
Properties of a Computational Lambda Calculus for
Higher-Order Relational Queries
Claudio Sacerdoti Coen1, Riccardo Treglia1,*

1Università di Bologna, Bologna, Italy, Mura Anteo Zamboni, 7, 40126 Bologna (BO), Italy

Abstract
We study the operational semantics of an untyped computational lambda calculus whose
normal forms represent queries on databases. The calculus extends the computational core
with additional operations and rewriting rules whose effect is to turn the monadic type of
computations into a multiset monad that captures tables. Moreover, we introduce comonadic
constructs and additional rewriting rules to be able to form tables of tables. Proving confluence
becomes tricky: we succeed exploiting decreasing diagrams. In the second part, we study a
Curry style type assignment system for the calculus. We introduce an idempotent intersection
type system establishing type invariance under conversion.

Keywords
Lambda calculus, Monads, Confluence, Intersection Types, Databases

1. Introduction to the Calculus: Syntax and Reduction Relation
The second author et al. have introduced and studied in [1, 2] the computational core 𝜆©,
a 𝜆-calculus inspired by Moggi’s computational one [3], [4]. The calculus differentiates
between values and computations, the latter obtained via return/bind constructs for a
generic monad. The operational semantics is obtained simply by orienting the monadic
laws, and confluence was proved among other properties.

In this work, we extend 𝜆© with specific additional operations and rewriting rules over
computations that turn the generic monad into a multiset monad: the 0-ary operation
∅ represents the empty multiset, ⊎ the union of multisets, and the monadic return,
denoted by [·], is now interpreted as forming a singleton. The rewriting rules partially
capture the algebraicity of the operations in the sense of Plotkin and Power [5, 6] by
letting the operators commute with those rewriting contexts that are built from bind
operators, only. Because in 𝜆©, contrary to Moggi’s computational 𝜆-calculus, values and
computations are rigidly split, the extension described so far does not allow the formation
of multisets of multisets, because multisets are not values. To overcome the issue, we

ICTCS’23: 24th Italian Conference on Theoretical Computer Science, September 13–15, 2023, Palermo,
Italy
*Corresponding author.
$ claudio.sacerdoticoen@unibo.it (C. S. Coen); riccardo.treglia@unibo.it (R. Treglia)
� https://www.cs.unibo.it/~sacerdot/ (C. S. Coen); https://sites.google.com/view/riccardotreglia/home
(R. Treglia)
� 0000-0002-4360-6016 (C. S. Coen); 0000-0002-9731-1248 (R. Treglia)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:claudio.sacerdoticoen@unibo.it
mailto:riccardo.treglia@unibo.it
https://www.cs.unibo.it/~sacerdot/
https://sites.google.com/view/riccardotreglia/home
https://orcid.org/0000-0002-4360-6016
https://orcid.org/0000-0002-9731-1248
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


add two more co-monadic constructs to reflect computations into values, following ideas
by [7]. These constructs are the thunk/force constructs of Levy’s call-by-push-value
calculus [8]; however, our calculus is strong, i.e., it allows reduction inside values as well.
Finally, we introduce an equational theory over computations to capture associativity
and commutativity of ⊎ and idempotency of ∅: this is the minimal theory that turns the
calculus into a confluent one.

The calculus we are going to introduce takes inspiration from the (untyped) NRC𝜆
calculus [9], and it is to it as 𝜆© is to the (untyped) 𝜆-calculus. Indeed, we introduce it
with the intent of studying semantic properties of the NRC𝜆-calculus via intersection
types, trying to scale what the second author already did for 𝜆©, thus providing an
explicit monadic formulation of Ricciotti et al’s calculus.

Because of the important application to databases, from now on we call our extension
of the 𝜆©-calculus the 𝜆𝑆𝑄𝐿-calculus.

Intersection Types were introduced by Coppo and Dezani-Ciancaglini in the late 70’s
[10] to overcome the limitations of Curry’s type discipline and enlarge the class of terms
that can be typed. This is reached by means of a new type constructor, the intersection.
Thus, one can assign a finite set of types to a term, thus providing a form of finite, ad
hoc polymorphism.

In the same way that simple types guarantee termination, intersection types do the
same. However, they also characterize termination, that is, they type all terminating
𝜆-terms. Intersection types have also a very elegant semantic flavour, since they may be
seen as a syntactic presentation of denotational models. Notwithstanding, here we do
not delve into the denotational semantics of the calculus, and keep the treatment at the
syntactical level. In fact, intersection types have shown to be remarkably flexible, since
different termination forms can be characterized by tuning details of the type system (e.g.,
weak/strong normalization, head/weak/call-by-value evaluation). In the present work,
we introduce an idempotent intersection type discipline and prove it enjoys the subject
convertibility, i.e., the type is preserved not only by reduction, but also by expansion.
This is the key property to reach the soundness and completeness results of the type
system with respect to termination.

To get an account of the history and expressivity of intersection types, see for example
the recent survey by Bono and Dezani-Ciancaglini [11].

Contributions. The first contribution of the work is the design of the 𝜆𝑆𝑄𝐿-calculus
in Section 2, which goes beyond the mere effort to fit the NRC𝜆 into a well-assessed
monadic frame. Indeed, this can be considered as an experiment of extending 𝜆© with
algebraic operators (other cases are [12, 13]), but here it immediately highlights, for
example, the need to introduce other kinds of constructs, such as the comonadic unit,
that could be added to 𝜆© independently of the algebraic operators.

The second contribution, treated in Section 3, is the proof of a fundamental property
of the calculus: confluence. The proof is labour-intensive because the rewriting rules
associated to algebraicity of the operators turn them into control operators: each operator



can capture its context and then erase or duplicate it, and many critical pairs arise.
Moreover, there is also the issue of the interplay between the equational theory and the
rewriting theory. Technically, we make strong use of van Oostrom’s decreasing diagram
technique [14], the most difficult point of which is to find the order relation between the
labels of the calculus reduction rules. This will be done by considering orthogonal and
nested closures of certain reduction rules, inspired by the work in [15], postponing in a
final step the commutation with respect to the union operator.

Section 4 is devoted to the third contribution: an idempotent, monadic, intersection
types assignment system, proved to enjoy subject convertibility. The intersection type
theory we present is monadic version of strict intersection types in the case the monad
into account is the multiset monad equipped with the possibility of reflect and reify types.
This contribution can be seen as a first step to characterize convergent terms of the
calculus and as a first move in obtaining a resource-aware type system for the calculus
into consideration.

Future work and related ones are discussed in Section 5.

2. Syntax and Reduction
The syntax of the untyped computational SQL 𝜆-calculus, shortly 𝜆𝑆𝑄𝐿, and its reduction
relation are reported below:

Definition 2.1 (Term syntax).

Val : 𝑉, 𝑊 ::= 𝑥 | 𝜆𝑥.𝑀 | ⟨⟨𝑀⟩⟩
Com : 𝑀, 𝑁 ::= [𝑉 ] |𝑀 ⋆ 𝑉 |𝑀 ⊎𝑀 | ∅ | !𝑉

Like in 𝜆©, terms are of either sorts Val and Com, representing values and computations,
respectively. Variables 𝑥, abstractions 𝜆𝑥.𝑀 — where 𝑥 is bound in 𝑀 — and the
constructors [𝑉 ] and 𝑀 ⋆ 𝑉 , written return 𝑉 and 𝑀 »= 𝑉 in Haskell-like syntax,
respectively, form the syntax of 𝜆©, which is agnostic on the interpretation of computations.
In 𝜆𝑆𝑄𝐿, instead, computations are meant to be understood as tables, i.e., multisets of
values, and therefore [𝑉 ] is interpreted as the singleton whose only element is 𝑉 and ⋆
as the bind operator of the multiset monad. The binary and 0-ary operators ⊎ and ∅
are additionally used to construct tables. The pair of constructs ⟨⟨·⟩⟩ and ! are used to
reflect computations into labels, allowing to form tables of (reflected) tables. Note that
⟨⟨·⟩⟩ can be understood as the unit of a comonad. Terms are identified up to renaming of
bound variables so that the capture avoiding substitution 𝑀{𝑉/𝑥} is always well defined;
𝐹𝑉 (𝑀) denotes the set of free variables in 𝑀 . Finally, like in 𝜆©, application among
computations can be encoded by 𝑀𝑁 ≡𝑀 ⋆ (𝜆𝑧. 𝑁 ⋆ 𝑧), where 𝑧 is fresh.

Wrapping up, the syntax can be condensed in the motto:

𝜆SQL ≈ 𝜆© + operations over tables + monadic reification/reflection

with the latter extension being orthogonal to the second one.
We are now in place to introduce the 𝜆𝑆𝑄𝐿 reduction relation, later closed under

contexts:



Definition 2.2 (Reduction). The reduction relation is the union of the following binary
relations over Com:

𝛽𝑐) [𝑉 ] ⋆ 𝜆𝑥.𝑀 ↦→𝛽𝑐 𝑀{𝑉/𝑥}
𝜎 ) (𝐿 ⋆ 𝜆𝑥.𝑀) ⋆ 𝜆𝑦.𝑁 ↦→𝜎 𝐿 ⋆ 𝜆𝑥.(𝑀 ⋆ 𝜆𝑦.𝑁) for 𝑥 ̸∈ fv(𝑁)
⊎𝑙) (𝑀 ⊎𝑁) ⋆ 𝜆𝑥.𝑃 ↦→⊎𝑙

(𝑀 ⋆ 𝜆𝑥.𝑃 ) ⊎ (𝑁 ⋆ 𝜆𝑥.𝑃 )
⊎𝑟) 𝑀 ⋆ 𝜆𝑥.(𝑁 ⊎ 𝑃 ) ↦→⊎𝑟 (𝑀 ⋆ 𝜆𝑥.𝑁) ⊎ (𝑀 ⋆ 𝜆𝑥.𝑃 )
∅1) ∅ ⋆ 𝜆𝑥.𝑀 ↦→∅1 ∅
∅2) 𝑀 ⋆ 𝜆𝑥.∅ ↦→∅2 ∅

!) !⟨⟨𝑀⟩⟩ ↦→! 𝑀

The first two rules, taken from 𝜆©, are oriented monadic equations. The next two rules
capture algebraicity of the ⊎ operator, but only w.r.t. contexts made of ⋆ only (e.g.,
there is no rule (𝑀 ⊎𝑁) ⊎ 𝑃 ↦→ (𝑀 ⊎ 𝑃 ) ⊎ (𝑁 ⊎ 𝑃 ) because that would be unsound for
tables). The latter rule is the usual rule for the thunk/force redex in call-by-push-value.

The reduction −→𝜆SQL (when it is clear from the context we omit the subscript) is
the contextual closure of 𝜆SQL under computational contexts, where such contexts are
mutually defined with value contexts as follows:

V ::= ⟨·Val⟩ | 𝜆𝑥.C | ⟨⟨C⟩⟩ Value Contexts
C ::= ⟨·Com⟩ | [V] | C ⋆ 𝑉 |𝑀 ⋆ V | C ⊎𝑀 |𝑀 ⊎ C | !V Computation Contexts

Notice that the hole of each kind of context has to be filled in with a proper kind of term.
We equip the calculus with a sound, but not complete, equational theory for multisets,

taken from [9].

Definition 2.3 (Equational theory 𝐸).

𝐶𝑜𝑚𝑚) 𝑀 ⊎𝑁 = 𝑁 ⊎𝑀

𝐸𝑚𝑝𝑡𝑦) ∅ ⊎ ∅ = ∅

The exact choice of rewriting and equational rules that we pick seems rather arbitrary
at first: the empty set is not the neutral element of ⊎ and the monadic operations are not
forced to be completely algebraic (e.g., ⊎ does not commute with contexts that include
thunks or force). This choice was made in order to keep the calculus as close as possible
to the reference NRC𝜆 calculus in [9].

3. Route to Confluence
We modularize the proof of confluence by first showing that the equational part can be
postponed.



Getting rid of the equational theory. A classic tool to modularize a proof of confluence
is Hindley-Rosen lemma, stating that the union of confluent reductions is itself confluent
if they all commute with each other. Let us first define what commutation between a
reduction relation and an equational theory means, and then state that result properly.

Definition 3.1. Given a reduction relation −→ and an equational theory =𝐸, we say that
−→ commutes over =𝐸 if for all 𝑀, 𝑁, 𝐿 such that 𝑀 =𝐸 𝑁 −→ 𝐿, there exists 𝑃 such
that 𝑀 −→ 𝑃 =𝐸 𝐿.

Lemma 3.2 (Hindley-Rosen). Let ℛ1 and ℛ2 be relations on the set 𝐴. If ℛ1 and ℛ2
are confluent and commute with each other, then ℛ1 ∪ℛ2 is confluent.

We will exploit that to focus just on the reduction relation while proving confluence.

Lemma 3.3. =𝐸 commutes with −→.

Hence, by Lemma 3.3 one needs just the confluence of −→ to assert the confluence of
−→ modulo 𝐸.

Remark 3.4. One can be also interested in the modulo confluence, which is in general
different from the confluence modulo (see ch. 14 of [16]). In fact, the equational theory
𝐸 induces an equivalence relation on computations Com, where the equivalence class
[𝑀 ]𝐸 of an element a 𝑀 consists of all elements 𝑁 such that 𝑀 =𝐸 𝑁 . The set of all
equivalence classes, denoted by Com/ =𝐸 , is called the quotient set of Com modulo 𝐸.
It is easy to see that in our specific case, even if we are not interested in it, confluence
modulo 𝐸 implies the confluence of Com/ =𝐸 .

Decreasing diagram. Now that is possible to omit the equational theory induced by
Definition 2.3, we need to prove the commutation of all the reduction rules, and in
this intent, we use decreasing diagrams by van Oostrom [14, 17]. This is a powerful
and general tool to establish commutation properties, which reduces the problem of
showing commutation to a local test; in exchange of localization, the diagrams need to
be decreasing with respect to some labelling.

Definition 3.5 (Decreasing, [14]). An rewriting relation ℛ is locally decreasing if there
exist a presentation (𝑅, {−→𝑖}𝑖∈𝐼) of ℛ and a well-founded strict order > on 𝐼 such that:

←
𝑖
·→

𝑗
⊆ *←→∨𝑖

· =−→
𝑗
· *←→

∨{𝑖𝑗}
· =←−

𝑖
· *←→∨𝑗

,

where ∨𝐼 = {𝑖 ∈ 𝐼 | ∃𝑘 ∈ 𝐼. 𝑘 > 𝑖}, ∨𝑖 abbreviates ∨{𝑖}, and *−→ (resp. *←→ ) and =−→
(resp. =←→ ) are the transitive and reflexive closures of the relation −→ (resp. ↔).

Let us give a hint about the above definition. The property of decreasiness is stated
for relations, seen as a family of labelled binary relations. Such labels are equipped with
a well-founded, strict, order such that every peak can be rejoined in a particular way,
regulated by that specific order on labels.

The following theorem, due to van Oostrom, states that decreasiness implies confluence.



Theorem 3.6 (van Oostrom [14, 17]). Every locally decreasing rewriting relation ℛ is
confluent.

In [14], the method is guaranteed to be complete in the sense that any (countable)
confluent rewrite relation can be equipped with such a labelling. But by undecidability of
confluence completeness also entails that finding such a labelling is, in general, difficult.
So to prove confluence of the relation in Definition 2.2 one needs to prove it decreasing
with respect to some labelling. This means rearranging the family in such a way that the
union is still the relationship we want to prove the confluence of, but the indices of the
family are rearranged to comply with a labelling that fits the definition of decreasiness.

Which order? Now the point is to find a proper labelling and a strict order on that
labelling that satisfies the property of decreasiness. If one considers diagrams involving
rules of ⊎𝑙 or ⊎𝑟 vs. ∅1 and ∅2, it is easy to perceive how these rules should be ordered
as labels of potential labellings. Consider, for instance, the following diagram:

(𝑀1 ⊎𝑀2) ⋆ 𝜆𝑥.∅
⊎𝑙

- (𝑀1 ⋆ 𝜆𝑥.∅) ⊎ (𝑀2 ⋆ 𝜆𝑥.∅)

∅
�

2
∅ 2
∅

2

-

In fact, the rules concerning the empty table, ∅1 and ∅2, can be bottom elements of the
order over labels we are searching for (read it as: these rules can always be postponed at
the end of a reduction sequence).

When it comes to comparing ⊎𝑙 vs. 𝜎, the situation is a bit trickier because ⊎𝑙 only
quasi-commutes over 𝜎. The following diagrams show that ⊎𝑙 must be made greater than
𝜎.

((𝐿1 ⊎ 𝐿2) ⋆ 𝜆𝑥.𝑀) ⋆ 𝜆𝑦.𝑁
𝜎

- (𝐿1 ⊎ 𝐿2) ⋆ 𝜆𝑥.(𝑀 ⋆ 𝜆𝑦.𝑁)

𝑀1¯

⊎𝑙

?

⊎𝑙

- ·
2
𝜎

- 𝑀2¯

⊎𝑙

?

where 𝑀1¯ = ((𝐿1 ⋆ 𝜆𝑥.𝑀) ⊎ (𝐿2 ⋆ 𝜆𝑥.𝑀)) ⋆ 𝜆𝑦.𝑁), 𝑀2¯ = (𝐿1 ⋆ 𝜆𝑥.(𝑀 ⋆ 𝜆𝑦.𝑁)) ⊎ (𝐿2 ⋆
𝜆𝑥.(𝑀 ⋆ 𝜆𝑦.𝑁)).

The case for 𝛽𝑐 vs ⊎𝑟, however, shows the need for a non-trivial approach, since
depending on which context the rules are applied, we need either 𝛽𝑐 > ⊎𝑟 or 𝛽𝑐 < ⊎𝑟.
Indeed,



[𝑉 ] ⋆ 𝜆𝑥.(𝑁 ⊎ 𝑃 )
𝛽𝑐 - (𝑁 ⊎ 𝑃 ){𝑉/𝑥}

([𝑉 ] ⋆ 𝜆𝑥.𝑁) ⊎ ([𝑉 ] ⋆ 𝜆𝑥.𝑃 )

⊎𝑟

? 𝛽𝑐

2
- 𝑁{𝑉/𝑥} ⊎ 𝑃{𝑉/𝑥}

⃦⃦⃦⃦⃦
⃦⃦⃦⃦⃦
⃦

. . . but . . .

𝑉1 = 𝜆𝑥.(𝑀 ⋆ 𝜆𝑦.(𝑁1 ⊎𝑁2))
𝑉2 = 𝜆𝑥.((𝑀 ⋆ 𝜆𝑦.𝑁1) ⊎ (𝑀 ⋆ 𝜆𝑦.𝑁2))

[𝑉1] ⋆ 𝜆𝑧.([𝑧] ⋆ 𝑧)
⊎𝑟- [𝑉2] ⋆ 𝜆𝑧.([𝑧] ⋆ 𝑧)

[𝑉1] ⋆ 𝑉1

𝛽𝑐

? ⊎𝑟

2
- [𝑉2] ⋆ 𝑉2

𝛽𝑐

?

Generalized version of ⊎𝑙 and ⊎𝑟 The case for ⊎𝑙 vs. ⊎𝑟 can seem innocent, for example:

(𝑀1 ⊎ 𝑀2) ⋆ 𝜆𝑥.(𝑁1 ⊎ 𝑁2)
⊎𝑙

- (𝑀1 ⋆ 𝜆𝑥.(𝑁1 ⊎ 𝑁2)) ⊎ (𝑀2 ⋆ 𝜆𝑥.(𝑁1 ⊎ 𝑁2))

((𝑀1 ⊎ 𝑀2) ⋆ 𝜆𝑥.𝑁1) ⊎ ((𝑀1 ⊎ 𝑀2) ⋆ 𝜆𝑥.𝑁2)

⊎𝑟

? 2
⊎𝑙

- �̄� =𝐸 �̂�

⊎𝑟 2

?

where �̄� ≡ (𝑀1 ⋆ 𝜆𝑥.𝑁1) ⊎ (𝑀2 ⋆ 𝜆𝑥.𝑁1) ⊎ (𝑀1 ⋆ 𝜆𝑥.𝑁2) ⊎ (𝑀2 ⋆ 𝜆𝑥.𝑁2) and �̂� ≡
(𝑀1 ⋆ 𝜆𝑥.𝑁1) ⊎ (𝑀1 ⋆ 𝜆𝑥.𝑁2) ⊎ (𝑀2 ⋆ 𝜆𝑥.𝑁1) ⊎ (𝑀2 ⋆ 𝜆𝑥.𝑁2)

Remark 3.7. Actually, for more complex terms the diagram is not so elegant. Consider
for example the term 𝑀 ≡ (𝑀1 ⊎𝑀2) ⋆ 𝜆𝑥((𝑁1 ⊎𝑁2) ⊎𝑁3). If one is seeking a modular
proof of confluence, it is possible to consider the rewriting system made by just the
rules ⊎𝑙 and ⊎𝑟. Both together are weakly Church-Rosser (provable by easy induction)
and terminating (since the number of ⊎ symbols in a term is finite), thus by Newman’s
Lemma, the rewrite system is Church-Rosser. By the way, we are searching for the right
application of van Oostrom’s decreasing diagram, hence we are to introduce a generalized
version of ⊎𝑙 and ⊎𝑟, respectively.

Definition 3.8 (Generalized union step). Let us define as generalized ⊎𝑙 and ⊎𝑟 steps as
follows

Gen ⊎𝑙) (. . . (𝑀1 ⊎ 𝑀2) ⊎ . . . ⊎ 𝑀𝑛) ⋆ 𝜆𝑥.𝑁 ↦→Gen⊎𝑙
(𝑀 ⋆ 𝜆𝑥.𝑁) ⊎ (𝑀2 ⋆ 𝜆𝑥.𝑁) ⊎ . . . ⊎ (𝑀𝑛 ⋆ 𝜆𝑥.𝑁)

Gen ⊎𝑟) 𝑀 ⋆ 𝜆𝑥.(. . . (𝑁1 ⊎ 𝑁2) ⊎ . . . ⊎ 𝑁𝑛) ↦→Gen⊎𝑟 (𝑀 ⋆ 𝜆𝑥.𝑁1) ⊎ (𝑀 ⋆ 𝜆𝑥.𝑁2) ⊎ . . . ⊎ (𝑀 ⋆ 𝜆𝑥.𝑁𝑛)



Multi-reduction. The confluence proof we are going to sketch avoids the issue with 𝛽𝑐 vs.
⊎𝑟 reported above by considering multiple reductions. Roughly speaking, this means that
we consider a labelling that comprehends reduction rules that can perform simultaneously
in many ’parts’ of the term, called formally positions. For a fair formalization of these
basic notions of rewriting theory, please see, e.g., [18].

A parallel rewrite step is a sequence of reductions at a set 𝑃 of parallel positions,
ensuring that the result does not depend upon a particular sequentialization of 𝑃 . Given
a reduction step 𝛾 we define its parallel version as Par𝛾.

We are now ready to state our main result:

Theorem 3.9 (Confluence). 𝜆𝑆𝑄𝐿 is confluent.

Proof sketch. 1. All reduction rules strongly commute with !: proved by tedious
inspection of all cases.

2. Under the following order for parallel rewriting steps, all remaining rules are
decreasing as well: also proved by tedious inspection of all cases.

Par𝛽𝑐 > Par𝜎 > ParGen⊎𝑟 > ParGen⊎𝑟 > ∅1 > ∅2
The diagrams for the cases Par⊎𝑙 vs Par⊎𝑟 and Par⊎𝑟 vs ∅1 only hold up to 𝐸.
E.g., ∅ ∅1← ∅ ⋆ 𝜆𝑥.𝑀 ⊎𝑁 −→⊎𝑟−→2

∅1
∅ ⊎ ∅.

3. Confluence is obtained combining the previous points with Lemma 3.3 and Theo-
rem 3.6, following [15].

4. The Intersection Type Assignment System
Intersection types are an extension of Curry’s simple type assignment system to untyped
𝜆-terms, obtained by adding new types 𝜎∧𝜎′ to be assigned to terms that have both type
𝜎 and 𝜎′. Intersection type assignment systems form a whole family in the literature; see
[19] part III. What all these families have in common is that intersection types embody a
sort of ad hoc polymorphism, in which the conjunction of semantically unrelated types
can be contemplated. An advantage is having the ability to assign two different types
to two distinct occurrences of a variable, which allows more terms to be typed, thus
enlarging the class of terms that can be typed by Curry’s type discipline.

In building an intersection type discipline for 𝜆𝑆𝑄𝐿, we actually do not extend the
system in [1] (i.e., we do not consider a type theory with subtyping in the BCD fashion,
[20]). In fact, we present a syntax-directed type assignment system, without subtyping,
to type tables and operations of merging tables, by specializing the generic monad 𝑇 to
the multiset monad (the semantical understanding of this will be the focus of a companion
paper). Specifically, we adapt strict intersection type theory as in [21, 22] to the case
of 𝜆𝑆𝑄𝐿, meaning that the introduction of intersection is restricted merely to values.
We introduce two sorts of types corresponding to the two sorts of terms in Definition
2.1, and a third kind, called blind types, inspired by [23], typing particular occurrences



of values. The choices to avoid subtyping, and hence the proof of a generation lemma
(also named ’inversion lemma’, typical lemma needed in intersection type disciplines
with subtyping, see [19]), and to introduce a third layer of types, the blind types ones,
that at this stage are pleonastic, have been made to smoothly move in a future step to
a quantitative version of the present type system obtained via non-idempotent, strict
intersection [24].

Definition 4.1 (Intersection Types Syntax). Let 𝛼 range over a countable set of type
variables (the atoms); then we define three sorts of types by mutual induction as follows:

ValType : 𝛿 ::= 𝛼 | 𝛿 → 𝜏 |
⋀︀

𝑛≥0 𝛿 | ⟨⟨𝜏⟩⟩ (value types)

ComType : 𝜏 ::= [𝛿] | ∅̂ | 𝜏 ⊎ 𝜏 (computation types)

BlindType : 𝜉 ::= ∧∅ −→ 𝜏 (blind types)

We assume that ∧ and ⊎ take precedence over −→ and that −→ associates to the right,
so that 𝛿 −→ 𝜏 ∧ 𝜏 ′ reads as 𝛿 −→ (𝜏 ∧ 𝜏 ′), and 𝛿 −→ 𝜏 ⊎ 𝜏 ′ reads as 𝛿 −→ (𝜏 ⊎ 𝜏 ′). We note
the empty intersection as ∧∅.

We introduce the emptyset type ∅̂, as a constant, and should not be mistaken as
the symbol for an empty union. As for the terms, we equip computational types in
Definition 4.1 with an equational theory stating the commutativity of union and the
idempotency of the emptyset type ∅̂ w.r.t. the union of types. We then introduce for
all the computational types 𝜏 a boolean predicate emptyin(𝜏), that is true if and only
if ∅̂ ∈ 𝜏 . In such a way, we can speak of canonical form of computational types for
𝜆SQL: it is easy to see that for every 𝜏 ∈ ComType there exists a canonical form (up to
commutativity of union)

⨄︀
𝑛≥0[𝛿𝑖]⊎ ∅̂ if emptyin(𝜏), or

⨄︀
𝑛>0[𝛿𝑖], otherwise. These forms

will be used in type assignment systems to clarify and handle generic computational
types when needed.

Type Assignment System. We are now in place to introduce the type assignment
system for 𝜆𝑆𝑄𝐿.

Definition 4.2 (Type assignment). A basis is a finite set of typings Γ = {𝑥1 : 𝛿1, . . . 𝑥𝑛 : 𝛿𝑛}
with pairwise distinct variables 𝑥𝑖, whose domain is the set 𝐷𝑜𝑚(Γ) = {𝑥1, . . . , 𝑥𝑛}. A
basis determines a function from variables to types such that Γ(𝑥) = 𝛿 if 𝑥 : 𝛿 ∈ Γ, Γ(𝑥)
is the empty intersection ∧∅, otherwise.

A judgment is an expression of either shapes: Γ ⊢ 𝑉 : 𝛿 or Γ ⊢𝑀 : 𝜏 . It is derivable
if it is the conclusion of a derivation according to the rules in Figure 1.

The blind types to which we are taking inspiration are the ones presented by Kesner
et al. in [23, 25] to grant strong normalization even in the presence of terms whose
occurrences will all be erased during computation. The intersection types discipline
assigns to terms being erased ∧∅ and therefore the terms would not be typed, not
capturing their divergence. Instead, we type them with a blind type, which states that
the term will not receive at runtime any input to be used and it can return any output.



𝑥 : 𝛿 ∈ Γ
(Ax)

Γ ⊢ 𝑥 : 𝛿
(Ax∅)

⊢ ∅ : ∅̂

Γ ⊢𝑀 : 𝜏
(⟨⟨·⟩⟩ I)

Γ ⊢ ⟨⟨𝑀⟩⟩ : ⟨⟨𝜏⟩⟩

Γ ⊢ 𝑉 : ⟨⟨𝜏⟩⟩
(⟨⟨·⟩⟩ E)

Γ ⊢ !𝑉 : 𝜏

Γ ⊢𝑀 : 𝜏
(−→ I)

Γ ⊢ 𝜆𝑥.𝑀 : Γ(𝑥) −→ 𝜏

Γ ⊢ 𝜆𝑥.𝑀 : 𝜉
(𝐵𝑙𝑖𝑛𝑑)

Γ ⊢ 𝜆𝑥.𝑀 : ∧∅
(Γ ⊢ 𝑉 : 𝛿𝑖)𝑖=1,...,𝑛

(∧𝐼)

Γ ⊢ 𝑉 :
𝑛⋀︁

𝑖=1
𝛿𝑖

Γ ⊢ 𝑉 : 𝛿
(𝑢𝑛𝑖𝑡 I)

Γ ⊢ [𝑉 ] : [𝛿]

Γ ⊢𝑀 : 𝜏 Γ ⊢ 𝑁 : 𝜏 ′

(⊎ I)
Γ ⊢𝑀 ⊎𝑁 : 𝜏 ⊎ 𝜏 ′

Γ ⊢𝑀 :
⨄︁

𝑛>0
[𝛿𝑖]

⨄︁
𝑚≤1

∅̂ Γ ⊢ 𝑉 :
⋀︁

𝑛>0
𝛿𝑖 −→ 𝜏𝑖

(⋆ I)
Γ ⊢𝑀 ⋆ 𝑉 :

⨄︁
𝑛>0

𝜏𝑖

⨄︁
𝑚≤1

∅̂

Γ ⊢𝑀 : ∅̂ Γ ⊢ 𝑉 : ∧∅
(⋆∅ I)

Γ ⊢𝑀 ⋆ 𝑉 : ∅̂

Figure 1: Intersection types assignment system.

The union operator for types is introduced just for computations as regulated in rule
(⊎ I). The introduction of bind is split in two, depending on the cases in which the type
associated with the computation is just an empty union type or not. In fact, in the case
of (⋆∅ I) we explicitly ask for the value to have an empty intersection to deal with the
case the computation has just the empty union type. The rule (⋆ I), instead, takes care
of the case in which the computation has non empty union type (𝑛 is strictly greater
than 0) and possibly the empty union type (this is the meaning of

⨄︀
𝑚≤1 ∅̂); in such a

case, the empty union type, if it is in the premise, is propagated to the resulting type.

Results. We are now in place to state the main results of the presented type system.

Theorem 4.3 (Subject Reduction). If Γ ⊢𝑀 : 𝜏 and 𝑀 −→ 𝑁 , then Γ ⊢ 𝑁 : 𝜏 .

Theorem 4.4 (Subject Expansion). If Γ ⊢ 𝑁 : 𝜏 and 𝑀 −→ 𝑁 , then Γ ⊢𝑀 : 𝜏 .

The above theorems state two results: the first is the subject reduction, a desirable
property for all type systems. The second property, the subject expansion, on the other



hand, is typical of intersection types and the key to proving characterisation results. This
property, indeed, states that the type of a term is preserved even going backwards in its
reduction.

5. Conclusions
In the present work, we have introduced a computational 𝜆-calculus 𝜆SQL as an extension of
the computational core 𝜆© [1]. We have proved the confluence of the calculus and presented
an intersection type assignment system enjoying subject reduction and expansion.

We leave for future works the full characterization of convergent terms, via soundness
and completeness of the type system, plus a deep investigation on the semantical level
via a filter model construction as in [26].

Related works. As mentioned in the Introduction, 𝜆SQL stems from NRC𝜆 calculus in [9].
The first calculus is an example of nested, higher-order relational calculus that provides
a principled foundation for integrating database queries into programming languages. In
NRC𝜆, a database table is represented by the multiset of its rows, where each row is just
a value (NRC𝜆 has tuples). The main properties of the calculus are that it is confluent
and strongly normalizing and, moreover, some normal forms can be directly interpreted
as SQL queries (those such that the types of the free variables and of the result are just
tables of base types and not tables of tables). In particular, the set of rewriting and
equational rules that our calculus inherits from the NRC𝜆-calculus is the minimal set
that grants the previous properties.

In designing our type system, we were deeply influenced by the desire to reach a
quantitative type system for 𝜆SQL, and in doing so we took inspiration from [24, 13], since
our splitting rules in the presence/absence of the empty union type are reminiscent of
the persistent/consuming rules in the cited works.

We find that our calculus and type system have substantial connections with dependent
type systems, even if not yet explored in detail. This is the case with the intuition
borrowed from [15] in proving confluence and with [27] where a dependent intersection
type system is presented. Linking our types to the last cited work, it is easy to notice
that our types stand to that system as the lists stand to the natural numbers, where the
bind in fact is the iterator. As said, we leave a deepening of these insights for future
work.

Long-term perspectives. Considering the structure of the present work, we set two
long-term goals. The first is related to the confluence proof based on decreasing diagrams
in Section 3, since the labelling extracts an order over reduction rules to design a
well-behaved normalizing strategy.

Concerning the type system, our idempotent intersection type one is just a mid-term
objective, since we are interested in defining an appropriate intersection type system based
on tight multi-types [28] to capture quantitatively the set of terminating queries according
to strategy extracted from the confluence proof. Such non-idempotent type systems have



been proven to be useful in detecting the length of normalizing reductions and the size of
the normal forms, which in our case is the size of the computed SQL queries, via the type
system itself. As a result, extending such non-idempotent intersection type disciplines
for 𝜆𝑆𝑄𝐿 should capture even more quantitative, computational information about the
queries themselves.

Acknowledgments
We would like to thank th reviewers for taking the necessary time and effort to review
the manuscript. We sincerely appreciate all your valuable comments and suggestions,
which helped us in improving the quality of the manuscript.

References
[1] U. de’Liguoro, R. Treglia, The untyped computational 𝜆-calculus and its intersection

type discipline, Theor. Comput. Sci. 846 (2020) 141–159. URL: https://doi.org/10.
1016/j.tcs.2020.09.029. doi:10.1016/j.tcs.2020.09.029.

[2] C. Faggian, G. Guerrieri, U. de’ Liguoro, R. Treglia, On reduction and normalization
in the computational core, Mathematical Structures in Computer Science 32 (2022)
934–981. doi:10.1017/S0960129522000433.

[3] E. Moggi, Computational lambda-calculus and monads, in: Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), IEEE Computer
Society, 1989, pp. 14–23. doi:10.1109/LICS.1989.39155.

[4] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1991) 55–92.
doi:10.1016/0890-5401(91)90052-4.

[5] G. D. Plotkin, J. Power, Notions of computation determine monads, in: FOSSACS
2002, volume 2303 of Lecture Notes in Computer Science, Springer, 2002, pp. 342–356.
URL: https://doi.org/10.1007/3-540-45931-6_24. doi:10.1007/3-540-45931-6\
_24.

[6] G. D. Plotkin, J. Power, Algebraic operations and generic effects, Appl. Categorical
Struct. 11 (2003) 69–94. doi:10.1023/A:1023064908962.

[7] A. Filinski, Representing monads, in: H. Boehm, B. Lang, D. M. Yellin (Eds.),
Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, Oregon, USA, January 17-21,
1994, ACM Press, 1994, pp. 446–457. URL: https://doi.org/10.1145/174675.178047.
doi:10.1145/174675.178047.

[8] P. B. Levy, Call-by-push-value: A subsuming paradigm, in: Typed Lambda Calculi
and Applications, 4th International Conference (TLCA’99), volume 1581 of Lecture
Notes in Computer Science, 1999, pp. 228–242. URL: https://doi.org/10.1007/
3-540-48959-2_17. doi:10.1007/3-540-48959-2\_17.

[9] W. Ricciotti, J. Cheney, Strongly normalizing higher-order relational queries, in:
5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), 2020, pp. 28:1–

https://doi.org/10.1016/j.tcs.2020.09.029
https://doi.org/10.1016/j.tcs.2020.09.029
http://dx.doi.org/10.1016/j.tcs.2020.09.029
http://dx.doi.org/10.1017/S0960129522000433
http://dx.doi.org/10.1109/LICS.1989.39155
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1023/A:1023064908962
https://doi.org/10.1145/174675.178047
http://dx.doi.org/10.1145/174675.178047
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
http://dx.doi.org/10.1007/3-540-48959-2_17


28:22. URL: https://doi.org/10.4230/LIPIcs.FSCD.2020.28. doi:10.4230/LIPIcs.
FSCD.2020.28.

[10] M. Coppo, An extended polymorphic type system for applicative languages, in:
P. Dembinski (Ed.), Mathematical Foundations of Computer Science 1980 (MFCS’80),
Proceedings of the 9th Symposium, Rydzyna, Poland, September 1-5, 1980, volume 88
of Lecture Notes in Computer Science, Springer, 1980, pp. 194–204. URL: https:
//doi.org/10.1007/BFb0022505. doi:10.1007/BFb0022505.

[11] V. Bono, M. Dezani-Ciancaglini, A tale of intersection types, in: H. Hermanns,
L. Zhang, N. Kobayashi, D. Miller (Eds.), LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
ACM, 2020, pp. 7–20. URL: https://doi.org/10.1145/3373718.3394733. doi:10.1145/
3373718.3394733.

[12] U. de’Liguoro, R. Treglia, Intersection types for a 𝜆-calculus with global store, in:
N. Veltri, N. Benton, S. Ghilezan (Eds.), PPDP 2021: 23rd International Symposium
on Principles and Practice of Declarative Programming, Tallinn, Estonia, September
6-8, 2021, ACM, 2021, pp. 5:1–5:11. URL: https://doi.org/10.1145/3479394.3479400.
doi:10.1145/3479394.3479400.

[13] S. Alves, D. Kesner, M. Ramos, Quantitative global memory 13923
(2023) 53–68. URL: https://doi.org/10.1007/978-3-031-39784-4_4. doi:10.1007/
978-3-031-39784-4\_4.

[14] V. van Oostrom, Confluence by decreasing diagrams, Theor. Comput. Sci. 126
(1994) 259–280. URL: https://doi.org/10.1016/0304-3975(92)00023-K. doi:10.1016/
0304-3975(92)00023-K.

[15] A. Assaf, G. Dowek, J.-P. Jouannaud, J. Liu, Untyped Confluence In Dependent
Type Theories (2016). URL: https://inria.hal.science/hal-01515505.

[16] Terese, Term rewriting systems, volume 55 of Cambridge tracts in theoretical com-
puter science, Cambridge University Press, 2003.

[17] V. van Oostrom, Confluence by decreasing diagrams converted, in: Rewriting
Techniques and Applications, 19th International Conference, RTA 2008„ volume
5117 of Lecture Notes in Computer Science, Springer, 2008, pp. 306–320. doi:10.
1007/978-3-540-70590-1_21.

[18] F. Baader, T. Nipkow, Term rewriting and all that, Cambridge University Press,
1998.

[19] H. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with Types, Perspectives
in Logic, Cambridge University Press, 2013. doi:10.1017/CBO9781139032636.

[20] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model and the
completeness of type assignment, Journal of Symbolic Logic 48 (1983) 931–940.
doi:10.2307/2273659.

[21] S. van Bakel, Intersection Type Disciplines in Lambda Calculus and Applicative
Term Rewriting Systems, Ph.D. thesis, Department of Computer Science, University
of Nijmegen, 1993.

[22] S. van Bakel, Strict intersection types for the lambda calculus, ACM Comput. Surv.
43 (2011) 20:1–20:49. URL: https://doi.org/10.1145/1922649.1922657. doi:10.1145/
1922649.1922657.

https://doi.org/10.4230/LIPIcs.FSCD.2020.28
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.28
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.28
https://doi.org/10.1007/BFb0022505
https://doi.org/10.1007/BFb0022505
http://dx.doi.org/10.1007/BFb0022505
https://doi.org/10.1145/3373718.3394733
http://dx.doi.org/10.1145/3373718.3394733
http://dx.doi.org/10.1145/3373718.3394733
https://doi.org/10.1145/3479394.3479400
http://dx.doi.org/10.1145/3479394.3479400
https://doi.org/10.1007/978-3-031-39784-4_4
http://dx.doi.org/10.1007/978-3-031-39784-4_4
http://dx.doi.org/10.1007/978-3-031-39784-4_4
https://doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1016/0304-3975(92)00023-K
https://inria.hal.science/hal-01515505
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1017/CBO9781139032636
http://dx.doi.org/10.2307/2273659
https://doi.org/10.1145/1922649.1922657
http://dx.doi.org/10.1145/1922649.1922657
http://dx.doi.org/10.1145/1922649.1922657


[23] D. Kesner, P. Vial, Consuming and persistent types for classical logic, in: H. Her-
manns, L. Zhang, N. Kobayashi, D. Miller (Eds.), LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, ACM, 2020, pp. 619–632. URL: https://doi.org/10.1145/3373718.3394774.
doi:10.1145/3373718.3394774.

[24] D. Kesner, A. Viso, Encoding tight typing in a unified framework, in: F. Manea,
A. Simpson (Eds.), 30th EACSL Annual Conference on Computer Science Logic, CSL
2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 27:1–27:20.
URL: https://doi.org/10.4230/LIPIcs.CSL.2022.27. doi:10.4230/LIPIcs.CSL.2022.
27.

[25] D. Kesner, P. Vial, Non-idempotent types for classical calculi in natural deduc-
tion style, Log. Methods Comput. Sci. 16 (2020). URL: https://doi.org/10.23638/
LMCS-16(1:3)2020. doi:10.23638/LMCS-16(1:3)2020.

[26] U. de’Liguoro, R. Treglia, From semantics to types: The case of the imperative
𝜆-calculus, Theor. Comput. Sci. 973 (2023) 114082. URL: https://doi.org/10.1016/j.
tcs.2023.114082. doi:10.1016/j.tcs.2023.114082.

[27] U. D. Lago, M. Gaboardi, Linear dependent types and relative completeness, Log.
Methods Comput. Sci. 8 (2011). URL: https://doi.org/10.2168/LMCS-8(4:11)2012.
doi:10.2168/LMCS-8(4:11)2012.

[28] B. Accattoli, S. Graham-Lengrand, D. Kesner, Tight typings and split bounds,
fully developed, J. Funct. Program. 30 (2020) e14. URL: https://doi.org/10.1017/
S095679682000012X. doi:10.1017/S095679682000012X.

https://doi.org/10.1145/3373718.3394774
http://dx.doi.org/10.1145/3373718.3394774
https://doi.org/10.4230/LIPIcs.CSL.2022.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2022.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.23638/LMCS-16(1:3)2020
https://doi.org/10.23638/LMCS-16(1:3)2020
http://dx.doi.org/10.23638/LMCS-16(1:3)2020
https://doi.org/10.1016/j.tcs.2023.114082
https://doi.org/10.1016/j.tcs.2023.114082
http://dx.doi.org/10.1016/j.tcs.2023.114082
https://doi.org/10.2168/LMCS-8(4:11)2012
http://dx.doi.org/10.2168/LMCS-8(4:11)2012
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
http://dx.doi.org/10.1017/S095679682000012X

	1 Introduction to the Calculus: Syntax and Reduction Relation
	2 Syntax and Reduction
	3 Route to Confluence
	4 The Intersection Type Assignment System
	5 Conclusions

