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Abstract
In the context of Computable Set Theory, we consider the satisfiability problem for various subcases of

the fragment BST⊗ (Boolean Set Theory with the unordered Cartesian product ⊗), whose long-standing

decision problem has received very recently a positive solution in the NEXPTIME complexity class. BST⊗
is the quantifier-free set theory involving the Boolean set operators of union (∪), intersection (∩), and

set difference (∖), as well as the unordered Cartesian product operator (⊗), and the set equality (=) and

inclusion (⊆) predicates, where the unordered Cartesian product 𝑠⊗ 𝑡 of two sets 𝑠 and 𝑡 is defined as

the collection of all possible unordered pairs formed by selecting one element from 𝑠 and one element

from 𝑡. It is an open problem whether the satisfiability problem for BST⊗ is NP-complete. Here, we delve

into the specific case in which the number of distinct leading variables in literals of the form 𝑥 = 𝑦 ⊗ 𝑧
is O(log𝑛), where 𝑛 represents the size of the BST⊗ formula that one wants to test for satisfiability, and

prove its NP-completeness. We will also mention various additional NP-completeness and polynomial

results concerning the decision problem for other subtheories of BST⊗.

1. Introduction

The field of Computable Set Theory has emerged from extensive research on the decision

problem in set theory over the past few decades. This research, as documented in [5], originally

aimed at mechanizing mathematics through a proof verifier based on set-theoretic formalism

[21, 9, 19, 27]. However, it gradually evolved to focus on foundational aspects, specifically

identifying the boundary between decidable and undecidable problems in set theory.

In 1980, the precursor fragment of set theory investigated for decidability was Multi-Level

Syllogistic (MLS), as described in [16]. Since then, several progresses have been made, by

extending MLS and demonstrating the decidability of their satisfiability problems. In some

cases, the NP-completeness of these extensions has also been proven. For a more detailed and

comprehensive account, the reader can refer to the monographs [5, 8, 27, 20, 12].

The decision problem for the extension MLS× of MLS with the Cartesian product× has been

challenging and has resisted attempts to find a solution, whether positive or negative. Initially,
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it was even uncertain whether the satisfiability problem for MLS× was decidable, especially for

finite models. There was speculation about a potential reduction of Hilbert’s Tenth problem

(H10) to the satisfiability problem for MLS×. Hilbert’s Tenth problem [17] seeks a uniform

procedure to determine if a given Diophantine polynomial equation with integral coefficients

has a solution in integers. In 1970, it was proven that no algorithmic procedure exists for H10,

known as the DPRM theorem [24, 15, 18].

It was hypothesized that the union of disjoint sets and the Cartesian product could mirror

integer addition and multiplication in H10, respectively, based on the properties of set cardi-

nalities: |𝑠 ∪ 𝑡| = |𝑠|+ |𝑡| for disjoint sets 𝑠 and 𝑡, and |𝑠× 𝑡| = |𝑠| · |𝑡| for sets 𝑠 and 𝑡. This

observation forms the basis of the proof for the undecidability of the satisfiability problem for

MLS× when extended with the cardinality comparison predicate | · | ⩽ | · | (see [1] and [7]). In

this case, |𝑠| ⩽ |𝑡| holds if and only if the cardinality of 𝑠 does not exceed that of 𝑡.
Efforts to solve the satisfiability problem for MLS× have significantly influenced the advance-

ment of computable set theory. These attempts have led to the introduction of the technique

known as “formative processes," which has played a crucial role in the most intricate solutions to

decision problems. The formative processes technique is extensively covered in [12], providing a

relatively accessible introduction. Notably, this technique has been applied to solve the decision

problems for the extensions MLSSP (with power set and singleton operators) [10] and MLSSPF
(with finiteness predicate) [11].

Recently, an algorithmic solution to the satisfiability problem (s.p., for short) for the set theory

fragment BST⊗ has been presented in [14]. This fragment is closely related to MLS× and is

obtained by dropping the membership predicate ∈ from it and also by replacing the ordered

Cartesian product operator × with its unordered variant ⊗. In BST⊗, 𝑠⊗ 𝑡 represents the set

of unordered pairs {𝑢, 𝑣} where 𝑢 ∈ 𝑠 and 𝑣 ∈ 𝑡. Notably, these modifications do not affect the

aforementioned connection with H10. The focus on BST⊗ instead of MLS× just allows for a

more streamlined analysis, removing unnecessary complexities from the study.

The finite s.p. for the extension of MLS with cardinality comparison is reducible to purely

existential Presburger arithmetic, a known NP-complete problem [26, 2, 25]. In contrast, when

cardinality comparison is added to either BST× or BST⊗, the finite s.p. for these extensions

becomes undecidable. This is evident from the reduction of H10 to these problems, similar to

the results in [1] and [7] for MLS⊗ and MLS×. These findings demonstrate that the decision

problem for BST⊗ is situated at the brink of decidability.

To be more specific, the fragment of set theory BST⊗ is the quantifier-free propositional

closure of atoms of the following types:

𝑥 = 𝑦 ∪ 𝑧, 𝑥 = 𝑦 ∩ 𝑧, 𝑥 = 𝑦 ∖ 𝑧, 𝑥 ⊆ 𝑦, 𝑥 = 𝑦 ⊗ 𝑧,

where 𝑥, 𝑦, 𝑧 stand for (existentially quantified) set variables. Its ordinary and (hereditarily)

finite s.p. have been proved to be decidable in [14] (see also [13] for a preliminary version),

where NEXPTIME decision procedures have been provided.
1

In this paper, we analyze a family of subtheories of BST⊗, denoted BST⊗𝛼

log , where 𝛼 > 0,

and prove that their s.p. is NP-complete.

As shown in [14], by means of a suitable normalization process, the s.p. for BST⊗-formulae

1

The ordinary and the (hereditarily) finite s.p. will be defined precisely in the next section.



can be easily reduced to the corresponding s.p. for conjunctions of literals of the following forms:

𝑥 = 𝑦 ∪ 𝑧, 𝑥 = 𝑦 ∖ 𝑧, 𝑥 ̸= 𝑦, 𝑥 = 𝑦 ⊗ 𝑧. (1)

Calling⊗-variable the leading variable 𝑥 in any⊗-literal of the form 𝑥 = 𝑦⊗𝑧, the fragment

BST⊗𝛼

log consists of normalized BST⊗-conjunctions Φ that have at most 𝛼 log |Φ| distinct ⊗-

variables. Here, 𝛼 is any positive real parameter and |Φ| represents the size of Φ, defined as the

number of conjuncts in Φ. It is important to note that there is no restriction on the number of

⊗-conjuncts in any Φ belonging to BST⊗𝛼

log .

The paper is organized as follows. In Section 2, we present the semantics of BST⊗ using

partition assignments and provide a comprehensive overview of the relevant terminology and

concepts. Next, in Section 3, we revisit key notions introduced in [14], such as ⊗-graph,

accessibility, fulfillment by a ⊗-graph, and ⊗-graphs induced by partitions. Additionally, we

state two results from the same paper that are particularly relevant to our study. Subsequently,

in Section 4, we introduce the novel concept of projection of a partition assignment and state

various useful basic results related to them. We then proceed to prove the main result of the

paper, namely the NP-completeness of the s.p. for the fragments BST⊗𝛼

log (for 𝛼 > 0). Finally,

we conclude the paper with a summary of our findings and outline potential directions for

future research.

2. Semantics of BST⊗

A set assignment𝑀 is a map from a collection 𝑉 of set variables, denoted as dom(𝑀) (the

variable-domain of 𝑀 ), to the von Neumann cumulative hierarchy 𝒱 :=
⋃︀

𝛽∈On𝒱𝛽 of well-

founded sets. The universe 𝒱 is constructed in stages using transfinite recursion over the class

On of all ordinals, where 𝒱𝛽 :=
⋃︀

𝛾<𝛽pow(𝒱𝛾), for every 𝛽 ∈ On , with pow(·) denoting the

powerset operator.
2

The rank of a well-founded set 𝑠 ∈ 𝒱 is the least ordinal 𝛽 such that

𝑠 ⊆ 𝒱𝛽 . The collection of the sets with finite rank, namely those that belong to 𝒱𝛽 for some

finite ordinal 𝛽, is the set of the hereditarily finite sets (HF).

The operators in BST⊗ are interpreted based on their usual semantics. For a set assignment

𝑀 and 𝑥, 𝑦, 𝑧 ∈ dom(𝑀), we have

𝑀(𝑥 ⋆ 𝑦) := 𝑀𝑥 ⋆𝑀𝑦,

where ⋆ ∈ {∪,∩, ∖,⊗} and where in particular 𝑠⊗ 𝑡, for any sets 𝑠 and 𝑡, is the set of all the

unordered pairs {𝑢, 𝑣} such that 𝑢 ∈ 𝑠 and 𝑣 ∈ 𝑡: in symbols, 𝑠⊗ 𝑡 := {{𝑢, 𝑣} | 𝑢 ∈ 𝑠, 𝑣 ∈ 𝑡}.
A set assignment 𝑀 is extended to interpret the BST⊗-atoms over the variables in dom(𝑀)

by putting:

𝑀(𝑥 = 𝑦 ⋆ 𝑧) = true Def←−→ 𝑀𝑥 = 𝑀(𝑦 ⋆ 𝑧),

𝑀(𝑥 = 𝑦) = true Def←−→ 𝑀𝑥 = 𝑀𝑦,

𝑀(𝑥 ⊆ 𝑦) = true Def←−→ 𝑀𝑥 ⊆𝑀𝑦,

for all 𝑥, 𝑦, 𝑧 ∈ dom(𝑀) and ⋆ ∈ {∪,∩, ∖,⊗}, and recursively for the propositional connectives.

2

Thus, 𝒱0 =
⋃︀

𝛾<0pow(𝒱𝛾) = ∅, since 0 is the smallest ordinal.



Given a set assignment 𝑀 and a collection of variables 𝑉 ′ ⊆ 𝑉 = dom(𝑀), we put

𝑀𝑉 ′ = {𝑀𝑣 | 𝑣 ∈ 𝑉 ′}. The set-domain of 𝑀 is the set

⋃︀
𝑀𝑉 =

⋃︀
𝑣∈𝑉 𝑀𝑣. A set

assignment 𝑀 is finite (resp., hereditarily finite) if so is its set-domain.

A BST⊗-formula Φ is satisfied by a set assignment 𝑀 if 𝑀Φ = true, in which case we write

𝑀 |= Φ and say that 𝑀 is a model for Φ. If Φ has a model, then Φ is satisfiable; otherwise,

it is unsatisfiable. If 𝑀 |= Φ and 𝑀 is finite (resp., hereditarily finite), then Φ is finitely

satisfiable (resp., hereditarily finitely satisfiable).

The satisfiability problem for BST⊗ refers to the task of determining whether a given

BST⊗-formula can be satisfied by some set assignment.

We observe that the empty set ∅ can be characterized by means of the BST⊗-literal 𝑥∅ =
𝑥∅ ∖ 𝑥∅, where 𝑥∅ can be regarded as a reserved variable, and that each literal 𝑥 = 𝑦 ∪ 𝑧 is

equisatisfiable with the conjunction

𝑤 = 𝑧 ∖ 𝑦 ∧ 𝑤 = 𝑥 ∖ 𝑦 ∧ 𝑥∅ = 𝑦 ∖ 𝑥,
where 𝑤 is a newly introduced variable. Hence, we can drop from the list (1) the literals of the

form 𝑥 = 𝑦 ∪ 𝑧, and restricting ourselves hereafter, without loss of generality, to the s.p. for

conjunctions of literals of the following three types:

𝑥 = 𝑦 ∖ 𝑧, 𝑥 ̸= 𝑦, 𝑥 = 𝑦 ⊗ 𝑧.
In [14], it was demonstrated that both the ordinary and the finite (resp., hereditarily finite)

satisfiability problems for BST⊗ can be effectively solved, indicating the existence of algorithmic

tests that can provide answers for all instances of these problems. These results were established

within the framework of partition assignments. (We recall that a partition is a set of pairwise

disjoint nonempty sets, called the blocks of the partition.)

Definition 1 (Partition assignments). Let Φ be any BST⊗-conjunction, and let Vars(Φ) denote

the set of all the variables occurring in Φ. A partition Σ is said to satisfy Φ via some map

I : Vars(Φ) → pow(Σ) (called a partition assignment), and we write Σ/I |= Φ, if the set

assignment 𝑀I induced by I satisfies Φ, where 𝑀I𝑥 :=
⋃︀
I(𝑥) for 𝑥 ∈ Vars(Φ). A partition Σ is

said to satisfy Φ, and we write Σ |= Φ, if it satisfies Φ via some partition assignment.

We close the section by introducing the unary variant of the unordered Cartesian product,

similar to the unary versions of the binary set operators ∪ and ∩, which are defined as follows:⋃︀
𝑆 := {𝑡 | 𝑡 ∈ 𝑠, for some 𝑠 ∈ 𝑆} and

⋂︀
𝑆 := {𝑡 | 𝑡 ∈ 𝑠, for all 𝑠 ∈ 𝑆}.

Specifically, for any sets 𝑠 and 𝑡 (which may or may not be distinct), we put

⊗{𝑠, 𝑡} := 𝑠⊗ 𝑡,

where we recall that 𝑠⊗ 𝑡 =
{︀
{𝑢, 𝑣} | 𝑢 ∈ 𝑠, 𝑣 ∈ 𝑡

}︀
.

3. The Satisfiability Problem for BST⊗

Following [14], we review the definitions of ⊗-graphs, accessible ⊗-graph, the notion of fulfill-

ment by an accessible ⊗-graph, and two relevant results connected to them.

Definition 2 (⊗-graphs). A ⊗-graph 𝒢 is a directed bipartite graph whose set of vertices

comprises two disjoint parts: a set of places 𝒫 , such that 𝒫 ∩ (𝒫 ⊗ 𝒫) = ∅, and a set of
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Figure 1: A ⊗-graph

⊗-nodes 𝒩 , where 𝒩 ⊆ 𝒫 ⊗ 𝒫 . The edges issuing from each place 𝑞 are exactly all pairs

⟨𝑞,𝐵⟩ such that 𝑞 ∈ 𝐵 ∈ 𝒩: these are the membership edges. The remaining edges of 𝒢, called

distribution edges, go from ⊗-nodes to places. When there is an edge ⟨𝐵, 𝑞⟩ from a ⊗-node

𝐵 to a place 𝑞, we say that 𝑞 is a target of 𝐵. Every ⊗-node must have at least one target. The

map 𝒯 over 𝒩 defined by

𝒯(𝐵) := {𝑞 ∈ 𝒫 | 𝑞 is a target of 𝐵}, for 𝐵 ∈ 𝒩,
is the target map of 𝒢, hence we have 𝒯 : 𝒩 → pow+(𝒫), where pow+(𝒫) := pow(𝒫) ∖ {∅}.
Plainly, a ⊗-graph 𝒢 is fully characterized by the set 𝒫 of its places and its target map 𝒯, since

the sets of the ⊗-nodes of 𝒢 is expressible as dom(𝒯 ). The size of a ⊗-graph is the cardinality

of its set of places.

Figure 1 presents an example of a ⊗-graph, where the round shaped vertices (𝑃1, 𝑃2, 𝑃3,

𝑃4, and 𝑃5) are the places and the box shaped vertices are the nodes. Recalling that nodes are

pairs of places, in the example the node {𝑃2} stands for the (unordered) pair {𝑃2, 𝑃2}. Dashed

edges are the membership edges of our ⊗-graph: these connect each place of the ⊗-graph to

the nodes that contain it. Finally, the remaining edges are the distribution edges of our⊗-graph,

and connect nodes to places.

Definition 3 (Accessible ⊗-graphs). A place of a ⊗-graph 𝒢 = (𝒫,𝒩 , 𝒯 ) is a source place if

it has no incoming edges. The remaining places, namely those with incoming edges, are called

⊗-places. We denote by 𝒫⊗ the set of the ⊗-places of 𝒢. A place of 𝒢 is accessible (from the

source places of 𝒢) if either it is a source place or, recursively, it is the target of some node of 𝒢
whose places are all accessible from the source places of 𝒢. Finally, a ⊗-graph is accessible



when all its places are accessible.
3

Definition 4 (Fulfillment by an accessible ⊗-graph). An accessible ⊗-graph 𝒢 = (𝒫,𝒩 , 𝒯 )
fulfills a given BST⊗-conjunction Φ provided that there exists a map F : Vars(Φ)→ pow(𝒫)
(called a 𝒢-fulfilling map for Φ) such that the following conditions are satisfied:

(a) F(𝑥) = F(𝑦) ∖ F(𝑧), for every conjunct 𝑥 = 𝑦 ∖ 𝑧 in Φ;

(b) F(𝑥) ̸= F(𝑦), for every conjunct 𝑥 ̸= 𝑦 in Φ; and

(c) for every conjunct 𝑥 = 𝑦 ⊗ 𝑧 in Φ,

(c1) F(𝑦)⊗ F(𝑧) ⊆ dom(𝒯 );
(c2) F(𝑥) =

⋃︀
𝒯 [F(𝑦)⊗ F(𝑧)]; and

(c3)

⋃︀
𝒯
[︀
𝒩 ∖ (F(𝑦)⊗ F(𝑧))

]︀
∩ F(𝑥) = ∅.

Let Φ be a satisfiable BST⊗-conjunction and let Σ be a partition that satisfies Φ via a map

I : 𝑉 → pow(Σ), where 𝑉 := Vars(Φ). Also, let 𝑉⊗ be the collection of the ⊗-variables of Φ.

We illustrate the construction of 𝒢Σ, the ⊗-graph induced by Σ and Φ, where for simplicity

the dependence on Φ in the notation 𝒢Σ is implicitly understood.
4

Let 𝑥𝑖 = 𝑦𝑖 ⊗ 𝑧𝑖, for 𝑖 = 1, . . . ,𝑚, be the ⊗-atoms of Φ, so that 𝑉⊗ = {𝑥1, . . . , 𝑥𝑚}. We

put Σ⊗ :=
⋃︀

1⩽𝑖⩽𝑚
I(𝑥𝑖) =

⋃︀
I[𝑉⊗] and Π⊗ :=

⋃︀
1⩽𝑖⩽𝑚

(︀
I(𝑦𝑖) ⊗ I(𝑧𝑖)

)︀
. Hence

⋃︀
Σ⊗ =

⋃︀
⊗[Π⊗]

holds.

Let 𝒫Σ be any set of the same cardinality as Σ and such that 𝒫Σ ∩
(︀
𝒫Σ ⊗ 𝒫Σ

)︀
= ∅, and let

𝑞 ↦→ 𝑞(∙) be any bijection from 𝒫Σ onto Σ. Places in 𝒫Σ are intended to represent the blocks in

Σ, via the bijection
(∙)

.

Let 𝒩Σ ⊆ 𝒫Σ ⊗ 𝒫Σ be such that 𝒩 (∙)
Σ = Π⊗, where the bijection

(∙)
has been naturally

extended to any set𝐵 ∈ 𝒫Σ⊗𝒫Σ, by putting𝐵(∙) := {𝑞(∙) | 𝑞 ∈ 𝐵}, and to any setA ⊆ 𝒫Σ⊗𝒫Σ,

by putting A(∙) := {𝐴(∙) | 𝐴 ∈ A}. The members of 𝒩Σ are the ⊗-nodes of the ⊗-graph 𝒢Σ

we are after. Hence, the vertex set of 𝒢Σ is the union 𝒫Σ ∪ 𝒩Σ. The disjoint sets 𝒫Σ and 𝒩Σ

will form the parts of the bipartite graph 𝒢Σ.

Concerning the edges of 𝒢Σ, for all places 𝑞 ∈ 𝒫Σ and ⊗-nodes 𝐵 ∈ 𝒩Σ such that 𝑞 ∈ 𝐵,

there is a membership edge ⟨𝑞,𝐵⟩ in 𝒢Σ. In addition, for all ⊗-nodes 𝐵 and places 𝑞 such that

𝑞(∙)∩⊗𝐵(∙) ̸= ∅, there is a distribution edge ⟨𝐵, 𝑞⟩ in 𝒢Σ. Only places 𝑞 such that 𝑞(∙) ∈ Σ⊗

have incoming edges. We call them ⊗-places and denote their collection by 𝒫Σ,⊗. Hence,

𝒯Σ(𝐵) := {𝑞 ∈ 𝒫Σ,⊗ | 𝑞(∙) ∩ ⊗𝐵(∙) ̸= ∅}, for 𝐵 ∈ 𝒩Σ

is the target map 𝒯Σ of 𝒢Σ.

Next, we define a map FΣ : Vars(Φ)→ pow(𝒫Σ), which is supposed to abstract the partition

assignment I, by putting

FΣ(𝑥) := {𝑞 ∈ 𝒫Σ | 𝑞(∙) ∈ I(𝑥)}, for 𝑥 ∈ Vars(Φ). (2)

The following two lemmas hold, both proved in [14]:

3

Thus, a ⊗-graph with no source places is trivially not accessible.

4

It is also possible to define a variant of the ⊗-graph solely induced by Σ. This alternative approach was undertaken

in [14].
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Figure 2: An accessible ⊗-graph fulfilling the conjunction (3)

Lemma 1. The ⊗-graph 𝒢Σ induced by the partition Σ (and by the BST⊗-conjunction Φ) is

accessible and fulfills Φ via the map FΣ defined in (2).

Lemma 2. A BST⊗-conjunction fulfilled by an accessible ⊗-graph is satisfiable.

The two preceding lemmas yield at once the following result:

Theorem 1. A BST⊗-conjunction with 𝑛 distinct variables is satisfiable if and only if it is fulfilled

by an accessible ⊗-graph.

Next, we present an example of a satisfiable BST⊗-conjunction and the ⊗-graph fulfilling it.

Example 1. Consider the BST⊗-conjunction

Φ := 𝑦 = 𝑥⊗ 𝑥 ∧ 𝑤 = 𝑤 ∖ 𝑤 ∧ 𝑤 = 𝑦 ∖ 𝑥 ∧ 𝑦 ̸= 𝑤. (3)

We claim that the ⊗-graph 𝒢 = (𝒫,𝒩 , 𝒯 ) in Figure 2 is accessible and fulfills Φ. The sets of

places and nodes of 𝒢 are

𝒫 = {𝑃1, 𝑃2} and 𝒩 =
{︀
{𝑃1}, {𝑃2}, {𝑃1, 𝑃2}

}︀
,

respectively, and the target map 𝒯 : 𝒩 → pow+(𝒫) of 𝒢 is given by

𝒯 ({𝑃1}) = 𝒯 ({𝑃2}) = 𝒯 ({𝑃1, 𝑃2}) = {𝑃1}.
By observing that all places of 𝒢 are source places, the accessibility of 𝒢 follows immediately.

Next, we show that the ⊗-graph 𝒢 fulfills Φ via the map F : {𝑥, 𝑦, 𝑤} → pow(𝒫), where

F(𝑥) = {𝑃1, 𝑃2}, F(𝑦) = {𝑃1}, F(𝑤) = ∅.
We just have to check that the conditions (a), (b), and (c) in Definition 4 are satisfied for 𝒢, F, and

Φ.

In relation to condition (a) with respect to the conjuncts 𝑤 = 𝑤 ∖ 𝑤 and 𝑤 = 𝑦 ∖ 𝑥, we have,

respectively:

F(𝑤) ∖ F(𝑤) = ∅ ∖ ∅ = ∅ = F(𝑤), and

F(𝑦) ∖ F(𝑥) = {𝑃1} ∖ {𝑃1, 𝑃2} = ∅ = F(𝑤).

In relation to condition (b) with respect to the conjunct 𝑦 ̸= 𝑤, we have:

F(𝑦) = {𝑃1} ≠ ∅ = F(𝑤).

Finally, as regards condition (c) with respect to the conjunct 𝑦 = 𝑥⊗ 𝑥, we have:



(c1) F(𝑥)⊗ F(𝑥) = {{𝑃1}, {𝑃2}, {𝑃1, 𝑃2}} = dom(𝒯 );

(c2)

⋃︀
𝒯 [F(𝑥)⊗ F(𝑥)] =

⋃︀
𝒯
[︀{︀
{𝑃1}, {𝑃2}, {𝑃1, 𝑃2}

}︀]︀
=

⋃︀{︀
{𝑃1}} = {𝑃1} = F(𝑦);

(c3) since

⋃︀
𝒯 [𝒩 ∖ (F(𝑥)⊗ F(𝑥))] =

⋃︀
𝒯 [∅] = ∅, we readily have⋃︀

𝒯 [𝒩 ∖ (F(𝑥)⊗ F(𝑥))] ∩ F(𝑥) = ∅.

In view of Lemma 2 recalled above, the above considerations allow us to deduce that the formula

Φ is satisfiable. In fact, Φ has the model 𝑀 such that

𝑀𝑥 = HF, 𝑀𝑦 = HF⊗ HF, and 𝑀𝑤 = ∅,
where we recall that HF denotes the set of the hereditarily finite sets. In addition, it is easy to

check that the formula Φ is not finitely satisfiable. This fact becomes clear once one notes that the

formula (∃𝑤)(∃𝑦)Φ is equivalent to the conjunction 𝑥⊗ 𝑥 ⊆ 𝑥 ∧ 𝑥 ̸= ∅. ▷

4. NP-completeness of the Theories BST⊗𝛼

log

Preliminarily, we adapt to partition assignments the concept of a set distinguishing a collection

of variables with respect to a set assignment, introduced in [4] (see also [23]). We also state

some properties associated with it, whose proofs are omitted due to space limits.

4.1. Distinguishing sets of variables

Definition 5. Given a partition Σ, a map I : 𝑉 → pow(Σ) over a set of variables 𝑉 , and a

subpartition Σ′ ⊆ Σ, the projection of I to Σ′
is the map IΣ′ : 𝑉 → pow(Σ′) defined by

IΣ′(𝑥) := I(𝑥) ∩ Σ′
, for all 𝑥 ∈ 𝑉 .

We say that the subpartition Σ′
distinguishes a subset 𝑉 ′ ⊆ 𝑉 (relative to I), and write

Σ′ ⋉⋉⋉I 𝑉 ′
, if

I(𝑥) ̸= I(𝑦) =⇒ IΣ′(𝑥) ̸= IΣ′(𝑦), for all 𝑥, 𝑦 ∈ 𝑉 ′
,

namely if for every pair of variables 𝑥, 𝑦 ∈ 𝑉 ′
such that I(𝑥) ̸= I(𝑦) there exists a block

𝜎′ ∈ Σ′
for which the following biimplication holds:

𝜎′ ∈ I(𝑥) ⇐⇒ 𝜎′ /∈ I(𝑦). (4)

A block 𝜎′
satisfying (4) is said to distinguish 𝑥 and 𝑦 (relative to I).

The property Σ′ ⋉⋉⋉I 𝑉 ′
propagates upward with respect to its first argument and downward

(namely it is hereditary) with respect to its second argument, as stated in the following lemma.

Lemma 3. Given Σ′ ⊆ Σ and 𝑉 ′ ⊆ 𝑉 , we have

(a) (∀ Σ′′ | Σ′ ⊆ Σ′′ ⊆ Σ)(Σ′ ⋉⋉⋉I 𝑉 ′ =⇒ Σ′′ ⋉⋉⋉I 𝑉 ′), and

(b) (∀ 𝑉 ′′ ⊆ 𝑉 ′)(Σ′ ⋉⋉⋉I 𝑉 ′ =⇒ Σ′ ⋉⋉⋉I 𝑉 ′′).

Proof. As for (a), it is enough to observe that, if Σ′ ⊆ Σ′′ ⊆ Σ and 𝑥, 𝑦 ∈ 𝑉 , then

IΣ′(𝑥) ̸= IΣ′(𝑦) =⇒ I(𝑥) ∩ Σ′ ̸= I(𝑦) ∩ Σ′

=⇒ I(𝑥) ∩ Σ′′ ̸= I(𝑦) ∩ Σ′′



=⇒ IΣ′′(𝑥) ̸= IΣ′′(𝑦).

Property (b) is immediate.

The next lemma asserts that, for any finite partition Σ and any finite set of variables 𝑉 , every

subpartition Σ′
of Σ that distinguishes a subset 𝑉 ′

of 𝑉 (relative to a given partition assignment)

can be extended with at most one block for each of the variables in 𝑉 ∖ 𝑉 ′
to a subpartition of

Σ that distinguishes the whole 𝑉 .

Lemma 4. Let Σ be a finite partition and 𝑉 a finite set of variables, and let I : 𝑉 → pow(Σ) be

a partition assignment over 𝑉 . Let Σ′ ⊆ Σ and 𝑉 ′ ⊆ 𝑉 be such that Σ′ ⋉⋉⋉I 𝑉 ′
. Then, relative to

I, 𝑉 is distinguished by a subpartition Σ′′ ⊆ Σ extending Σ′
and whose cardinality exceeds that

of Σ′
by at most |𝑉 ∖ 𝑉 ′|, namely such that |Σ′′| ⩽ |Σ′|+ |𝑉 ∖ 𝑉 ′|.

Proof. Let 𝑧1, . . . , 𝑧𝑘 be the distinct variables in 𝑉 ∖ 𝑉 ′
, with 𝑘 := |𝑉 ∖ 𝑉 ′|, and let Σ′

0 := Σ′
.

Recursively, we define Σ′
𝑖 ⊆ Σ, for 𝑖 = 1, . . . , 𝑘, by setting

Σ′
𝑖 :=

⎧⎪⎨⎪⎩
Σ′
𝑖−1 if Σ′

𝑖−1 ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖},
Σ′
𝑖−1 ∪ {𝜎} otherwise, where 𝜎 is any

5
block in Σ such that

Σ′
𝑖−1 ∪ {𝜎} ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖}.

Note that the above recursive definition contains an implicit claim, namely that if Σ′
𝑖−1 ⋉⋉⋉I/

𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖} then there exists 𝜎 ∈ Σ such that Σ′
𝑖−1 ∪ {𝜎} ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖}. We

show that such a claim indeed holds for all 𝑖 ∈ {1, . . . , 𝑘}, thereby proving that the definition

of the Σ′
𝑖’s is well-given. To this purpose, it is enough to observe that, for 𝑖 ∈ {1, . . . , 𝑘}, if

Σ′
𝑖−1 is defined and Σ′

𝑖−1 ⋉⋉⋉I/ 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖}, then it can be proved that there exists some

block 𝜎 ∈ Σ such that Σ′
𝑖−1 ∪ {𝜎} ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑖}.

Letting Σ′′ := Σ′
𝑘, we plainly have that 𝑉 is distinguished by Σ′′

. Indeed, by the very

definition of Σ′
𝑘, if Σ′

𝑘 = Σ′
𝑘−1 then Σ′

𝑘−1 ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑘}, whereas if Σ′
𝑘 ̸= Σ′

𝑘−1 then

Σ′
𝑘 ⋉⋉⋉I 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑘}, and in any case Σ′

𝑘 ⋉⋉⋉I 𝑉 holds, since 𝑉 = 𝑉 ′ ∪ {𝑧1, . . . , 𝑧𝑘}. In

addition, we have

|Σ′
𝑘| ⩽ |Σ′|+ 𝑘 = |Σ′|+ |𝑉 ∖ 𝑉 ′|,

proving the lemma.

4.2. The NP-completeness proof

Let Φ be a satisfiable BST⊗-conjunction and let Σ be a partition that satisfies Φ via a map

I : 𝑉 → pow(Σ), where 𝑉 := Vars(Φ). Also, let 𝑉⊗ be the collection of the ⊗-variables of Φ.

We will prove that if |𝑉⊗| ⩽ 𝛼 log |Φ| for some 𝛼 > 0, then the conjunction Φ can be fulfilled

by an accessible ⊗-graph of size O(|Φ|max(𝛼,1)). This will imply that in nondeterministic

polynomial time one can construct an accessible ⊗-graph 𝒢 and a 𝒢-fulfilling map for Φ,

thereby establishing the nondeterministic polynomiality of the s.p. for each of the subfragments

BST⊗𝛼

log of BST⊗.
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A don’t-care nondeterminism is present in the recursive definition of the Σ′
𝑖’s, as no specific instructions are given

regarding the selection of the block 𝜎 ∈ Σ such that Σ′
𝑖−1 ∪{𝜎} ⋉⋉⋉I 𝑉 ′ ∪{𝑧1, . . . , 𝑧𝑖}. However, any valid choice

will suffice. In addition, by ordering Σ, such nondeterminism could be easily eliminated.



Let, as before, Σ⊗ :=
⋃︀
I[𝑉⊗] be the subpartition consisting of all blocks 𝜎 in Σ that belong

to some I(𝑣), where 𝑣 ∈ 𝑉⊗. We define the following equivalence relation ∼⊗ over Σ⊗:

𝜎 ∼⊗ 𝜏
Def←−→ (∀𝑣 ∈ 𝑉⊗)

(︀
𝜎 ∈ I(𝑣)⇐⇒ 𝜏 ∈ I(𝑣)

)︀
.

Let 𝜎 ∈ Σ⊗, and let 𝑉⊗,𝜎 := {𝑣 ∈ 𝑉⊗ | 𝜎 ∈ I(𝑣)}. The equivalence class [𝜎]∼⊗ can be expressed

as follows:

[𝜎]∼⊗ :=
⋂︀{︀

I(𝑣) | 𝑣 ∈ 𝑉⊗,𝜎

}︀
∖
⋃︀{︀

I(𝑣) | 𝑣 ∈ 𝑉⊗ ∖ 𝑉⊗,𝜎

}︀
,

showing that there is an injective map [𝜎]∼⊗ ↦→ 𝑉⊗,𝜎 , where 𝑉⊗,𝜎 ∈ pow+(𝑉⊗), and therefore

the number of equivalence classes of ∼⊗ is bounded by 2|𝑉⊗| − 1.

Within each equivalence class of ∼⊗, we choose any representative block, and we denote

their collection by Σ∼⊗ . Thus, we have:

|Σ∼⊗ | < 2|𝑉⊗|. (5)

Lemma 5. The subpartition Σ∼⊗ distinguishes the variables in 𝑉⊗ (in the sense of Definition 5).

Proof. Let I(𝑥) ̸= I(𝑦), for some 𝑥, 𝑦 ∈ 𝑉⊗. Then there exists a block 𝜎 ∈ Σ such that

𝜎 ∈ I(𝑥) ⇐⇒ 𝜎 /∈ I(𝑦), (6)

so that 𝜎 ∈ Σ⊗. Letting 𝜎 ∈ Σ∼⊗ be the ∼⊗-representative of 𝜎 in Σ⊗, we plainly have

𝜎 ∈ I(𝑥) ⇐⇒ 𝜎 ∈ I(𝑥) and 𝜎 ∈ I(𝑦) ⇐⇒ 𝜎 ∈ I(𝑦),

and therefore, by (6), 𝜎 ∈ I(𝑥) ⇐⇒ 𝜎 /∈ I(𝑦). Hence, 𝜎 distinguishes 𝑥 and 𝑦 and, by

Lemma 3(a), so does Σ∼⊗ .

By Lemma 4 and the inequality (5), there exists an extensionΣI ⊆ Σ ofΣ∼⊗ that distinguishes

the whole set 𝑉 of the variables occurring in Φ and such that

|ΣI | ⩽
⃒⃒
Σ∼⊗

⃒⃒
+ |𝑉 ∖ 𝑉⊗| < 2|𝑉⊗| + |𝑉 | ⩽ 2|𝑉⊗| + 3 · |Φ|. (7)

Given 𝜎 ∈ Σ⊗, there is a ⊗-literal 𝑥 = 𝑦 ⊗ 𝑧 in Φ, such that 𝜎 ∈ I(𝑥). Recalling that Σ
satisfies Φ via the mapping I, we have 𝑀I𝑥 = 𝑀I𝑦⊗𝑀I𝑧, namely

⋃︀
I(𝑥) =

⋃︀
I(𝑦)⊗

⋃︀
I(𝑧).

Thus, 𝜎 ⊆
⋃︀
I(𝑦)⊗

⋃︀
I(𝑧), and so there exist 𝜌 ∈ I(𝑦) and 𝜏 ∈ I(𝑧) such that 𝜎 intersects the

product 𝜌⊗ 𝜏 . Hence, the set

P⊗,𝜎 :=
{︀
𝐴 ∈ Σ⊗ Σ | (⊗𝐴) ∩

⋃︀
[𝜎]∼⊗ ̸= ∅

}︀
is nonempty for all 𝜎 ∈ Σ⊗.

For every 𝜎 ∈ ΣI ∩ Σ⊗, we select from P⊗,𝜎 an unordered pair 𝐴𝜎 such that ⊗𝐴𝜎 contains

some member of minimal rank in

⋃︀
⊗[P⊗,𝜎 ]∩

⋃︀
[𝜎]∼⊗ , and call the doubleton 𝐴𝜎 the precursor

of 𝜎. Then, we put

ΣII := ΣI ∪
(︀⋃︀
{𝐴𝜎 | 𝜎 ∈ ΣI ∩ Σ⊗} ∖ Σ⊗

)︀
.

From (7), we have

|ΣII | ⩽
⃒⃒
ΣI

⃒⃒
+
⃒⃒⋃︀
{𝐴𝜎 | 𝜎 ∈ ΣI ∩ Σ⊗} ∖ Σ⊗

⃒⃒
⩽ |ΣI |+ 2 ·

⃒⃒
ΣI ∩ Σ⊗

⃒⃒
⩽ 3 · |ΣI | ⩽ 3 ·

(︁
2|𝑉⊗| + 3 · |Φ|

)︁
.

Thus, taking into account our hypothesis |𝑉⊗| ⩽ 𝛼 log |Φ|, where 𝛼 > 0, we have

|ΣII | ⩽ 3 · (2𝛼 log |Φ| + |Φ|) = 3 · (|Φ|𝛼 + |Φ|) ⩽ 12 · |Φ|max(𝛼,1).

Let 𝒫 be any set of the same cardinality as Σ and such that 𝒫∩
(︀
𝒫⊗𝒫

)︀
= ∅, and let 𝑞 ↦→ 𝑞(∙)

be any bijection from 𝒫 onto Σ.



We define next an accessible ⊗-graph 𝒢II =
(︀
𝒫 II ,𝒩 II , 𝒯 II

)︀
of size |ΣII | and then prove that

it fulfills Φ. Let

𝒫 II :=
{︀
𝑞 ∈ 𝒫 | 𝑞(∙) ∈ ΣII

}︀
.

Only places 𝑞 ∈ 𝒫 II
such that 𝑞(∙) ∈ Σ⊗—and hence such that 𝑞(∙) ∈ ΣI ∩ Σ⊗—are targets of

some ⊗-node in 𝒩 II ⊆ 𝒫 II ⊗ 𝒫 II
. In order to characterize the distribution edges of 𝒢II

, we

extend the equivalence relation ∼⊗ to an equivalence relation ∼⋆
⊗ over the whole partition Σ

by letting ∼⋆
⊗ := ∼⊗ ∪

{︀
{𝜌} | 𝜌 ∈ Σ ∖ Σ⊗

}︀
.

To simplify the exposition, for all places 𝑝, 𝑞 and unordered pairs of places 𝐴 and 𝐵, in what

follows we will write

𝑝 ∼⊗ 𝑞, 𝑝 ∼⋆
⊗ 𝑞, 𝐴 ∼⋆

⊗ 𝐵
when

𝑝(∙) ∼⊗ 𝑞(∙), 𝑝(∙) ∼⋆
⊗ 𝑞(∙), 𝐴(∙) ∼⋆

⊗ 𝐵(∙)

hold, respectively. Also, if 𝑝
(∙)
∼⊗ is the representative block in the ∼⊗-equivalence class [𝑝(∙)]∼⊗ ,

we will refer to the place 𝑝∼⊗ as the ∼⊗-representative of 𝑝. Finally, if the unordered pair of

blocks 𝐵(∙)
is the precursor of a block 𝑞(∙), we also say that the ⊗-node 𝐵 is the precursor of

the place 𝑞.

For all ⊗-nodes 𝐴 := {𝑝1, 𝑝2} and 𝐵 := {𝑞1, 𝑞2} of 𝒢Σ, we put

𝐴 ∼⋆
⊗ 𝐵

Def←−→ (∃𝑖 ∈ {1, 2})(𝑝1 ∼⋆
⊗ 𝑞𝑖 ∧ 𝑝2 ∼⋆

⊗ 𝑞3−𝑖).

Similarly, for all distribution edges ⟨𝐴, 𝑝⟩ and ⟨𝐵, 𝑞⟩ of 𝒢Σ, we put

⟨𝐴, 𝑝⟩ ∼⋆
⊗ ⟨𝐵, 𝑞⟩ Def←−→ (𝐴 ∼⋆

⊗ 𝐵 ∧ 𝑝 ∼⋆
⊗ 𝑞).

For all 𝐵 ∈ 𝒫 II ⊗ 𝒫 II
and 𝑞 ∈ 𝒫 II

, ⟨𝐵, 𝑞⟩ is a distribution edge of 𝒢II
if and only if 𝒢Σ

contains a distribution edge ⟨𝐵, 𝑞⟩ such that ⟨𝐵, 𝑞⟩ ∼⋆
⊗ ⟨𝐵, 𝑞⟩. The graph 𝒢II

contains no other

distribution edges.

The set 𝒩 II
of the ⊗-nodes of 𝒢II

consists of all 𝐵 ∈ 𝒫 II ⊗ 𝒫 II
for which ⟨𝐵, 𝑞⟩ is a

distribution edge of 𝒢II
, for some 𝑞 ∈ 𝒫 II

.

A ⊗-node 𝐵 of 𝒢II
is a precursor node of a ⊗-place 𝑞 of 𝒢II

if and only if there exists a

distribution edge ⟨𝐵, 𝑞⟩ of 𝒢Σ such that ⟨𝐵, 𝑞⟩ ∼⋆
⊗ ⟨𝐵, 𝑞⟩ and 𝐵 is the precursor of 𝑞.

For each ⊗-node {𝑝1, 𝑝2} of 𝒢II
, the membership edges

⟨︀
𝑝1, {𝑝1, 𝑝2}

⟩︀
and

⟨︀
𝑝2, {𝑝1, 𝑝2}

⟩︀
are

in 𝒢II
, and these are the only membership edges of 𝒢II

. Thus,

Lemma 6. The ⊗-graph 𝒢II
has size at most 12 · |Φ|max(𝛼,1)

.

Next, we show that the ⊗-graph 𝒢II
is accessible.

Lemma 7. The ⊗-graph 𝒢II
is accessible.

Proof. For a contradiction, let us assume that 𝒢II
is not accessible, and let 𝑞 be a non-accessible

⊗-place of 𝒢II
(hence 𝑞(∙) ∈ Σ⊗) such that

⋃︀
[𝑞(∙)]∼⊗ contains a member of smallest rank

among the non-accessible ⊗-places of 𝒢II
. Also, let {𝑝1, 𝑝2} be a precursor ⊗-node of 𝑞 (in 𝒢II

).

Then, there are 𝑝1, 𝑝2, 𝑞 ∈ 𝒫Σ such that

– 𝑝
(∙)
1 ∼⋆

⊗ 𝑝
(∙)
1 , 𝑝

(∙)
2 ∼⋆

⊗ 𝑝
(∙)
2 , and 𝑞(∙) ∼⋆

⊗ 𝑞(∙);

–

⟨︀
{𝑝1, 𝑝2}, 𝑞

⟩︀
is a distribution edge of 𝒢Σ; and

– 𝑞(∙) contains some member of smallest rank in

⋃︀
[𝑞(∙)]∼⊗ .



Since both

⋃︀
[𝑝

(∙)
1 ]∼⊗ and

⋃︀
[𝑝

(∙)
2 ]∼⊗ contain elements of smaller rank than that of any element

in

⋃︀
[𝑞(∙)]∼⊗ , the minimality of 𝑞 among all the non-accessible ⊗-places of 𝒢II

yields that both

𝑝1 and 𝑝2 are accessible in 𝒢II
. Therefore, after all, the place 𝑞 is accessible in 𝒢II

, which is a

contradiction, proving that 𝒢II
is accessible.

We are now ready to prove our main result, namely that the ⊗-graph 𝒢II
fulfills our conjunc-

tion Φ.

Lemma 8. The map FII : 𝑉 → pow(𝒫 II ), defined by FII (𝑥) := FΣ(𝑥)∩𝒫 II
, for each 𝑥 ∈ 𝑉 , is

a 𝒢II
-fulfilling map for Φ. Hence the ⊗-graph 𝒢II

fulfills the BST⊗-conjunction Φ.

Proof. Preliminarily, we observe that we have:

FII (𝑥) =
{︀
𝑞 ∈ 𝒫 | 𝑞(∙) ∈ I(𝑥) ∩ ΣII

}︀
, for every 𝑥 ∈ 𝑉. (8)

Concerning the fulfilling condition (a) for FII
, for every literal 𝑥 = 𝑦 ∖ 𝑧 in Φ we have

FII (𝑥) = FΣ(𝑥) ∩ 𝒫 II =
(︀
FΣ(𝑦) ∖ FΣ(𝑧)

)︀
∩ 𝒫 II

=
(︀
FΣ(𝑦) ∩ 𝒫 II

)︀
∖
(︀
FΣ(𝑧) ∩ 𝒫 II

)︀
= FII (𝑦) ∖ FII (𝑧)

(since, by the same fulfilling condition for FΣ, it holds that FΣ(𝑥) = FΣ(𝑦) ∖ FΣ(𝑧)), proving

condition (a) for FII
.

As regards the fulfilling condition (b) for FII
, for every literal in Φ of the form 𝑥 ̸= 𝑦, by the

same fulfilling condition for FΣ it holds that FΣ(𝑥) ̸= FΣ(𝑦), and therefore I(𝑥) ̸= I(𝑦). By

recalling that ΣII
distinguishes 𝑉 (relative to I), we have I(𝑥) ∩ ΣII ̸= I(𝑦) ∩ ΣII

. Hence, by

(8), we readily obtain FII (𝑥) ̸= FII (𝑦), thus establishing also condition (b) for FII
.

As for condition (c) of Definition 4, we need to prove that the following fulfilling conditions

hold, for every ⊗-literal 𝑥 = 𝑦 ⊗ 𝑧 in Φ:

(c1) FII (𝑦)⊗ FII (𝑧) ⊆ dom(𝒯 II ),

(c2) FII (𝑥) =
⋃︀
𝒯 II [FII (𝑦)⊗ FII (𝑧)], and

(c3)

⋃︀
𝒯 II

[︀
𝒩 II ∖ (FII (𝑦)⊗ FII (𝑧))

]︀
∩ FII (𝑥) = ∅,

where 𝒯 II
and 𝒩 II

are the target map and the set of the ⊗-nodes of 𝒢II
, respectively. Thus, let

𝑥 = 𝑦 ⊗ 𝑧 be any ⊗-literal in Φ.

Concerning condition (c1), let 𝜐 ∈ FII (𝑦) and 𝜁 ∈ FII (𝑧). Hence, it holds that 𝜐, 𝜁 ∈ 𝒫 II
,

𝜐 ∈ FΣ(𝑦), and 𝜁 ∈ FΣ(𝑧). Since, by Lemma 1, the ⊗-graph 𝒢Σ induced by the partition

Σ and by Φ fulfills the BST⊗-conjunction Φ via the map FΣ, from conditions (c1) and (c2)

for FΣ, it follows that ∅ ̸= 𝒯Σ({𝜐, 𝜁}) ⊆ FΣ(𝑥). Let 𝑞 ∈ 𝒯Σ({𝜐, 𝜁}), so that 𝑞 ∈ FΣ(𝑥) and

𝑞(∙) ∈ I(𝑥) ⊆ Σ⊗, and let 𝑞∼⊗ ∈ 𝒫Σ be the ∼⊗-representative of 𝑞. Then,

⟨︀
{𝜐, 𝜁}, 𝑞∼⊗

⟩︀
is a

distribution edge in 𝒢II
, proving that {𝜐, 𝜁} ∈ dom(𝒯 II ), and in turn establishing condition

(c1) for FΣ.

Next, concerning the fulfilling condition (c2) for FΣ, let 𝑞 ∈ FII (𝑥), so that 𝑞 ∈ FΣ(𝑥) ∩ 𝒫 II
.

Hence, by the same fulfilling condition for FΣ, there exist 𝑝 ∈ FΣ(𝑦) and 𝑟 ∈ FΣ(𝑧) such that

𝑞 ∈ 𝒯Σ({𝑝, 𝑟}). Letting 𝑝∼⊗ and 𝑟∼⊗ be the ∼⊗-representatives of the equivalence classes

[𝑝]∼⊗ and [𝑟]∼⊗ , respectively, we have 𝑝∼⊗ ∈ FII (𝑦), 𝑟∼⊗ ∈ FII (𝑧), and {𝑝∼⊗ , 𝑟∼⊗} ∼⊗ {𝑝, 𝑟}.
Thus,

𝑞 ∈ 𝒯 II
(︀
{𝑝∼⊗ , 𝑟∼⊗}

)︀
⊆

⋃︀
𝒯 II

[︀
FII (𝑦)⊗ FII (𝑧)

]︀
,



and therefore we have FII (𝑥) ⊆
⋃︀
𝒯 II [FII (𝑦)⊗ FII (𝑧)].

As for the reverse inclusion, let 𝑝 ∈ FII (𝑦) and 𝑟 ∈ FII (𝑧), and let 𝑞 ∈ 𝒯 II ({𝑝, 𝑟}). Then

there exist 𝑝, 𝑟, and 𝑞 such that 𝑞 ∈ 𝒯Σ({𝑝, 𝑟}), 𝑝 ∼⋆
⊗ 𝑝, 𝑟 ∼⋆

⊗ 𝑟, and 𝑞 ∼⋆
⊗ 𝑞. We need to

show that 𝑞 ∈ FII (𝑥). Since 𝑞 ∈ 𝒫 II
, it is enough to prove that 𝑞 ∈ FΣ(𝑥). From 𝑝 ∼⋆

⊗ 𝑝 and

𝑝 ∈ FΣ(𝑦), we have 𝑝 ∈ FΣ(𝑦). Likewise, we have 𝑟 ∈ FΣ(𝑧). Thus, {𝑝, 𝑟} ∈ FΣ(𝑦) ⊗ FΣ(𝑧)
and therefore, by the fulfilling condition (c2) for FΣ, we have 𝑞 ∈ FΣ(𝑥). Since 𝑞 ∼⋆

⊗ 𝑞,

the latter implies that 𝑞 ∈ FΣ(𝑥), which is precisely what we wanted to prove. Thus, we

have

⋃︀
𝒯 II [FII (𝑦)⊗ FII (𝑧)] ⊆ FII (𝑥) that, together with the inclusion proved earlier, implies

FII (𝑥) =
⋃︀
𝒯 II [FII (𝑦)⊗ FII (𝑧)], proving that the fulfilling condition (c2) holds for FII

.

Finally, to prove that also the fulfilling condition (c3) holds for FII
, it is enough to show that,

taken any

𝑞 ∈ FII (𝑥) and {𝑝, 𝑟} ∈ dom(𝒯 II ) ∖
(︀
FII (𝑦)⊗ FII (𝑧)

)︀
, (9)

we have 𝑞 /∈ 𝒯 II
(︀
{𝑝, 𝑟}

)︀
.

If, for contradiction, we have 𝑞 ∈ 𝒯 II
(︀
{𝑝, 𝑟}

)︀
under the hypotheses (9), then there exist

places 𝑞, 𝑝, 𝑟 ∈ 𝒫Σ such that

𝑞 ∼⋆
⊗ 𝑞, 𝑝 ∼⋆

⊗ 𝑝, 𝑟 ∼⋆
⊗ 𝑟, and 𝑞 ∈ 𝒯Σ({𝑝, 𝑟}),

so that 𝑞(∙) ∩ (𝑝(∙) ⊗ 𝑟(∙)) ̸= ∅. Since 𝑞 ∈ FII (𝑥) = FΣ(𝑥) ∩ 𝒫 II
and 𝑞 ∼⋆

⊗ 𝑞, it follows that

𝑞 ∈ FΣ(𝑥). Hence, 𝑞(∙) ∈ I(𝑥). Letting {𝑎𝑝, 𝑎𝑟} ∈ 𝑞(∙), where 𝑎𝑝 ∈ 𝑝(∙) and 𝑎𝑟 ∈ 𝑟(∙), in view

of

⋃︀
I(𝑥) =

⋃︀
I(𝑦) ⊗

⋃︀
I(𝑧) (since Σ/I |= 𝑥 = 𝑦 ⊗ 𝑧), we have {𝑎𝑝, 𝑎𝑟} ∈

⋃︀
I(𝑦) ⊗

⋃︀
I(𝑧).

Without loss of generality, let us assume that 𝑎𝑝 ∈
⋃︀
I(𝑦) and 𝑎𝑟 ∈

⋃︀
I(𝑧). Then we have

𝑝(∙) ∈ I(𝑦) and 𝑟(∙) ∈ I(𝑧), and so 𝑝(∙) ∈ I(𝑦) and 𝑟(∙) ∈ I(𝑧), which yield 𝑝 ∈ FΣ(𝑦) and

𝑟 ∈ FΣ(𝑧). From {𝑝, 𝑟} ∈ dom(𝒯 II ) we have 𝑝, 𝑟 ∈ 𝒫 II
, and so 𝑝 ∈ FII (𝑦) and 𝑟 ∈ FII (𝑧),

from which it follows that {𝑝, 𝑟} ∈ FII (𝑦)⊗ FII (𝑧), which is a contradiction. Thus, even the

last fulfilling condition (c3) holds for FII
.

This completes the proof that FII
is indeed a 𝒢II

-fulfilling map for Φ.

Letting 𝛽 := max(𝛼, 1), from Lemmas 6, 7, and 8, it follows that our satisfiable BST⊗𝛼

log-

conjunction Φ is fulfilled by an accessible ⊗-graph 𝒢II
of size at most 12 · |Φ|𝛽 via a suitable

𝒢II
-fulfilling map FII

. These, namely 𝒢II
and FII

, can be constructed in nondeterministic

O
(︀
|Φ|3𝛽

)︀
time, and in deterministic O

(︀
|Φ|3𝛽

)︀
time, it can be verified that 𝒢II

fulfills Φ via FII

indeed. Hence, in view of Lemma 2, the s.p. for each of the subfragments BST⊗𝛼

log of BST⊗
(with 𝛼 > 0) is in NP. The NP-hardness is inherited from that of the s.p. for the theory BST
proved in [3], where BST is the subtheory of BST⊗ obtained by forbidding all the literals of the

form 𝑥 = 𝑦 ⊗ 𝑧. Hence, the NP-completeness of each fragment BST⊗𝛼

log follows:

Theorem 2. For every 𝛼 > 0, the s.p. for the theory BST⊗𝛼

log is NP-complete.

5. Conclusions and Future Research

Through an analysis of the subfragments BST⊗𝛼

log of BST⊗, in this paper we have established

the NP-completeness of their satisfiability problems for any 𝛼 > 0. This result contributes

to our understanding of the computational complexity of BST⊗, which currently falls within



the bounds of NP-hardness and NEXPTIME. It is expected that if the s.p. for the whole theory

BST⊗ is NP-complete, the techniques developed here may be generalized so as to prove it.

Decision algorithms for enhanced versions of MLS (and therefore for BST) have become

crucial in the inference mechanisms utilized by the proof-checker ÆtnaNova, also known as

Ref [27]. Given the widespread use of this mechanism in practical applications of ÆtnaNova, as

discussed in [22, 20] and in the sections on ‘blobbing’ of [27], it is advantageous to minimize

the occasional poor performance associated with the full-strength decision algorithm whenever

possible. Therefore, identifying valuable ’small’ fragments of set theory that possess efficient

decision tests is of utmost importance.

In light of this, building upon the work initiated in [6, 3], we have already embarked on the

investigation of the satisfiability problem for other valuable subfragments of BST⊗. Specifically,

letting BST⊗
(︀
lit1, lit2, . . .

)︀
denote the subtheory of BST⊗ involving only literals lit1, lit2, . . .

drawn from the list

(∖), (∪), (∩), (̸=), (⊆⊗), (⊗⊆), (⊗),
where

(⋆) 𝑥 = 𝑦 ⋆ 𝑧, (̸=) 𝑥 ̸= 𝑦, (⊆⊗) 𝑦 ⊗ 𝑧 ⊆ 𝑥, (⊗⊆) 𝑥 ⊆ 𝑦 ⊗ 𝑧, (⊗) 𝑥 = 𝑦 ⊗ 𝑧

(with ⋆ ∈ {∖,∪,∩}), we have already obtained the following complexity results, in addition to

the one discussed extensively in the preceding section:

BST⊗
(︀
̸=,⊆⊗

)︀
: both the ordinary and the finite s.p. have a O(𝑛2) complexity;

BST⊗
(︀
̸=,⊗⊆

)︀
: the ordinary s.p. is O(𝑛), while the finite s.p. is NP-complete;

BST⊗
(︀
̸=,⊗

)︀
: both the ordinary and the finite s.p. are NP-complete;

BST⊗𝛼

log : the finite s.p. is NP-complete.

Our future plans involve extending this complexity taxonomy to encompass more combina-

tions of literals of the aforementioned types.
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