells represents circuits, and it is obtained from gates in 𝐺2

by closure w.r.t. 0-composition ⋆0 (parallel composition, or composition along a
common * area), and 1-composition ⋆1 (sequential composition, or composition
along a common bundle of wires).

– Compositions of 2-cells.
∗ Every two 2-cells are 0-composable, since they have as inputs and outputs
1-cells with the same source and target (the only 0-cell *). The 0-composition
of 2-cells is depicted by putting the circuits next to each other along their

common * white area: 𝑓 𝑔 . This operation corresponds to the usual parallel
composition and is read left-to-right.

∗ 1-composition of 2-cells is defined for pairs of 2-cells such that 1-target of the
first one (its output wires) is equal to the 1-source of the second one (its input
wires). 1-composition vertically stacks circuits by connecting common I/O set

of wires:
𝑓

𝑔
. This operation corresponds to series composition and is read

top-to-bottom.
– Circuit equivalences.

∗ The degenerate 1-composition id𝐴 ⋆1 𝑓 corresponds to prolonging the wires

of 𝐴 = s1(𝑓). The Unit rule 𝑓 = 𝑓 = 𝑓 graphically shows that circuits

are defined independently from the length of wires.
∗ The Exchange rule (𝑓 ⋆1 𝑔) ⋆0 (ℎ ⋆1 𝑘) = (𝑓 ⋆0 ℎ) ⋆1 (𝑔 ⋆0 𝑘) says that the

diagram

𝑓

𝑔

ℎ

𝑘

defines a single circuit which we can be equivalently read left-to-right, or
top-to-bottom.

• 3-cells, or circuit reductions, can be composed with ⋆0, ⋆1, ⋆2. If𝛼 : 𝑓 ⇛ 𝑔 and 𝛽 : ℎ ⇛ 𝑘,
then the compositions behave as follows.

𝑓 ℎ ⇛ 𝑔 𝑘
𝑓

ℎ
⇛

𝑔

𝑘
𝑓 ⇛ 𝑘

𝛼 ⋆0 𝛽 𝛼 ⋆1 𝛽 𝛼 ⋆2 𝛽
(𝑓, ℎ and 𝑔, 𝑘 1-composable) (𝑔 = ℎ)

Remark 1. The diagrammatic notation, inspired by the string diagrams of categories, can be
treated as a full 2-dimensional syntax for product categories, as explained in [17]. Again in [17]
there is a termination result for the rewriting system where associativity, local units and the
exchange rule are understood as rewriting rules and not as equivalences, and the concepts of
squeezed form and longest normal form are introduced. In this paper, we shall limit ourselves to
reasoning on diagrams modulo the above equivalences.



4. The Free 3-Category of Reversible Boolean Circuits

In this section we will describe, as a free 3-category Toff, both all reversible circuits we can
obtain from the generators SWAP, NOT, CNOT (or T2, for Toffoli two), and T3 (or CCNOT), and a
particular set of reductions on such circuits. This set of gates is proven to be universal (with
ancillae) in [5]. The 3-category Toff includes, as its 3-generators, a reduction set composed
of rules that replace each pair of consecutive SWAP or consecutive Toffoli gates by an identity,
implementing involutivity of reversible gates. We also arrange circuits in a canonical form, with
a “leaning” to moving a SWAP down, and when this is not possible, to the right. All reductions
preserve the associated boolean function.

Definition 5 (The free 3-category Toff of Reversible Circuits). The free 3-category of Reversible
Circuits is the free 3-category specified by the following sets of 0-, 1-, 2- and 3-generators.

• 𝑅0 = {*}, 𝑅1 = { }, where : * → *
• 𝑅2 contains the following generators for reversible circuits, in this order: SWAP, NOT, T2,
T3

𝑅2 =
¶

: 2 ⇒ 2, N : 1 ⇒ 1, T2 : 2 ⇒ 2, T3 : 3 ⇒ 3
©

• 𝑅3 = 𝑅𝑝 ∪𝑅𝑎 ∪𝑅𝑠 ∪𝑅𝑡, where 𝑅𝑝 contains the following permutation rules:

𝑅𝑝 =

ß
⇛ , ⇛

™
,

𝑅𝑎 contains the following annihilation rules:

𝑅𝑎 =

®
N

N
⇛ ,

T2

T2
⇛ ,

T3

T3
⇛

´
𝑅𝑠 contains the following sliding rules:

𝑅𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ⇛ N , N ⇛ N

T2
⇛ T2 , T2

⇛ T2

T3
⇛ T3 , T3

⇛ T3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and 𝑅𝑡 contains the following Swapped Toffoli rule:

𝑅𝑡 =

ß
T3

⇛ T3

™



5. The Interpreting 3-Functor

In this section, we will define a 3-category Move of strings of “moves”, each of them corre-
sponding to the action of a gate on a single wire. Moves are elements of an ordered monoid
that expresses the cost of series of singular moves along the wires of the circuit. The circuits
are then measured by a componentwise order on all moves on all wires. The reduced circuit
should describe an equivalent boolean function with a reduced total cost. The interpretation
of circuits into moves will be given as a 3-functor from the free 3-category Toff of reversible
circuits and a Toffoli base to Move.

Definition 6 (The ordered monoid (M, <M) of moves). 1. M is the free monoid of words gen-
erated from the letters l, r, t.

2. We order 𝑤1, 𝑤2 ∈ M first by length, and when the lengths are the same, by the lexico-
graphic order induced by the following order on letters: t <M r <M l.

3. We write <M for the order on M.

The letters l, r, t correspond to the three moves “left-to-right", “right-to-left" on the two
wires of a SWAP, and to the move “Toffoli" on any wire of a Toffoli circuit. From M we define a
3-category Move.

Definition 7 (Move). Move is a collection of the following sets and ordered sets of 𝑖-cells 𝑀𝑖,
0 ≤ 𝑖 ≤ 3.

• 𝑀0 = {*}, a single element set.
• (𝑀1, <1) is the set of all cartesian powers M𝑛 for 𝑛 ∈ N; the singleton M0 is the identical
1-cell, identified with the unique 0-cell *. We define an order on 1-cells as M𝑛 <1 M

𝑚 if
and only if 𝑛 < 𝑚. We order vectors �⃗� ∈ M𝑛 componentwise, with the product order <M𝑛

on M𝑛.
• (𝑀2, <2) is the set of all <1-increasing maps 𝑓 : M𝑛 → M𝑛 for some 𝑛 ∈ N (all the

identities idM𝑛 are included). Let 𝑓, 𝑔 : M𝑛 → M𝑛 be 2-cells with the same source and
target. We define a strictly pointwise order 𝑓 <2 𝑔 on 2-cells by: 𝑓 <2 𝑔 if and only if
𝑓(𝑥) <M𝑛 𝑔(𝑥) for all 𝑥 ∈ M𝑛. We write 𝑓 ≤2 𝑔 for 𝑓 = 𝑔 ∨ 𝑓 <2 𝑔, that is: either
𝑓(�⃗�) = 𝑔(�⃗�) for all �⃗�, or 𝑓(�⃗�) <M𝑛 𝑔(�⃗�) for all �⃗� ∈ M𝑛.

• 𝑀3 contains all pairs 𝑟 = ⟨𝑓, 𝑔⟩ of 2-cells with the same source and target M𝑛 for some
𝑛, such that 𝑓 ≥2 𝑔. There is at most one 3-cell between 𝑓, 𝑔, which merely signals the
existence of a ≤2-relation between the two functions. We think of each pair ⟨𝑓, 𝑔⟩ as a
reduction from 𝑓 to 𝑔. The reduction is identical if 𝑓 = 𝑔, it is non-identical if 𝑓 <2 𝑔.

The 𝑖-compositions on the 𝑖-cells are defined as follows.

• 0-composition on 1-cells is M𝑛 ⋆0 M
𝑚 = M𝑛+𝑚.

• 0-composition on 2-cells is the cartesian product of maps.
• 1-composition on 2-cells is the usual (sequential) composition of maps.
• 0-composition on 3-cells is defined as ⟨𝑓, 𝑔⟩ ⋆0 ⟨𝑓 ′, 𝑔′⟩ = ⟨𝑓 × 𝑓 ′, 𝑔 × 𝑔′⟩.



• 1-composition on 3-cells is defined as ⟨𝑓, 𝑔⟩ ⋆1 ⟨𝑓 ′, 𝑔′⟩ = ⟨𝑓 ′𝑓, 𝑔′𝑔⟩.
• 2-composition on 3-cells is defined as ⟨𝑓, 𝑔⟩ ⋆2 ⟨𝑔, ℎ⟩ = ⟨𝑓, ℎ⟩.

Remark 2. The order <M on words is well-founded, and in fact (M, <M) is order-isomorphic to
the order (N, <) on natural numbers. The order <2 on maps is well-founded. In fact, each
decreasing sequence 𝑓 >2 𝑓

′ >2 𝑓
′′ >2 . . . defines a decreasing sequence 𝑓(�⃗�) >M𝑛 𝑓 ′(�⃗�) >M𝑛

𝑓”(�⃗�) >M𝑛 . . ., where �⃗� = (𝜖, 𝜖, . . . , 𝜖) and 𝜖 is the monoid unit (empty word). Therefore, every
decresing sequence from 𝑓 has length at most the number of words which are less than 𝑓(�⃗�) in
M𝑛.

Proposition 1. Move is a 3-category.

Proof. We first prove that ⋆0, ⋆1 are increasing on 2-cells of Move. Assume 𝑓 ≤2 𝑓
′ and 𝑔 ≤2 𝑔

′,
and either 𝑓 <2 𝑓

′ or 𝑔 <2 𝑔
′. Then ⋆0 is increasing: for all 𝑥 ∈ M𝑛 = s1𝑓 , 𝑦 ∈ M𝑚 = s1𝑔, we

have (𝑓 × 𝑔)(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)) <M𝑛+𝑚 (𝑓 ′(𝑥), 𝑔′(𝑦)) = (𝑓 ′ × 𝑔′)(𝑥, 𝑦). ⋆1 is increasing: if
t1(𝑓) = M𝑛 = s1(𝑔), then for all 𝑥 ∈ s1(𝑓) we have (𝑔𝑓)(𝑥) = 𝑔(𝑓(𝑥)) ≤M𝑛 𝑔(𝑓 ′(𝑥)) ≤M𝑛

𝑔′(𝑓 ′(𝑥), and one of the two inequalities is strict, therefore 𝑔(𝑓(𝑥)) <M𝑛 𝑔′(𝑓 ′(𝑥). We then
have also that ⋆0 and ⋆1 are increasing on 3-cells of Move. As a consequence, 𝑖-cells are closed
w.r.t. 𝑗-compositions. Associativity, unit and exchange axioms are straightforward.

Definition 8. A 3-functor 𝜙 : Toff → Move is strict in a 3-cell 𝛼 if

𝛼 is an identity 3-cell in Toff ⇐⇒ 𝜙(𝛼) is an identity 3-cell in Move.

𝜙 is strict if 𝜙 is strict on all 3-cells 𝛼 of Toff.

Proposition 2. Assume 𝜙 : Toff → Move is a 3-functor which is strict on all generators of 𝛼.
Then 𝜙 is strict.

Proof. By induction on 𝛼, using the fact that 𝜙 is a 3-functor and 0-, 1-, 2- and 3-composition
are increasing.

We define a 3-functor 𝜙 : Toff → Move which is strict on all generators for 0-, 1- ,2-cells.
Recall that a word is written left-to-right, the last letter being the last move.

Definition 9 (Move interpretation). We define a map 𝜙 by the following assignments on the
generator gates of Toff.

𝜙(*) = * 𝜙( ) = M 𝜙( )(𝑣, 𝑤) = (𝑤l, 𝑣r)

𝜙( N )(𝑣) = 𝑣t 𝜙( T2 )(𝑣, 𝑤) = (𝑣t, 𝑤t)

𝜙( T3 )(𝑣, 𝑤, 𝑧) = (𝑣t, 𝑤t, 𝑧t) 𝜙(𝑟) = ⟨𝜙(s2𝑟), 𝜙(t2𝑟)⟩

Lemma 1. The map 𝜙 of Def. 9 extends in a unique way to a 3-functor Toff → Move.

Lemma 2 (Termination Lemma). If the free 3-category Toff has a 3-functor to Move which is
strict on all generators for 3-cells, then all chains of non-identical 3-cells in Toff terminate.

Toff is freely generated from a free 3-category, therefore 𝜙 is entirely and uniquely defined
by the assignments on the generators of Toff, provided we recursively check that the 3-functor
𝜙 preserves sources and targets, and sources and targets of sources.



6. A Termination Result for Reversible Boolean Circuits

Theorem 1. The free 3-category of Reversible Boolean Circuits terminates (all reduction sequences
are finite).

of Termination for Reversible Boolean Circuits with the Toffoli base. By Lemma 2, we have to
prove that 𝜙 is strict on all generators for 3-cells. By definition of strictness, it is enough
to prove that for all 𝛼 ∈ 𝑅3 in Toff we have that 𝜙(𝛼) is not an identity. By definition, 𝜙(𝛼)
is equal to the pair ⟨𝜙(s2𝛼), 𝜙(t2𝛼)⟩. 𝜙(𝛼) is not an identity if 𝜙(s2𝛼) >2 𝜙(t2𝛼). Suppose
s1(𝛼) = M𝑛. By definition of the pointwise order on 2-cells of Move, we have to prove that
𝜙(s2𝛼)(𝑣1, . . . , 𝑣𝑛) >M𝑛 𝜙(t2𝛼)(𝑣1, . . . , 𝑣𝑛) for all 𝑣1, . . . , 𝑣𝑛 ∈ M.

• Permutation rules.

𝜙

Å ã
(𝑣, 𝑤, 𝑧) 𝜙

Å ã
(𝑣, 𝑤, 𝑧)

‖ ‖
(𝑧ll, 𝑤lr, 𝑣rr) >M𝑛 (𝑧ll, 𝑤rl, 𝑣rr)

The thesis follows from lr > rl.
• Annihilation rules.

𝜙

Ç
T3

T3

å
(𝑣, 𝑤, 𝑧) 𝜙 ( ) (𝑣, 𝑤, 𝑧)

‖ ‖
(𝑣tt, 𝑤tt, 𝑧tt) >M𝑛 (𝑣, 𝑤, 𝑧)

Words on the right-hand-size are all shorter and therefore smaller.
• Left-to-Right Sliding rules.

The reduction moving the Toffoli gate upwards and to the right swaps the lowest letter of
the monoid t, with a higher letter, l, in all movements 𝑣, 𝑤, 𝑧, 𝑡 but 𝑣. Below, we consider
the case of the circuit Toffoli 3.

𝜙

Å
T3

ã
(𝑣, 𝑤, 𝑧, 𝑡) 𝜙

Å
T3

ã
(𝑣, 𝑤, 𝑧, 𝑡)

‖ ‖
(𝑤lt, 𝑧lt, 𝑡lt, 𝑣rrr) >M𝑛 (𝑤tl, 𝑧tl, 𝑡tl, 𝑣rrr)

The thesis follows from lt >M tl. The Right-to-Left Sliding rules are the mirror case.
• Swapped Toffoli. This case follows from lt > tl and rt > tr.

7. Conclusion

This work explores 3-categories as a unified formal framework for modeling two concepts.
First, it examines Reversible Boolean Circuits, which are treated as diagrams generated from



a base through the iterative application of series/parallel compositions. Then, it investigates
the termination of a rewriting system on these circuits. Toff is the free 3-category which
effectively formalizes circuits and rewriting rules. Move is the 3-category supplying the well
founded-order in a monoid of strings. Termination follows from interpreting Toff into Move by
means of a (strict) functor 𝜙 that intuitively represent traces of moves inside the circuit being
rewritten, by exploiting the common 3-category structure. A possible extension of this work
is to evaluate its effectiveness in proving the termination of reductions of free 3-polygraphs
generated from alternative bases which include Fredkin and Peres gates. A second development
must focus on confluence: rewriting in Toff is not. We claim that the following circuits has two
non-confluent normal forms:

T2 (left-sliding)

T2

(permutation)

T2

We are pursuing various directions in order to obtain confluence. However, the problem at
hand is known to be non-obvious. Guiraud warns that a 3-polygraph may generate an infinite
number of critical pairs which, in specific cases, can be categorized into a finite set of patterns,
eventually leading to confluence [12].
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