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Abstract
Moving from the seminal work of Beauquier and Nivat (1991) about the characterization of polyominoes
that tile the plane by translation, Blondin Massé et al. (2013) found that their boundary words, encoded
by the Freeman chain coding on a four letters alphabet, have interesting combinatorial properties.
In particular, they considered the specific class of double square polyominoes, and they defined two
operators that allow to generate them starting from the basic class of the so called prime double squares.
However, the proposed algorithm suffers few drawbacks due to repetitions and outliers generation. Here
a different combinatorial approach to the double square characterization is proposed. In particular we
provide a series of properties for the boundary words of prime double square tiles, that lead to detect
some factors of them where a specific letter of the alphabet never occurs. The possibility of extending
this property to the whole boundary word of a prime double square, as it seems, would naturally provide
a valuable characterization and a tool for their generation and enumeration.
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1. Introduction

A polyomino is defined as a connected finite subset of points in the integer lattice, commonly
represented as a set of cells on a squared surface, each square being associated to an integer point.
In [2], Beauquier and Nivat characterized the polyominoes that tile the plane by translation
through properties of the Freeman chain coding on a four letters alphabet of their boundary. In
particular, the boundary word 𝑃 of an exact polyomino, say tile, can be factorized according
to the equation 𝑃 = 𝑋1𝑋2𝑋3

̂︀𝑋1
̂︀𝑋2

̂︀𝑋3, where ̂︀𝑋 refers to the word 𝑋 considered as a path
and travelled in the opposite direction. We will refer to such decomposition as BN-factorization.
According to [2], at most one among 𝑋1, 𝑋2 and 𝑋3 can be empty, and we refer to pseudo
squares in this case, pseudo hexagons otherwise.
The names pseudo square and pseudo hexagon refer to the behavior of a tile of being surrounded,
in a tiling, with four or six copies of itself, respectively, see Fig. 1(𝑎) and (𝑏). It is easy to verify
that some tiles also show these two behaviours at the same time in a tiling, as witnessed in
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Fig. 1(𝑐).

(a) (b) (c)

Figure 1: Three tilings of the plane with the two cell domino showing different behaviours. In (a) the
domino acts as a pseudo square, since it is surrounded by four copies of itself. In (b) the domino acts as
a pseudo hexagon, since six copies surround each domino. In (c) both the behaviours are present. Here
the dark domino is surrounded by five copies of itself, but this is not the case for each element of the
tiling.

Focusing on pseudo square tiles, in [3] it was proved that an exact polyomino tiles the plane
as a pseudo square in at most two distinct ways. Furthermore, if two different pseudo square
factorizations of 𝑃 exist, then no decomposition as a pseudo hexagon does. The authors refer
to these exact polyominoes as double squares.
Double squares have been studied under different aspects, some of them leading to the possibility
of their exhaustive generation. To hit this target, in [5] two operators have been defined and
recursively applied to a basic subclass, say prime double squares, defined throughout the notion
of homologous morphism. Unfortunately, those operators suffer from some drawbacks: in
particular, as observed by the authors, their iterative application may not generate a double
square polyomino, or may generate more copies of the same double square (see Fig. 12 in [5]).
Also from a combinatorial point of view, these drawbacks are undesirable in view of the
characterization and the enumeration of the whole class.
Focusing on prime double squares, still in [5] the following conjecture, recently proved in [1],
was proposed

Conjecture 35. Let 𝑤 be the boundary word of a prime double square tile in a four letters
alphabet Σ. Then, for any letter 𝛼 ∈ Σ, 𝛼𝛼 is not a factor of 𝑤.

In this article we move from the results in [1] and we show that the boundary word of a prime
double square has a peculiar form that involves factors that are repeated in different parts of
both the BN-factorizations. We also prove that some of these factors are characterized by the
absence of specific letters of the coding alphabet. This result opens a promising way both to
the enumeration and to the generation of prime double squares (lately, of all the double square
polyominoes), since it allows to generate parts of their boundary words whose path does not
self intersect. So, in the next section we recall some basic definitions on combinatorics on words
and few preliminary results to approach the study of prime double square polyominoes. Then
Section 3 provides a series of properties of the boundary word of a prime double square poly-
omino that lead to state that in some of its parts one specific letter never occurs (consequently,
since horizontal and vertical steps always alternate, as shown in [1], no self intersections of the
related paths are possible).



2. Basic notions and preliminaries

Let us consider the lattice grid Z2. A polyomino is defined as a 4-connected finite subset of
points of Z2. Each polyomino can be represented as a finite set of cells on a squared surface,
each cell representing a lattice point (see Fig. 2). It is commonly required that polyominoes have
no holes, i.e., the boundary of their representation as a set of cells is considered as a continuous,
closed and non-intersecting path. We adopt this assumption here. Relying on that, we naturally
code the boundary of a polyomino through a word, say boundary word, on an alphabet of four
letters, Σ = {0, 0, 1, 1}. Each letter of the word represents a step in one of the four directions
of the discrete grid, {→,←, ↑, ↓} respectively. Due to the correspondence between letters of Σ
and directions, we indicate 0 and 0, resp. 1 and 1, as opposite. Figure 2 shows an example of the
coding.

Figure 2: A connected set of points (polyomino) 𝑃 on the left and its cell representation on the right.
Moving clockwise and starting from the red circle, the polyomino is represented by the boundary word
𝑃 = 000010100110001011001011111001, while starting from the blue circle the boundary word is
𝑃 ′ = 100010110010111110010000101001. An easy check reveals that 𝑃 ≡ 𝑃 ′.

Obviously, choosing different starting points and moving along the border clockwise or counter-
clockwise lead to different boundary words for the same polyomino. So we need to introduce the
following definitions to overcome these ambiguities. Using the standard notation, we indicate
with Σ* the free-monoid on Σ, i.e., the set of all words defined on Σ, where 𝜀 is the empty one,
and with Σ+ the set Σ* ∖ {𝜀}. Given 𝑤 ∈ Σ*, |𝑤| denotes its length, while |𝑤|𝛼 is the number
of occurrences of the letter 𝛼 in the word 𝑤. The notation 𝑤𝑛 indicates the concatenation of 𝑛
copies of the word 𝑤. Finally, 𝑣 is a factor of 𝑤 if there exist 𝑥, 𝑦 ∈ Σ* such that 𝑤 = 𝑥𝑣𝑦. If
𝑥 = 𝜀 [resp. 𝑦 = 𝜀], then 𝑣 is a prefix [resp. suffix] of 𝑤, while if |𝑥| = |𝑦| then 𝑣 is the center
of 𝑤. The notation 𝑣 /∈ 𝑤 points out that 𝑣 is not a factor of 𝑤.
Two words 𝑣 and 𝑤 are conjugate, say 𝑤 ≡ 𝑣, if there exist two words 𝑥 and 𝑦 such that 𝑣 = 𝑥𝑦
and 𝑤 = 𝑦𝑥. The conjugacy is an equivalence relation, and the conjugacy class of a word 𝑤
contains all its cyclic shifts, i.e., all the possible coding of a polyomino when fixing a travelling
direction and moving all over the possible starting points. We decide to describe the boundary
of a polyomino by travelling it clockwise, in order to identify it with any word of the class
(see again Fig. 2 for an example). The unit square turns out to be 𝑈 = 1010. Moreover, if 𝑃
is the boundary word of a polyomino, the following conditions hold: for all 𝛼 ∈ Σ we have
|𝑃 |𝛼 = |𝑃 |𝛼 (this ensures the closeness of the boundary), and there exists 𝛼 ∈ Σ such that
|𝑄|𝛼 ̸= |𝑄|𝛼 for any 𝑄 proper factor of 𝑃 (this ensures that the polyomino is 4-connected).
We define three operators on a word 𝑤 = 𝑤1𝑤2 . . . 𝑤𝑛 ∈ Σ*:



1. the opposite of 𝑤, indicated with 𝑤, is the word obtained by replacing each letter of 𝑤
with its opposite;

2. the reversal of 𝑤, indicated with 𝑤̃, is defined as 𝑤̃ = 𝑤𝑛𝑤𝑛−1 . . . 𝑤1. A palindrome is a
word s.t. 𝑤 = 𝑤̃;

3. the hat of w, indicated with ̂︀𝑤, is the composition of the previous operations, ̂︀𝑤 = 𝑤̃.

We now introduce a particular subclass of polyominoes, the so called prime double squares, in
which we are interested. A polyomino is called exact if it tiles the plane by translation. Beauquier
and Nivat characterized exact polyominoes in relation to their boundary word, providing the
following

Theorem 1 ([2]). A polyomino 𝑃 is exact if and only if there exist 𝑋1, 𝑋2, 𝑋3 ∈ Σ* such that

𝑃 = 𝑋1𝑋2𝑋3
̂︀𝑋1

̂︀𝑋2
̂︀𝑋3,

where at most one of the words is empty. This factorization may be not unique.

We will refer to this decomposition as a BN-factorization, and call BN-factors the words 𝑋𝑖 and̂︀𝑋𝑖 provided by the decomposition. Starting from this result, exact polyominoes can be further
divided in classes; we will focus on pseudo squares, that are the exact polyominoes where one of
the BN-factors is empty. Among them, we specify the double square polyominoes, that admit
two different (in terms of BN-factors) BN-factorizations as a square, 𝐴𝐵 ̂︀𝐴 ̂︀𝐵 ≡ 𝑋𝑌 ̂︀𝑋 ̂︀𝑌 . Due
to the presence of two BN-factorizations, double squares’ boundary words can be written in the
general form obtained from Corollary 6 in [6],

𝑃 = 𝑤1𝑤2𝑤3𝑤4𝑤5𝑤6𝑤7𝑤8, (1)

where 𝐴 = 𝑤1𝑤2, 𝐵 = 𝑤3𝑤4, ̂︀𝐴 = 𝑤5𝑤6, ̂︀𝐵 = 𝑤7𝑤8 and 𝑋 = 𝑤2𝑤3, 𝑌 = 𝑤4𝑤5, ̂︀𝑋 = 𝑤6𝑤7,̂︀𝑌 = 𝑤8𝑤1, with 𝑤1, . . . , 𝑤8 non empty.
We introduce the notion of homologous morphism. A morphism, in our framework, is a function
𝜙 : Σ* → Σ* s.t. 𝜙(𝛼𝛽) = 𝜙(𝛼)𝜙(𝛽) with 𝛼, 𝛽 ∈ Σ, i.e., it preserves concatenation, and it is
said to be homologous if, for all 𝐴 ∈ Σ*, 𝜙( ̂︀𝐴) = ˆ︁𝜙(𝐴), i.e., it preserves the hat operation. From
now on, we will refer to homologous morphisms only. For each exact polyomino 𝑃 = 𝐴𝐵 ̂︀𝐴 ̂︀𝐵,
we can define the trivial morphism that maps the unit square in 𝑃 as 𝜙𝑃 (1) = 𝐴, 𝜙𝑃 (0) = 𝐵,
𝜙𝑃 (1) = ̂︀𝐴 and 𝜙𝑃 (0) = ̂︀𝐵. In general, the boundary word of an exact polyomino can also
be obtained starting from the unit square through the composition of two or more morphisms
(see Example 1). In [5] the authors defined the class of prime double squares, briefly 𝑝𝑑𝑠, as the
double squares whose boundary word 𝑃 is such that, for any homologous morphism 𝜙, the
equality 𝑃 = 𝜙(𝑄) implies that either 𝑄 = 𝑃 or 𝑄 is the boundary word of the unit square.
This property can be rephrased saying that a double square is prime if its trivial morphism can
not be obtained by composing two or more different morphisms. This last class, that constitutes
the basis for the generation of double squares through homologous morphisms, will be the focus
of our work. In particular, we will provide some properties of their boundary words setting the
path for a suitable characterization to generate and then enumerate them.



Example 1. The double square 𝑃 = 11
... 01011

... 010
... 11010|11

... 01011
... 010

... 11010 is not
prime, since it can be obtained applying to the unit square, in this order, the morphisms 𝜙(0) = 010,
𝜙(1) = 101 and 𝜓(0) = 010, 𝜓(1) = 11.

The notation
... separates the factors 𝑤𝑖 in 𝑃 , while | denotes half of the word.

On the other hand, the cross polyomino in the intermediate step is clearly prime.

ϕ ψ

Figure 3: The visual representation of the actions of the two homologous morphisms 𝜙 and 𝜓 to reach a
double square from the unit square. The intermediate step is the cross, a prime double square polyomino.

We conclude this section with some useful results from [1, 5]:

Property 1 ([5]). Let 𝑃 be a double square, and 𝐴𝐵 ̂︀𝐴 ̂︀𝐵 ≡ 𝑋𝑌 ̂︀𝑋 ̂︀𝑌 its BN-factorizations. If 𝑃
is prime, then the factors 𝐴,𝐵,𝑋, 𝑌 are palindrome.

Property 2 ([5]). Given 𝑃 = 𝑤1𝑤2 . . . 𝑤8 the boundary word of a double square as in (1), for
all 𝑖 = 1, . . . , 8 there exist 𝑢𝑖, 𝑣𝑖 ∈ Σ* and 𝑛𝑖 ≥ 0 such that{︃

𝑤𝑖 = (𝑢𝑖𝑣𝑖)
𝑛𝑖𝑢𝑖,̂︀𝑤𝑖−3𝑤𝑖−1 = 𝑢𝑖𝑣𝑖.

Theorem 2 ([1]). If 𝑃 is the boundary word of a 𝑝𝑑𝑠 (prime double square), then it fits in one of
the two following forms:

a) 𝑃 = (𝑢1𝑘𝑢̃1𝑝)
𝑛1𝑢1

... 𝑘𝑢̃1
... (𝑝𝑢1𝑘𝑢̃1)

𝑛3𝑢3
... ̂︀𝑢1𝑝|(𝑢1𝑘̂︀𝑢1𝑝)𝑛1𝑢1

... 𝑘̂︀𝑢1 ... (𝑝𝑢1𝑘̂︀𝑢1)𝑛3𝑢3
... 𝑢̃1𝑝,

with 𝑘 and 𝑝 palindrome and 𝑛1, 𝑛3 ≥ 0,

b) 𝑃 = 𝑢1
... (𝑢̃3𝑢1)

𝑛2𝑘𝑢̃1
... 𝑢3

... (̂︀𝑢1𝑢3)𝑛4̂︀𝑢1𝑝|𝑢1 ... (̂︀𝑢3𝑢1)𝑛2𝑘̂︀𝑢1 ... 𝑢3 ... (𝑢̃1𝑢3)𝑛4 𝑢̃1𝑝, with
𝑛2, 𝑛4 ≥ 0,

where the factors 𝑢𝑖 are those ones provided by Property 2 and under the assumption that |𝑢1| ≤
|𝑢2|, |𝑢3|, |𝑢4|, so that 𝑢2 = 𝑘𝑢̃1 and 𝑢4 = ̂︀𝑢1𝑝.

Finally, the following recent result proves Conjecture 35 in [5]

Theorem 3 ([1]). Given a 𝑝𝑑𝑠, its boundary word is couple-free, i.e., no two consecutive occur-
rences of a same letter of Σ are present.



The two possible forms of the boundary word of a pds provided in Theorem 2 can be merged
into a single one according to the following

Proposition 1. Let 𝑃 be the boundary word of a pds having form b) of Theorem 2. Then, it is
always possible to rephrase 𝑃 in the form a) of Theorem 2.

From Proposition 1, it follows that the boundary word of a pds has a unique form according to
the choices of 𝑢1, 𝑢3, 𝑘, 𝑝 and the values 𝑛1, 𝑛3 ≥ 0.

3. New properties of the factors of a pds boundary word

This section is dedicated to the study of the factor 𝑢1 of a pds’ boundary word in the form a)
of Theorem 2, providing the main result of Theorem 4. In particular, we will show that the
non-self intersection property of the boundary word of a pds implies that 𝑢1 contains three
letters only. To simplify the proofs, we will assume 𝑛1 = 𝑛3 = 0, so obtaining the boundary
word of a pds in the form

𝑃 = 𝑢1
... 𝑘𝑢̃1

... 𝑢3
... ̂︀𝑢1𝑝|𝑢1 ... 𝑘̂︀𝑢1 ... 𝑢3 ... 𝑢̃1𝑝, (2)

with 𝑘, 𝑝 non-empty palindromes. We underline that all the steps needed for the proof of
Theorem 4 can be performed setting 𝑛1 or 𝑛3 different from 0. From now on, we will consider
the BN-factors 𝐴 = 𝑢1𝑘𝑢1̃, 𝐵 = 𝑢3̂︀𝑢1𝑝, 𝑋 = 𝑘𝑢̃1𝑢3 and 𝑌 = ̂︀𝑢1𝑝 𝑢1.
Moreover, we point out that the same properties of 𝑢1 that we will show in the sequel hold
when the values of 𝑛1 and 𝑛3 are greater than zero, through similar arguments.

Lemma 1. Let 𝑃 = 𝐴𝐵 ̂︀𝐴 ̂︀𝐵 ≡ 𝑋𝑌 ̂︀𝑋 ̂︀𝑌 be (the boundary word of) a pds. For each factorization,
the four BN-factors begin (and end) with a different letter of the alphabet Σ = {0, 0, 1, 1}.

It directly follows by the palindromicity of the BN-factors and the fact that no two consecutive
equal letters occur in 𝑃 (see [1]).
Without loss of generality, we assume that 𝐴 and 𝐵 begin with the letters 1 and 0, respectively;
as a consequence, 𝑋 starts with 0 and 𝑌 with 1, since the polyomino is travelled clockwise in
both factorizations.

Proposition 2. Given a pds as in Eq. (2), the factor 𝑢1 begins and ends with the letter 1, while
𝑢3, 𝑘 and 𝑝 all begin and end with the letter 0.

Proof. According to the choice that 𝐴 and 𝐵 start with 1 and 0 (respectively), we have that
𝑋 and 𝑌 begin with 0 and 1, respectively, so that 𝑘 starts with 0 (from 𝑋) and 𝑝 ends with
0 (𝐵 is palindrome). Again by palindromicity, we obtain that the last letters of 𝑢1 and 𝑢3 are
respectively 1 and 0. □

Hereafter we state our main result, whose proof will be obtained through the following lemmas.

Theorem 4. Given a pds with boundary word 𝑃 expressed as in Eq. (2), the factor 𝑢1 contains
only three letters of Σ, i.e., 𝑢1 ∈ {0, 0, 1}+.



The proof of Theorem 4 relies on the following lemmas where, proceeding by contradiction, it
is assumed that only one occurrence of 1 is present in 𝑢1, i.e., 𝑢1 = 1𝑣1𝑤1 with 1 /∈ 𝑣, 𝑤 and
𝑣, 𝑤 ̸= 𝜀. Similarly, a contradiction is obtained if we assume that more occurrences of 1 are
present in 𝑢1.

Proof of Theorem 4

We start this section with two technical lemmas.

Lemma 2 ([7]). Assume that 𝑤 = 𝑥𝑦 = 𝑦𝑧, with 𝑦 ̸= 𝜀. Then, for some palindromes 𝑎, 𝑏 ∈ Σ+

and some 𝑖 ≥ 0, we have 𝑥 = 𝑎𝑏, 𝑦 = (𝑎𝑏)𝑖𝑎 and 𝑧 = 𝑏𝑎.

Lemma 3. Let 𝑥1, 𝑥2, 𝑥3 ∈ Σ+ be three palindromes such that 𝑥1𝑥2𝑥3 is palindrome too. Then,
for some palindromes 𝑎, 𝑏 ∈ Σ+, 𝑥1, 𝑥2 and 𝑥3 can be obtained as their alternate concatenations.

The proof can be obtained from Lemma 1 in [4].

Lemma 4. Let us assume 𝑢1 = 1𝑣1𝑤1 with 1 /∈ 𝑣, 𝑤. Then, both 𝑣 and 𝑤 have length |𝑣|, |𝑤| >
1.

Lemma 5. Let us assume that 𝑢1 = 1𝑣1𝑤1 is a factor of the boundary word of a pds 𝑃 expressed
as in Eq. (2). The position of 1 in 𝑢1 is not the center of the BN-factor 𝑋 = 𝑘𝑢̃1𝑢3.

Proof. By contradiction, let 𝑋 = 𝑘1𝑤̃1𝑣1𝑢3 be such that 𝑤1𝑘 = 𝑣1𝑢3, and let us consider
𝐵 = 𝑢3̂︀𝑢1𝑝 = 𝑢31 ̂︀𝑤1̂︀𝑣1𝑝. Recall that both 𝑋 and 𝐵 are palindrome since BN-factors of a pds.
Let us suppose 1 ∈ 𝑢3 and, as a consequence, 1 ∈ 𝑘 too. We make the first occurrence in 𝑢3
explicit, 𝑢3 = 𝑥1𝑦 with 1 /∈ 𝑥. From 𝑋 palindrome, we get 𝑤1𝑘′ = 𝑣1𝑥 for a suitable 𝑘′ s.t.
𝑘 = 𝑘′1𝑦; we also notice that 1 /∈ 𝑘′. We now analyze the length of the words 𝑣 and 𝑤:

1. Case |𝑤| < |𝑣|. There exists a factor 𝑣′ such that 𝑣 = 𝑣′𝑤̃ and 1𝑘′ = 𝑣′1𝑥. We now move
to the other BN-factor, 𝐵 = 𝑢3̂︀𝑢1𝑝, to study its palindromicity.
We have 𝐵 = 𝑥1𝑦1 ̂︀𝑤1𝑤̂︀𝑣′1𝑝 palindrome and, since 1 /∈ 𝑥, |𝑥| ≤ |𝑝|. As a consequence, if
the inequality is strict, we can write the last palindrome as 𝑝 = 𝑥𝑝′1𝑥̃. It follows from the
palindromicity of 𝐵 that 𝑦1 ̂︀𝑤1𝑤̂︀𝑣′1𝑥𝑝′ has to be palindrome too. Even in this case, we
can deduce |𝑦| ≤ |𝑥𝑝′| from the property 1 /∈ 𝑥. If the inequality is strict, then |𝑦| < |𝑝′|
and, for the same reason, the letter 1 in boldface is part of the factor 𝑥. We also remind
that 1 /∈ 𝑤, then the factor 𝑤 is made of one letter only, 𝑤 = 0 or 𝑤 = 0, in contradiction
with Lemma 4. Then |𝑦| = |𝑥𝑝′|, and we get that ̂︀𝑤1𝑤̂︀𝑣′ in 𝐵 is palindrome. The letter
in boldface is the only occurrence of 1, so the center, and then 𝑣′ is the empty word. It
follows that 𝑤 = 𝑣, so 𝑢1 is palindrome, and 𝑝 = 𝑢3. Studying again 𝑋 , we immediately
argue that 𝑢3 = 𝑘 too. We can now define a non-trivial morphism, 𝜙(0) = 𝑢3, 𝜙(1) = 𝑢1,
that maps the cross in the pds 𝑃 , reaching a contradiction.
We finally have to study the case (1 /∈)𝑥 = 𝑝, that gives in 𝐵 the palindrome 𝑦1 ̂︀𝑤1𝑤̂︀𝑣′.
Again, we can distinguish two cases, if the letter in boldface is the unique occurrence of 1
or not. If 𝑣′ = 𝑦1, then from 1𝑘′ = 𝑣′1𝑥 we get 𝑘′ = ̂︀𝑦1𝑥. Then 𝑘 starts with 𝑘′ and 𝑢3



ends with 𝑦, that is impossible since they both start and finish with the same letter 0 (see
Proposition 2). Then, there exists 𝑦′ such that 𝑦 = 𝑣′ ̂︀𝑤1𝑦′ and 𝑦′1 ̂︀𝑤 is palindrome. From
this last condition, we argue that the second letter of 𝑦 is 1, since |𝑤| = 1 does not hold
by Lemma 4. We now study the palindrome 𝑦′1 ̂︀𝑤:

i) |𝑦′| < |𝑤|. In this case, there exists 𝑤′ such that ̂︀𝑤 = ̂︀𝑤′𝑦 ′̃, i.e. 𝑤 = 𝑦′𝑤′, and 1 /∈ 𝑦′.
So, 𝑋 = (𝑘′1𝑦)(1𝑤̃1𝑣1)(𝑎1𝑦) = 𝑘′1𝑣′ ̂︀𝑤′𝑦 ′̃1𝑦′1𝑤̃1𝑣1𝑝1𝑣′ ̂︀𝑤′𝑦′1𝑦′. Since 1 /∈ 𝑘′ and
1 /∈ 𝑦′, it must be 𝑘′ = 𝑦′ = 0 (we remind that 𝑘 starts with 0 by Proposition 2).
Then, 𝑘 = 01𝑣′ ̂︀𝑤′010 is not palindrome, contradiction. If |𝑦′| = |𝑤|, then 𝑦′ = 𝑤,
so that 1 /∈ 𝑦′ and the same contradiction is reached.

ii) |𝑤| < |𝑦′|. In this case, there exists a palindrome 𝑦′′ ̸= 𝜀 such that 𝑦′ = 𝑤1𝑦′′. We get
𝑢1 = 1𝑣1𝑤1, 𝑢3 = 𝑥1𝑦 = 𝑝1𝑣1𝑤1𝑦′′ = 𝑝𝑢1𝑦

′′, 𝑘 = 𝑘′1𝑦 = 𝑘′1𝑣1𝑤1𝑦′′ = 𝑘′𝑢1𝑦
′′

and 𝑦′′ palindrome, with 1 /∈ 𝑝, 𝑘′, 𝑣, 𝑤. The boundary word of the pds is now

𝑃 = 𝑢1
... 𝑘′𝑢1𝑦

′′𝑢̃1
... 𝑝𝑢1𝑦

′′ ... ̂︀𝑢1𝑝| . . . ,
and 𝐴 = 𝑢1𝑘𝑢1̃ is palindrome if and only if 𝑘′𝑢1𝑦′′ = 𝑘′1𝑣1𝑤1𝑦′′ is palindrome.
Since 1 /∈ 𝑘′ and |𝑤| > 1, we argue that 𝑘

′
is a suffix of 𝑦′′, 𝑦′′ = 𝑦′′′𝑘

′
palindrome,

and 𝑢1𝑦′′′ is palindrome too. Moving to 𝑋 = 𝑘′𝑢1𝑦
′′′𝑘

′
𝑢̃1𝑝𝑢1𝑦

′′′𝑘
′
, we deduce that

𝑘′̃𝑢̃1𝑝 is palindrome with one only occurrence of 1 (that one in 𝑢1). So, 𝑝 = 𝑘′ and
𝑢1 are palindrome. We get

𝑃 = 𝑢1
... 𝑝𝑢1𝑦

′′′𝑝𝑢1
... 𝑝𝑢1𝑦

′′′𝑝
... 𝑢1𝑝| . . .

with 𝑢1𝑦′′′ and 𝑦′′′𝑝 palindromes (since center of the BN-factors 𝐴 and 𝑌 , respec-
tively). In particular, 𝑦′′′ ends with 1 and, since 1 /∈ 𝑝, there exists a palindrome 𝑞
such that 𝑦′′′ = 𝑝𝑞, with 𝑝𝑞𝑝 and 𝑢1𝑝𝑞 both palindrome. By Lemma 3, there exist two
palindromes 𝑧1 and 𝑧2 such that 𝑢1, 𝑞 and 𝑝 can be written as their concatenation.
We underline that at least one among 𝑧1 and 𝑧2 has length greater than one, since
𝑢1 contains occurrences of both the letters 1 and 1.
We finally get that 𝑢1, 𝑘, 𝑢3 and 𝑝 are concatenation of the palindromes 𝑧1 and 𝑧2 (or
their opposite), and then it is possible to define a non-trivial morphism, 𝜙(0) = 𝑧1,
𝜙(1) = 𝑧2, that makes 𝑃 non prime, contradiction.

2. Case |𝑣| < |𝑤|. There exists a word 𝑤′ such that 𝑤 = 𝑣𝑤′ and 𝑤′1𝑘′ = 1𝑥. The
palindrome BN-factor is now 𝐵 = 𝑥1𝑦1 ̂︀𝑤′𝑣1̂︀𝑣1𝑝, and again 𝑝 = 𝑥𝑝′1𝑥̃ for a suitable
𝑝′ since 1 /∈ 𝑥. Applying the same argument as in the previous case we reach again a
contradiction.

The case |𝑣| = |𝑤| immediately gives a contradiction through the definition of a morphism 𝜙,
as shown before. We then conclude that no occurrences of the letter 1 appear in the factor 𝑢3.
So, from the palindromicity of 𝐵, we argue that |𝑢3| ≤ |𝑝|. If 𝑢3 = 𝑝 palindrome, then 𝑤̃ = 𝑣
and 𝑢1 is palindrome too. Going back to the BN-factor 𝑋 , we get 𝑘 = 𝑢3 and a non-trivial
morphism 𝜙(0) = 𝑢3, 𝜙(1) = 𝑢1 can be defined to map the cross in 𝑃 , contradiction. Then,
|𝑢3| < |𝑝|.



Being 𝐵 = 𝑢31 ̂︀𝑤1̂︀𝑣1𝑝, there exists 𝑝′ such that 𝑝 = 𝑝′1𝑢̃3 and ̂︀𝑤1̂︀𝑣1𝑝′ are palindrome. Since
1 /∈ 𝑢3 and 𝑝 is palindrome too, we can write the factor as 𝑝 = 𝑢3𝑝

′′1𝑢̃3 for a suitable 𝑝′′. From
𝐵, we obtain that ̂︀𝑤1̂︀𝑣1𝑢3𝑝′′1𝑢̃3 is a palindrome. This leads to a last contradiction since 1 /∈ 𝑢3
and |𝑢1| ≤ |𝑢3| by hypothesis. □

Then, the only occurrence of 1 in 𝑢1 is in the first or second half of 𝑋 .

Corollary 1. Since 1 ∈ 𝑢1 is unique and it is not the center of 𝑋 , it follows that |𝑢3| ≠ |𝑘|.

We continue the analysis of the position of 1 ∈ 𝑢1 in the BN-factor 𝑋 = 𝑘𝑢̃1𝑢3. As final result,
we will obtain that there are no available positions for it in 𝑋 .

Lemma 6. Let us assume that 𝑢1 = 1𝑣1𝑤1 is a factor of the boundary word 𝑃 of a pds expressed
as in Eq. (2), and 1 ∈ 𝑢1 is in the first half of 𝑋 . Then, the BN-factor 𝐵 is palindrome if and only if

i) the center of 𝐵 is 𝑧′′𝑢1𝑘, for a proper 𝑧′′ ∈ Σ+, or
ii) the center of 𝐵 is 𝑘̂︀𝑢1𝑝′′, for a proper 𝑝′′ ∈ Σ+.

Proof. Since 1 is in the first half of 𝑋 = 𝑘𝑢̃1𝑢3, we have that |𝑘| < |𝑢3|, and 𝑢3 = 𝑥1𝑤1𝑘 for a
proper non-empty 𝑥 such that 𝑣1𝑥 is palindrome. We now distinguish two cases.

1. |𝑣| < |𝑥|, and 𝑥 = 𝑧1𝑣 for a proper palindrome 𝑧 ∈ Σ+. Replacing in the factor, we
get 𝑢3 = 𝑧𝑢1𝑘, where we remark that 𝑧 ̸= 𝜀 since 𝑢3 starts with 0 and 𝑢1 with 1 (see
Proposition 2). We now move to the palindrome

𝐵 = 𝑢3̂︀𝑢1𝑝 = 𝑧𝑢1𝑘̂︀𝑢1𝑝 = 𝑧1𝑣1𝑤1𝑘1 ̂︀𝑤1̂︀𝑣1𝑝. (3)

If 𝑧 = 0, by the palindromicity of 𝐵 and the property 1 /∈ 𝑣 we have that 𝑝 has 𝑣10 as a
suffix and then, being 𝑝 palindrome, 01𝑣 as a prefix. Then in 𝑃 we find the word ̂︀𝑣101𝑣,
that intersects itself for any starting letter of 𝑣, contradiction. It follows that |𝑧| > 1, and
also |𝑧| ≠ |𝑝| to have 𝐵 palindrome. Again we have to distinguish two cases:

i) |𝑝| < |𝑧|. Now the palindrome 𝑧 is written as 𝑧 = 𝑝1𝑧′ for a proper 𝑧′ ∈ Σ+,
and 𝐵 is palindrome if and only if 𝑧′1𝑣1𝑤1𝑘1 ̂︀𝑤1̂︀𝑣 is palindrome, see Equation (3).
If 𝑧′ = 𝑣, then the palindromicity can be obtained only with |𝑣| = |𝑤| = 1, in
contradiction with Lemma 4. Then, being 1 /∈ 1𝑣, we deduce that 𝑣1𝑤1 is a prefix of
𝑧′, so that 𝑧′ = 𝑣1𝑤1𝑧′′ for a proper 𝑧′′ ∈ Σ+. Replacing in 𝑧, we get the palindrome
𝑧 = 𝑝𝑢1𝑧

′′. Now, the study of the palindromicity of 𝐵 is reduced to the study of its
center, 𝑧′′𝑢1𝑘, and the thesis of case 𝑖) is reached.

ii) |𝑧| < |𝑝|. We have 𝑝 = 𝑝′1𝑧 for a proper 𝑝′ ∈ Σ+, and 𝐵 is palindrome if and only
if 𝑣1𝑤1𝑘1 ̂︀𝑤1̂︀𝑣1𝑝′ is. As seen in the previous case, |𝑝′| ̸= |𝑣| and 1 /∈ 𝑣, 𝑤 allow to
write 𝑝′ = 𝑝′′1𝑤1𝑣1𝑧, and then 𝑝 = 𝑝′′𝑢1𝑧 for a proper non-empty word 𝑝′′. The
center of 𝐵 is now the palindrome 𝑘̂︀𝑢1𝑝′′, and the thesis of case 𝑖𝑖) is reached.

2. |𝑥| < |𝑣|, and 𝑣 = 𝑣′1𝑥 for a proper 𝑣′ ∈ Σ*, in particular 1 /∈ 𝑥. Moving to 𝐵, we have
𝐵 = 𝑥1𝑤1𝑘1 ̂︀𝑤1̂︀𝑣1𝑝 palindrome, and |𝑥| < |𝑝| since 1 /∈ 𝑥 and they can not have the
same length, according to Lemma 4. Then, there exists 𝑝′ ∈ Σ+ such that 𝑝 = 𝑝′1𝑥̃, and



𝐵 = 𝑥1𝑤1𝑘1 ̂︀𝑤1̂︀𝑣1𝑝′1𝑥̃. (4)

Again, 1 /∈ 𝑤 guarantees that there exists a word 𝑝′′ to express 𝑝 = 𝑝′′1𝑤̃1𝑥̃, and the
center of 𝐵 becomes 𝑘̂︀𝑢1𝑝′′, as stated in case 𝑖𝑖).

The case 𝑥 = 𝑣 can be studied similarly to case 2, due to 1 /∈ 𝑥.
So all possible cases have been analyzed, and the thesis follows. □

We underline a relevant symmetrical result: the study of the BN-factor 𝐵, properly of its center,
in both cases of Lemma 6 can be performed similarly to the study of the palindromicity of
𝑋 = 𝑘𝑢̃1𝑢3 with 1 ∈ 𝑢1, where 𝑢3 is replaced with 𝑧′′ or 𝑝′′.

Lemma 7. Let us assume that 𝑢1 = 1𝑣1𝑤1 is a factor of the boundary word 𝑃 of a pds expressed
as in Eq. (2), and 1 ∈ 𝑢1 is in the second half of 𝑋 . Then

i) the factor 𝑘 can be expressed as 𝑘 = 𝑢̃3𝑢1𝑘
′′ for a proper palindrome 𝑘′′, or

ii) there exist 𝑘′, 𝑥 ∈ Σ+ such that 𝑘 = 𝑢̃31𝑣1𝑘
′, 𝑢3 = 𝑥1𝑘′ and 𝑥̃1𝑣 palindrome.

Proof. Since 1 ∈ 𝑢1 is in the second half of 𝑋 , we have |𝑢3| < |𝑘|, and there exists 𝑘′ ∈ Σ+

such that 𝑘 = 𝑢̃31𝑣1𝑘
′ and 𝑘′1𝑤̃ is palindrome. We distinguish two cases: if |𝑤| < |𝑘′|, we

have 𝑘′ = 𝑤1𝑘′′ for a proper palindrome 𝑘′′ and 𝑘 = 𝑢̃3𝑢1𝑘
′′. The thesis of case 𝑖) is obtained.

On the other hand, let be |𝑘′| < |𝑤|. Then, 𝑤 = 𝑘′1𝑤′ for a proper 𝑤′ ∈ Σ*, and 1 /∈ 𝑘′. We
have that 𝑘 = 𝑢̃31𝑣1𝑘

′ is palindrome.
If 𝑘′ = 𝑣1𝑢3, then |𝑢3| < |𝑘′| < |𝑤| < |𝑢1|, in contradiction with the assumption on the mutual
lengths of the factors 𝑢𝑖. So, 𝑢3 = 𝑥1𝑘′ for a proper 𝑥 such that 𝑥̃1𝑣 is palindrome, and we get
the thesis of case 𝑖𝑖). The same occurs if 𝑘′ = 𝑤. □

Again we underline the following symmetrical result: in both cases of Lemma 7 the study of the
palindromicity of 𝑘 can be performed as the study of 𝑋 = 𝑘𝑢̃1𝑢3. In case 𝑖), just replacing 𝑘
with 𝑘′′; in case 𝑖𝑖) we are in the same case of Lemma 6, where 𝑘′ replaces the suffix 𝑤1𝑘 of 𝑢3
and 1 ∈ 𝑢1 is in the first half of 𝑋 .
Such symmetrical results allow to iteratively apply Lemma 6 and 7 to the BN-factors 𝑋 and 𝐵,
thus crumbling them into two different common parts that alternate all over 𝑃 .

Theorem 5. If 𝑢1 = 1𝑣1𝑤1, there exist 𝛼, 𝛽, 𝛾 ≥ 0 and a palindrome 𝑞 ∈ Σ+ such that
𝑘 = (𝑞𝑢1)

𝛼𝑞, 𝑢3 = (𝑞𝑢1)
𝛽𝑞 and 𝑝 = (𝑞𝑢1)

𝛾𝑞. Moreover, 𝑢1 is palindrome.

Proof. The palindromicity of the BN-factors 𝑋 and 𝐵, and of the factor 𝑘, allows to iteratively
apply Lemma 6 and Lemma 7, according to the length of the involved factors, and to finally
obtain that 𝑢3, 𝑝 and 𝑘 are concatenation of 𝑢1, 𝑢̃1, 𝑞 and 𝑞̃ for some 𝑞 ∈ Σ+. The palindromicity
of 𝑢1 and 𝑞 is deduced by the fact that both 𝑋 and 𝑘 are palindrome at the same time, up to the
parity of 𝛼.
We underline that 𝑢1 is not a factor of 𝑞, as shown in the proofs of Lemma 6 and Lemma 7.
If Lemma 6 is never applied during the iterative proof, then 𝑝 = 𝑢3. Indeed, in this case we
have that 𝑢1 is palindrome, 𝑘 = (𝑞𝑢1)

𝛼𝑞 and 𝑢3 = (𝑞𝑢1)
𝛽𝑞 for a non-empty palindrome 𝑞 and

𝛼, 𝛽 ≥ 0. Since 𝑃 is a pds, its BN-factor 𝐵 = 𝑢3̂︀𝑢1𝑝 is palindrome, that is 𝐵 = (𝑞𝑢1)
𝛽𝑞𝑢1𝑝



palindrome. We can apply Lemma 3 with 𝑥1 = 𝑢3, 𝑥2 = 𝑢1 and 𝑥3 = 𝑝. Since 𝑢1 is not a factor
of 𝑞, the possible case is 𝑥1 = 𝑥3, i.e. 𝑝 = 𝑢3 = (𝑞𝑢1)

𝛽𝑞. □

Hereafter we provide an example where one only iteration of Lemma 6, case 1, 𝑖) in the proof,
is sufficient to express the BN-factors 𝑋 and 𝐵 in terms of 𝑢1 and 𝑞. In this case we get
𝑞 = 𝑘 = 𝑧′′ = 𝑝 and, as a consequence,

𝑢3 = 𝑥1𝑤1𝑘
|𝑣|<|𝑥|
= 𝑧𝑢1𝑘

|𝑝|<|𝑧|
= 𝑝𝑢1𝑧

′′𝑢1𝑘,

and 𝑧′′ = 𝑝 since 𝑧 is palindrome and, by hypothesis, the proof stops here after one single
iteration. Then, the boundary word 𝑃 can be obtained applying the non-trivial morphism

𝜙(0) = 𝑝, 𝜙(1) = 𝑢1 to the double square 𝑄 = 1
... 01

... 01010
... 10|1

... 01
... 01010

... 10, and 𝑃 is
not prime.

Corollary 2. 𝑢1 = 1𝑣1𝑤1 can not be a factor of the boundary word 𝑃 of a pds expressed as in
Eq. (2).

Proof. If 𝑢1 = 1𝑣1𝑤1, from Theorem 5 we know that 𝑢1 is palindrome, 𝑘 = (𝑞𝑢1)
𝛼𝑞, 𝑢3 =

(𝑞𝑢1)
𝛽𝑞 and 𝑝 = (𝑞𝑢1)

𝛾𝑞 for some palindrome 𝑞 and 𝛼, 𝛽, 𝛾 ≥ 0. Then, it is possible to
define an homologous morphism, 𝜙(0) = 𝑞 and 𝜙(1) = 𝑢1, that maps the double square
𝑄 = 1(01)𝛼01(01)𝛽01(01)𝛾0| . . . in 𝑃 . We underline that: if 𝛼 = 𝛽 = 𝛾 = 0, the morphism 𝜙
maps the cross in 𝑃 , so it is not trivial. On the other hand, in case 𝑞 is a single letter, 𝑢1 always
has length greater than five, so 𝜙 is not the identity. It follows that 𝑃 is not prime. □

We analyzed all the possible positions of 1 ∈ 𝑢1 in the BN-factor 𝑋 , each time reaching a
contradiction. A similar argument can be used if more occurrences of 1 are present in 𝑢1, so
leading to the proof of Theorem 4, as desired. □

We conclude this section providing examples of the two possible contradictions reached when
we include 1 in 𝑢1: in the first, the boundary of the pds self intersects, while, in the former, the
polyomino can be obtained from the unit square through the composition of more than one
non-trivial homologous morphism.

Example 2. Let us consider 𝑢1 = 101010101010101. We can choose 𝑘 = 010 and 𝑢3 =
010101010101010 to construct the (palindrome) BN-factors 𝐴 = 𝑢1𝑘𝑢̃1 and 𝑋 = 𝑘𝑢̃1𝑢3. The
boundary word we get is

𝑃1 = 101010101010101
... 010101010101010101

... 0101010101010101010101010 . . .

and self intersects (boldface letters), so it does not define a polyomino.
On the other hand, choosing 𝑢1 = 101010101, 𝑝 = 01010 and 𝑘 = 𝑢3 = 𝑝𝑢1𝑝 we get the double
square 𝑃2 = (10101010101010)410101010101010| . . . .
The polyomino is well defined and the boundary does not self intersect. However, it is not prime
since a non-trivial morphism can be easily defined.



Coming to an end, our results indicate a new way of investigating double square polyominoes
starting from the basic class of prime ones. By a combinatorial approach, we started to char-
acterize their boundary words in terms of one single letter’s absence. The obtained results
suggest the possibility of extending such property to the other factors of the boundary word,
so providing a valuable tool (alternative to [5]) to characterize and successively generate and
enumerate them.
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