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Abstract
In this paper we consider the weighted 𝑘-Hamming and 𝑘-Edit distances, that are natural generalizations

of the classical Hamming and Edit distances. As main results of this paper we prove that for any 𝑘 ≥ 2
the DECIS-𝑘-Hamming problem is P-SPACE-complete and the DECIS-𝑘-Edit problem is NEXPTIME-

complete. In our formulation, weights are included in the instance description and the cost is not

uniform.
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1. Introduction

Measuring how dissimilar two strings are from each other, is a task that occurs often and

which has great importance in various practical fields, such as biometric recognition and

the study of DNA, up to spell checking. A formal treatment of the problem passes through

the definition of a notion of distance between strings. Numerous distance functions have

been proposed and studied from a computational point of view in the literature, based on

the idea of measuring the minimum number of modification operations, chosen in a given

set of admissible operations, necessary to transform one string into another one: two of the

best known are certainly the Edit distance and the Hamming distance, but since 1950 other

distances have been introduced and scientific studies have been carried on (cf. for instance

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]). String similarity is therefore

a classical topic in computer science but still some relevant problems remain open, such as to

find a polynomial time algorithm for the edit distance with swaps and non uniform cost on

all operations including swaps (cf. [23]). In [19] some partial results on this forty-year open

problem are given.

In this paper we consider, among others, an operation that replaces two consecutive characters

with other two ones. Clearly this kind of operation includes the swap operation. We will discuss

more details on this subject in Section 4.
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In this framework, measuring how similar two strings are is then formalized as an optimization

problem, i.e. minimizing the amount of operations to transform one into the other one. It is

quite useful to also consider the decision version of such problem, in the following way: in any

instance there are two words together with a natural number ℎ and we ask whether or not the

two given words have a distance (Hamming, edit or another one) that is smaller than or equal

to ℎ.

Previous approach could seem well formalized but there is something hidden: is the descrip-

tion (i.e. the cost of each operation) of the distance (Hamming, edit or another one) included
inside the instances of the problem or the description of the distance has to be considered as

a constant that can vary depending on the problem but that should not be considered in the

asymptotic analysis of the algorithms that solve the problems? Usually the second approach

is the one that seems preferred in literature. For instance we say that the complexity of the

classical algorithm for the edit distance is 𝑂(𝑛𝑚), where 𝑛 and 𝑚 are the lengths of the two

strings.

On the contrary something different happens in some cases. In [21] it is proved that including

the description of a special distance inside the instances gives rise to an NP-hard problem,

whilst much later it has been proved that there is a polynomial-time algorithm for the same

problem, when the size of the description of the distance is considered as a constant [7, 15]. The

interested reader can see [7] and references therein for more details.

In this paper we study the problems of computing the 𝑘-Hamming and the 𝑘-Edit distances,

for 𝑘 ≥ 2, in the first setting, i.e. we suppose that the description of the distance, that includes

all costs of all operations, is a part of the instances. The study of these problems following the

second approach is still open, as discussed in Section 4.

In Section 2 we introduce our notation and some formal definitions. Section 3 is devoted to

prove that, for 𝑘 ≥ 2, the decision problems of computing the 𝑘-Hamming (DECIS-𝑘-Hamming)

and the 𝑘-Edit (DECIS-𝑘-Edit) are, respectively, P-SPACE-complete and NEXPTIME-complete.

To do so, we follow the same strategy for both problems because, in such a way, the proofs

are more natural and easier to follow. First we prove the results for 𝑘 = 3, using polynomial

time reductions from any 𝐿 ∈ P-SPACE to DECIS-3-Hamming and from any 𝐿 ∈ NEXPTIME

to DECIS-3-Edit, and straightforwardly extend them to larger values of 𝑘. Then we reduce (in

polynomial time) the problems with 𝑘 = 3 to the respective problems with 𝑘 = 2, proving

the results also for these cases. Section 4 concludes the paper foreshadowing possible research

developments.

2. Preliminaries

Given a finite alphabet Σ of cardinality 𝜎, a string over Σ is a sequence 𝑤 = 𝑤1𝑤2 . . . 𝑤𝑛, with

𝑤𝑖 ∈ Σ, for any 1 ≤ 𝑖 ≤ 𝑛. The number of characters composing a string 𝑤 is called its length,

denoted by |𝑤| = 𝑛. The string of length 0, also called the empty string, is indicated by 𝜖.
We denote by Σ* the set of all strings on Σ and by Σ𝑛

the set of all strings of length 𝑛 in Σ*.
Trivially 𝜖 ∈ Σ*, for any Σ. String 𝑥 is a substring of string 𝑤 if there exist 𝑢 and 𝑣 such that it

is possible to write 𝑤 as the concatenation of 𝑢, 𝑥 and 𝑣 i.e., such that 𝑤 = 𝑢𝑥𝑣. The empty

string is a substring of any string.



Given a string 𝑣, it is possible to define a set 𝑂𝑝 = {𝑜 : Σ* → Σ*} of operations that allow

to modify it in a new string 𝑤. Some well-studied subsets of operations are the edit operations:

Definition 1. Given a string 𝑣 ∈ Σ*, we define:

• Insertion (I, 𝜖 → 𝑎) allows to insert a character 𝑎 ∈ Σ in a position 𝑖 of 𝑣, i.e. 𝑤 =
𝑣1 . . . 𝑣𝑖−1𝑎𝑣𝑖 . . . 𝑣|𝑣|;

• Deletion (D, 𝑎 → 𝜖) is the removal of character 𝑎 = 𝑣𝑖 in 𝑣, i.e. 𝑤 =
𝑣1 . . . 𝑣𝑖−1𝑣𝑖+1 . . . 𝑣|𝑣|;

• Substitution (S, 𝑎 → 𝑏) replaces character 𝑎 = 𝑣𝑖 in 𝑣 with another character 𝑏 ∈ Σ in

the same position, i.e. 𝑤 = 𝑣1 . . . 𝑣𝑖−1𝑏𝑣𝑖+1 . . . 𝑣|𝑣|.

We describe here another operation that allows to define some more distances.

Definition 2. Given a string 𝑣 ∈ Σ*, we define 𝑘-Substitutions as follow: 𝑘-Substitution
(𝑘S, 𝑎1 . . . 𝑎𝑘 → 𝑏1 . . . 𝑏𝑘) allows substitutions of 𝑘 consecutive characters all at once.

It replaces in 𝑣 the substring 𝑎1 . . . 𝑎𝑘 = 𝑣𝑖 . . . 𝑣𝑖+𝑘−1 with 𝑏1 . . . 𝑏𝑘, i.e. 𝑤 =
𝑣1 . . . 𝑣𝑖−1𝑏1 . . . 𝑏𝑘𝑣𝑖+𝑘 . . . 𝑣|𝑣|.

Obviously in Definition 2, 𝑘𝑆 is a generalization of the 𝑆 operations, e.g. 𝑆 = 𝑘𝑆 if 𝑘 = 1.

Notice also that the classical swap operation (see [23] for a formal definition) is a special

2-Substitution.

For the sake of readability, we henceforth use the notation 𝑂𝑝 = {𝐴1, . . . , 𝐴𝑚}, with

𝐴1, . . . , 𝐴𝑚 ∈ {𝐼,𝐷, 𝑘𝑆| 𝑘 ∈ Z+} to indicate that all the possible operations defined by each

𝐴𝑖 are in 𝑂𝑝, e.g. 𝑂𝑝 = {𝐼} allows all the insertions 𝜖 → 𝑎 with 𝑎 ∈ Σ.

At this point, we can define a cost function 𝛾 : 𝑂𝑝 → Z+
for each operation. That cost can

be constant or non uniform i.e. it can depend on the operation on which it is applied. More

general operations, that includes the ones considered in this paper, have been studied in [19,

Section 4].

Notice that, from a formal point of view, all the above operations should have as parameters

the positions where they are applied, even if their cost does not depend on them. However, we

prefer to not be strictly formal in order to improve the readability of the text.

Definition 3. Let 𝑣, 𝑤 ∈ Σ* be two strings, 𝑂𝑝 be a set of operations defined on Σ*, 𝛾 be an

arbitrary cost function. If 𝑇 = 𝑡1𝑡2 . . . 𝑡𝑝 is a sequence of operations over 𝑂𝑝, the overall cost

of the sequence is:

𝛾(𝑇 ) =

𝑝∑︁
𝑖=1

𝛾(𝑡𝑖).

The distance between 𝑣 and 𝑤 is the minimum cost required to transform 𝑣 into 𝑤 through a

sequence of operations 𝑇 in 𝑂𝑝, i.e. if 𝑇 (𝑣) = 𝑡𝑝(. . . (𝑡2(𝑡1(𝑣))) . . .)

𝛿(𝑣, 𝑤) = min{𝛾(𝑇 ) | 𝑇 (𝑣) = 𝑤}. (1)

Depending on the set 𝑂𝑝 of operations we can define different distances.



Definition 4. The Edit distance between 𝑣 and 𝑤 is 𝛿(𝑣, 𝑤), considering 𝑂𝑝 = {𝐼,𝐷, 𝑆}.

The Edit distance is also formally known as Levenshtein distance, due to the work carried out

by Vladimir Levenshtein who introduced for the first time an algorithmic approach to calculate

this distance [14].

Definition 5 ([13]). We define Hamming distance between 𝑣 and 𝑤 𝛿(𝑣, 𝑤), when 𝑂𝑝 = {𝑆}.

Apart from the well-studied Edit Distance and Hamming Distance, it is possible to define

some other distances between strings such as the following ones, that are special cases of the

maximal generalization given in [19].

Definition 6 (2-Edit Distance). The 2-Edit distance between two strings 𝑣 and 𝑤 is the min-

imum cost to transform the string 𝑣 into 𝑤, 𝛿(𝑣, 𝑤), setting the set of admissible operations

𝑂𝑝 = {𝐼,𝐷, 𝑆, 2𝑆}.

Obviously, 2-Edit Distance is a direct extension of the previously defined Edit distance, with the

addition of the double substitution operation.

Last but not least we define the generalizations of 2-Edit and Hamming distances, the 𝑘-Edit

and 𝑘-Hamming distance, respectively, for an integer 𝑘 ≥ 2.

Definition 7 (𝑘-Edit Distance, 𝑘-Hamming Distance). Given two strings 𝑣 and 𝑤 and an

integer 𝑘 ≥ 2,

• the 𝑘-Edit distance between 𝑣 and 𝑤 is 𝛿(𝑣, 𝑤), with 𝑂𝑝 = {𝐼,𝐷, 𝑆, 𝑘S}.

• the 𝑘-Hamming distance between 𝑣 and 𝑤 is 𝛿(𝑣, 𝑤), with 𝑂𝑝 = {𝑘S}.

3. Complexity

3.1. DECIS-3-Hamming P-SPACE completeness

We prove in this section that DECIS-3-Hamming problem is P - SPACE-complete. DECIS-3-

Hamming contains all the strings encoding quadruples of the form < 𝑣,𝑤,𝐷, ℎ > where 𝑣
and 𝑤 are two strings on Σ𝑛

of the same length 𝑛, 𝐷 is an encoding string that describes the

weighted 3-Hamming distance we are considering, ℎ is an integer and 𝐷(𝑣, 𝑤) ≤ ℎ.

Hence, an instance 𝑥 =< (𝑣, 𝑤,𝐷, ℎ) > fits into DECIS-3-Hamming if and only if 𝐷(𝑣, 𝑤) ≤
ℎ. Therefore

DECIS-3-Hamming = {< (𝑣, 𝑤,𝐷, ℎ) >: 𝐷(𝑣, 𝑤) ≤ ℎ}.

In order to say that DECIS-3-Hamming is P-Space complete, we need to prove the two

following properties: a) DECIS-3-Hamming is in P-Space; b) for every language 𝐿 in P-Space

there exists a polynomial reduction from 𝐿 to DECIS-3-Hamming.

Theorem 1. DECIS-3-Hamming is in P-Space.



Proof. By a corollary to Savitch’s Theorem [24] we know that P-Space=NP-Space. Hence,

proving that the problem is in NP-Space will be enough to prove the Theorem.

We define a Nondeterministic Turing Machine 𝑁 that accepts the DECIS-3-Hamming lan-

guage in polynomial space, even in the worst case. 𝑁 starts with < 𝑣,𝑤,𝐷, ℎ > coded on its

tape and operates iteratively. In each loop, it non-deterministically chooses a substitution to

apply to the string, executes it and updates ℎ by subtracting the weight of the substitution just

chosen. 𝑁 exits the while loop when 𝑣 becomes equal to 𝑤 or ℎ is negative. In both cases it will

be possible to establish whether the given instance belongs to DECIS-3-Hamming. It is possible

to observe that the total occupied space is linear with respect to the length of the input strings,

hence DECIS-3-Hamming is in NP-SPACE, and, therefore, in P-SPACE.

1. begin
2. while 𝑣 ̸= 𝑤 ∧ ℎ ≥ 0
3. non-deterministically choose a substitution to apply;

4. apply the substitution to string 𝑣;

5. subtract the weight of the substitution from ℎ;

6. if 𝑣 == 𝑤 ∧ ℎ ≥ 0
7. ACCEPT
8. else
9. DO NOT ACCEPT
10. end

Algorithm 1: Algorithm followed by 𝑁 for solving DECIS-3-Hamming

□

Theorem 2. For each language 𝐿 in P-SPACE there is a polynomial time reduction from 𝐿 to
DECIS-3-Hamming.

Proof. If 𝐿 is in P-SPACE there exists a deterministic Turing machine

𝑀 =< 𝑄,Γ, 𝐵,Σ,Δ, 𝑞0, 𝐹 >

that stops on every input of size 𝑛 in 𝑂(𝑐𝑞(𝑛)) time and decides 𝐿 in polynomial space 𝑂(𝑝(𝑛)),
being 𝑐 a constant and 𝑝 and 𝑞 two polynomials.

We define 𝑀 ′ as the Turing Machine that accepts the DECIS-3-Hamming language. We define

an algorithm for mapping each instance 𝑥 in 𝐿 into an instance 𝑥′ =< (𝑣, 𝑤,𝐷, ℎ) >, such

that 𝑀 accepts 𝑥 if and only if 𝑀 ′ accepts 𝑥′. We formally define the parameters of instance 𝑥′

as follows.

• 𝑣 = $𝐵𝑝(𝑛)+1𝑞0𝑥𝐵
𝑝(𝑛)+1$, where $ /∈ Γ;

• 𝑤 = $𝐵𝑙$ with 𝑙 = 2𝑝(𝑛) + 𝑛+ 3;

• ℎ = min{𝑐𝑚 > 𝑐𝑞(𝑛) + 2𝑝(𝑛) + 4 + 𝑛}. This value of ℎ can be represented in base 𝑐
as the string obtained by the concatenation of 1 and 𝑚 times 0, with 𝑚 = ⌈log𝑐 𝑐𝑞(𝑛) +
2𝑝(𝑛) + 4 + 𝑛⌉.



The last parameter to define is the distance 𝐷. We note immediately that the description of

the distance is independent of 𝑥, therefore it is constant with respect to 𝑛. This distance is a

weighted 3-Hamming that assumes only two weights 1 and ℎ+ 1. To give the full description

of 𝐷 we would need to define the weight for all 3-substitutions. For each 𝑦 ∈ Γ the following

3-substitutions with cost 1 are produced:

• every transition Δ(𝑞ℎ, 𝑎) = (𝑞𝑗 , 𝑏, 𝑅) in 𝑀 produces 𝑦𝑞ℎ𝑎 → 𝑦𝑏𝑞𝑗 in 𝐷;

• every transition Δ(𝑞ℎ, 𝑎) = (𝑞𝑗 , 𝑏, 𝐿) in 𝑀 produces 𝑦𝑞ℎ𝑎 → 𝑞𝑗𝑦𝑏 in 𝐷;

• every transition Δ(𝑞ℎ, 𝐵) = (𝑞𝑗 , 𝑏, 𝑅) in 𝑀 produces 𝑦𝑞ℎ𝐵 → 𝑦𝑏𝑞𝑗 in 𝐷;

• every transition Δ(𝑞ℎ, 𝐵) = (𝑞𝑗 , 𝑏, 𝐿) in 𝑀 produces 𝑦𝑞ℎ𝐵 → 𝑞𝑗𝑦𝑏 in 𝐷.

In addition, the following 3-substitutions with cost 1 are added, for each 𝑞𝑠 ∈ 𝐹 and 𝑎, 𝑏 ̸= $,

with #𝑙,#𝑟 /∈ Γ.

• 𝑎𝑞𝑠𝑏 → #𝑙𝐵#𝑟

• 𝑎#𝑙𝐵 → #𝑙𝐵𝐵

• $#𝑙𝐵 → $𝐵𝐵

• 𝐵#𝑟𝑏 → 𝐵𝐵#𝑟

• 𝐵#𝑟$ → 𝐵𝐵$

This set of 3-substitutions is required if a 𝑞𝑠 ∈ 𝐹 appears on the simulated tape. In fact, it is

used to erase the entire tape. For the remaining undefined 3-substitutions we set the cost to

ℎ+ 1. □

It is possible to observe that the algorithm is polynomial.

Theorem 3. Let 𝑥 be an instance in 𝐿 ∈ P-SPACE, the transformation of 𝑥 in 𝑥′ just defined is a
reduction, i.e.

𝑥 ∈ 𝐿 ⇐⇒ 𝑥′ ∈ DECIS-3-Hamming.

Proof. Suppose first that 𝑥 ∈ 𝐿. This means that there exists a finite sequence of ID 𝛼1 . . . 𝛼𝑡

such that 𝛼1 = 𝑞0𝑥, for any 𝑖 < 𝑡 < 𝑐𝑞(𝑛) 𝛼𝑖 ⊢ 𝛼𝑖+1 and 𝛼𝑡 is a final ID. For each implication

from one ID to another one there is a corresponding transition rule which can be simulated by

a substitution of unit weight in the distance 𝐷, as previously described. Formally we match 𝛼1

to the string 𝑣 and at the end of the simulation we will have reached 𝛼𝑡 which will correspond

to a string 𝑣′ containing 𝑞𝑠. In this way we will be able to say that there exists a sequence

of substitutions of unitary weight in 𝐷 which, starting from 𝑣, allows us to arrive at 𝑣′ with

a total weight less than 𝑐𝑞(𝑛). Using, at this point, the substitutions of unitary weight that

cancel the symbols different from $ and 𝐵 around 𝑞𝑠 we will obtain the string 𝑤 = $𝐵𝑙$,

with 𝑙 = 2𝑝(𝑛) + 𝑛 + 3. In total, therefore, the cost of obtaining 𝑤 is less than or equal to

𝑐𝑞(𝑛) + 2𝑝(𝑛) + 𝑛+ 4 and therefore less than ℎ. So 𝑥′ ∈ DECIS-3-Hamming.

Let us prove now the converse. We do it by contraposition. If 𝑥 ̸∈ 𝐿 then there is no sequence

of transitions that can lead the initial ID to an ID in which a final state appears. In the simulation

using 3-substitutions, no sequence of substitutions of unitary weight can ever transform the



string 𝑣 into a string 𝑣′ containing a final state and therefore 𝑤 cannot be obtained. The only

way to get an accepting state on the tape would be to use a substitution costing ℎ+ 1. But in

this case the 3-Hamming distance between 𝑣 and 𝑤 will certainly be greater than ℎ, so 𝑥′ ̸∈
DECIS-3-Hamming. □

Theorem 4. Any DECIS-𝑘-Hamming, with 𝑘 ≥ 3, is P-SPACE-complete.

Proof. It is easy to observe that the previous proof can be used to demonstrate, by induction,

the P-SPACE-completeness of any DECIS-𝑘-Hamming problem, with 𝑘 ≥ 3, since: a) Algorithm

1 works for any DECIS-𝑘-Hamming; b) There exists a polynomial time reduction from DECIS-𝑘-

Hamming to DECIS-(𝑘 + 1)-Hamming (𝑘 ≥ 2). The reduction has just to pad input and target

string (to handle strings with length 𝑘 + 1) and to inhibit any (𝑘 + 1)-substitution that does

not represent a 𝑘-substitution. □

3.2. DECIS-2-Hamming P-Space-Completeness

In this section we prove that also DECIS-2-Hamming is P-Space Complete. We first define the

following set, for any 𝑘 ∈ Z+
and 𝑥, 𝑦 ∈ Σ𝑘

:

DECIS’-𝑘-Hamming = {< 𝑣,𝑤,𝐷, ℎ > |𝛿(𝑣, 𝑤) ≤ ℎ, 𝛾(𝑥 → 𝑦) ∈ {1, ℎ+ 1}}

Notice that the proof of P-Space-completeness of DECIS-3-Hamming holds for DECIS’-

3-Hamming, too. In fact we have that: a) DECIS’-3-Hamming is a special case of DECIS-3-

Hamming, thus the Algorithm 1 is valid; b) the reduction defined in Theorem 2 actually produces

instances of DECIS’-3-Hamming.

We can, therefore, state the following lemma.

Lemma 1. DECIS’-3-Hamming is P-Space-Complete.

It is also worth noting that an algorithm similar to Algorithm 1 can be defined for DECIS-2-

Hamming, thus:

Lemma 2. DECIS-2-Hamming ∈ P-Space.

Lemma 3. There is a reduction from DECIS’-3-Hamming to DECIS-2-Hamming.

Proof. It is possible to prove this reduction thanks to a technique which belongs to the folklore

of Information Theory and to Markov chains. This technique reduces the dependence of a

random variable on 𝑘 previous random variables, including itself, to just two random variables,

including itself, via a sliding window over a larger alphabet.

Let 𝑥 =< 𝑣,𝑤,𝐷, ℎ > be an instance in DECIS’-3-Hamming, we transform it into an instance

𝑥′ =< 𝑣′, 𝑤′, 𝐷′, ℎ′ > in DECIS-2-Hamming, where

• 𝑣′ = 𝑐1𝑐2 . . . 𝑐𝑛+1 is obtained from 𝑣 = 𝑎1𝑎2 . . . 𝑎𝑛, by:

– $-padding 𝑣, i.e. 𝑣 = 𝑏1𝑏2 . . . 𝑏𝑛+2 = $𝑣$;

– coding any symbol of 𝑣′ as a pair of consecutive symbols of 𝑣, obtained with a

sliding window of length 2 and stride 1, i.e. 𝑐𝑖 = (𝑏𝑖, 𝑏𝑖+1)



• 𝑤′ is constructed from 𝑤 in an analogous way;

• ℎ′ = 3ℎ;

• for each 3-substitution 𝑎𝑏𝑐 → 𝑑𝑒𝑓 , with 𝛾 = 1 in 𝐷, the following unit cost 2-

substitutions are added to 𝐷′:

– (𝑎𝑏)(𝑏𝑐) → 𝑆←(𝑎𝑏)(𝑑𝑒)𝑆
→
(𝑏𝑐)(𝑒𝑓);

– (𝑥𝑎)𝑆←(𝑎𝑏)(𝑑𝑒) → (𝑥𝑑)(𝑑𝑒), ∀𝑥 ∈ Σ ∪ {$}
– 𝑆→(𝑏𝑐)(𝑒𝑓)(𝑐𝑥) → (𝑒𝑓)(𝑓𝑥), ∀𝑥 ∈ Σ ∪ {$}

• any other 2-substitution has cost ℎ′ + 1

The algorithm is polynomial in the size of the input, indeed: a) |𝑣′| = |𝑣|+1 and |𝑤′| = |𝑤|+1;

b) coding ℎ′ = 3ℎ requires linear time; c) the algorithm increases the size of the alphabet with

a polynomial function and coding 𝐷′ requires 𝑂(|Σ′|2) steps.

Moreover, it is possible to observe that the algorithm is a reduction, i.e.:

𝑥 ∈ DECIS’-3-Hamming ⇐⇒ 𝑥′ ∈ DECIS-2-Hamming

Suppose 𝑥 ∈ DECIS’-3-Hamming, i.e. ∃𝑇 = 𝑡1 . . . 𝑡𝑘 𝑠.𝑡. 𝑇 (𝑣) = 𝑤, 𝛾(𝑇 ) ≤ ℎ, with each

𝑡𝑖 ∈ 𝐷. Then, ∃𝑇 ′ = 𝑡′1 . . . 𝑡
′
3𝑘 𝑠.𝑡. 𝑇 ′(𝑣′) = 𝑤′, 𝛾(𝑇 ′) ≤ ℎ′, with each 𝑡′𝑖 ∈ 𝐷′. 𝑇 ′ is obtained

by 𝑇 , by translating each 𝑡𝑖 into the corresponding sequence of 2-substitutions described by

the algorithm, thus

𝑥 ∈ DECIS’-3-Hamming ⇒ 𝑥′ ∈ DECIS-2-Hamming

Suppose 𝑥 /∈ DECIS’-3-Hamming, i.e. ∀𝑇 = 𝑡1 . . . 𝑡𝑘 𝑠.𝑡. 𝑇 (𝑣) = 𝑤, 𝛾(𝑇 ) > ℎ, with

each 𝑡𝑖 ∈ 𝐷. Since the algorithm, by construction, do not insert any 𝑆←(𝑎𝑏)(𝑑𝑒) or 𝑆→(𝑏𝑐)(𝑒𝑓)
symbols in 𝑤′, the only way to obtain 𝑤′ from 𝑣′ is to remove all these symbols from the

string, thus completing simulated (and legal) 3-substitutions in the input instance. Therefore,

∀𝑇 ′ 𝑠.𝑡. 𝑇 ′(𝑣′) = 𝑤′, 𝛾(𝑇 ′) > 3ℎ, thus

𝑥 /∈ DECIS’-3-Hamming ⇒ 𝑥′ /∈ DECIS-2-Hamming

□

These lemmas imply the following result.

Theorem 5. Decis-2-Hamming is P-Space-Complete.

3.3. DECIS-3-Edit NEXPTIME-completeness

We will now prove that DECIS-3-Edit distance is NEXPTIME-complete, that is: a) DECIS-3-

Edit ∈ NEXPTIME; b) ∀𝐿 ∈ NEXPTIME, there exists a polynomial time reduction from 𝐿 to

DECIS-3-Edit.

Theorem 6. DECIS-3-Edit ∈ NEXPTIME



Proof. We show a Nondeterministic Turing Machine 𝑁 that, given 𝑥 =< (𝑣, 𝑤,𝐷, ℎ) > in

input, accepts if and only if 𝐷(𝑣, 𝑤) < ℎ. 𝑁 acts as described in Algorithm 2.

1. begin
2. while 𝑣 ̸= 𝑤 ∧ ℎ ≥ 0
3. non-deterministically choose an edit operation 𝑜 to apply;

4. apply 𝑜 to string 𝑣;

5. subtract 𝛾(𝑜) from ℎ;

6. if 𝑣 == 𝑤 ∧ ℎ ≥ 0
7. ACCEPT
8. else
9. DO NOT ACCEPT
10. end

Algorithm 2: Algorithm followed by 𝑁 for solving DECIS-3-Edit

Since 𝛾 : Σ* × Σ* → Z+
, the algorithm performs at most ℎ = 𝑂(2𝑛) loops, each composed

by linear time operations. Thus, 𝑀 halts in an exponential time in 𝑛 and DECIS-3-Edit ∈
NEXPTIME. □

Theorem 7. ∀𝐿 ∈ NEXPTIME, there exists a polynomial time reduction from 𝐿 to DECIS-3-Edit

Proof. If 𝐿 ∈ NEXPTIME, there exists a Nondeterministic Turing Machine

𝑁 ′ =< 𝑄,Γ, 𝐵,Σ,Δ, 𝑞0, 𝐹 >

that recognizes if 𝑥 ∈ 𝐿 and stops within an exponential number of moves, i.e. if 𝑛 = |𝑥|, it

will halt after 2𝑝(𝑛) steps at most, where 𝑝(𝑛) is a polynomial function of 𝑛. The reduction

transforms any instance 𝑥 for 𝐿 in an instance 𝑥′ =< (𝑣, 𝑤,𝐷, ℎ) > for DECIS-3-Edit as

follows:

• 𝑣 = $𝑞0𝑥$, with $ /∈ Γ

• 𝑤 = $$

• ℎ = 5 * 2𝑝(𝑛) + 2 * (𝑛+ 1)

Finally, 𝐷 is defined in the following way:

1. any insertion has cost 𝛾 = ℎ + 1, with the exception of 𝜖 → 𝐵1 (being 𝐵1 /∈ Γ a new

blank symbol), that has cost 𝛾 = 1;

2. any deletion has cost 𝛾 = ℎ+ 1, with the exception of * → 𝜖, that costs 𝛾 = 1, where

* /∈ Γ is a new symbol used to delete the simulated tape after the acceptance of 𝑁 ′;

3. any substitution has cost 𝛾 = ℎ+ 1

4. any 3-substitution has cost 𝛾 = ℎ+ 1, with the following exceptions:

a) for each element of {< (𝑞, 𝑎), (𝑝, 𝑏, 𝑅) > |(𝑝, 𝑏, 𝑅) ∈ Δ(𝑞, 𝑎)}, with 𝑞 and 𝑝 state

symbols not in Γ and 𝑎, 𝑏 ∈ Γ:

i. 𝑞𝑎𝑥 → 𝑏𝑝𝑥, with ∀𝑥 ∈ Γ, has cost 𝛾 = 3;



ii. 𝑞𝑎$ → 𝑏𝑝$, with ∀𝑝 /∈ 𝐹 , has cost 𝛾 = 1;

iii. 𝑞𝑎$ → 𝑏𝑝$, with ∀𝑝 ∈ 𝐹 , has cost 𝛾 = 3;

b) for each element of {< (𝑞, 𝑎), (𝑝, 𝑏, 𝐿) > |(𝑝, 𝑏, 𝐿) ∈ Δ(𝑞, 𝑎)}, with 𝑞 and 𝑝 state

symbols not in Γ and 𝑎, 𝑏 ∈ Γ:

i. 𝑥𝑞𝑎 → 𝑝𝑥𝑏, with ∀𝑥 ∈ Γ, has cost 𝛾 = 3;

ii. $𝑞𝑎 → 𝑝$𝑏, with ∀𝑝 ∈ 𝑄, has cost 𝛾 = 1;

c) to simulate moves that require to expand the tape length behind |𝑥|, the following

3-substitutions have cost 𝛾 = 1:

i. 𝑞𝐵1$ → 𝑞𝐵$;

ii. 𝑝$𝐵1 → $𝑝𝐵;

d) to delete symbols and reach the target string $$ after the acceptance 𝑁 ′, with 𝑝 ∈ 𝐹
and 𝑎, 𝑏 ∈ Γ, the following 3-substitutions have cost 𝛾 = 1:

i. 𝑎𝑝𝑏 → #𝑙 *#𝑟;

ii. $𝑝𝑎 → $ *#𝑟;

iii. 𝑎𝑝$ → #𝑙 * $;

iv. $𝑝$ → $ * $;

v. 𝑎#𝑙* → #𝑙 * *;

vi. *#𝑟𝑎 → * *#𝑟;

vii. $#𝑙* → $ * *;

viii. *#𝑟$ → * * $.

The algorithm takes polynomial time 𝑞(𝑛): writing 𝑣 and 𝑤 requires linear time in 𝑛, while

coding 𝐷 would take 𝑂(|Γ|6). Moreover, it is actually a reduction, i.e.:

𝑥 ∈ 𝐿 ⇐⇒ 𝑥′ ∈ DECIS-3-Edit.

Suppose 𝑥 ∈ 𝐿. There exists a finite sequence of non-deterministic moves (and, therefore,

of IDs) that makes 𝑁 ′ accept 𝑥. It is easy to see that there is a corresponding sequence of

transformations that modifies 𝑣 and results in the string $𝑥𝑝𝑦$, with 𝑥, 𝑦 ∈ Γ* and 𝑝 ∈ 𝐹 . Each

3-substitution that simulates a 𝑁 ′ move has cost 𝛾 = 3, if it does not involve the $ symbol (or

if it ends in a final state symbol within the $ symbols), otherwise it has cost 𝛾 = 1 if it results

in one of the strings: $𝑥𝑝$ (𝑝 /∈ 𝐹 , 𝑥 ∈ Γ*), 𝑝$𝑥$ (𝑥 ∈ Γ*). In the latter cases 𝛾 has a reduced

value because the insertion of 𝐵1 (point 1) and a further 3-substitution are needed to obtain

a string that correctly represents the output ID. In any case, a move of 𝑁 ′ is simulated by a

sequence of transformation 𝑆, such that 𝛾(𝑆) = 3, and, therefore, a sequence of moves from

the initial ID to an accepting one can be simulated with a total cost 3 * 2𝑝(𝑛). At this point, a

sequence of 3-substitutions has to be applied to transform all the symbols within the two $ into

*. They are 𝑛+ 1 + 2𝑝(𝑛) at most and each 3-substitution adds one * at unitary cost. Thus, the

whole sequence has cost 𝛾 ≤ 𝑛+ 1 + 2𝑝(𝑛). Finally, the same cost is required by the sequence

of deletions that results in the string $$. Thus,

𝑥 ∈ 𝐿 ⇒ 𝛿($𝑞0𝑥$, $$) ≤ ℎ.

Suppose now 𝑥 /∈ 𝐿. Any 3-substitution that does not correspond to a legal move of 𝑁 ′,
or is part of it, has cost ℎ + 1, with the exception of those used to transform symbols into *



and they can be applied only when the simulated ID is an accepting one. The same holds for

deletion of * symbols. Thus, all the sequences of transformations from $𝑞0𝑥$ to $$ have cost

𝛾 > 𝑛+ 1 + 2𝑝(𝑛), i.e.:

𝑥 /∈ 𝐿 ⇒ 𝛿($𝑞0𝑥$, $$) > ℎ

□

Theorem 8. Any DECIS-𝑘-Edit, with 𝑘 ≥ 3, is NEXPTIME-complete.

Proof. The proof is analogue to that of Theorem 4. It is easy to demonstrate, by induction,

the NEXPTIME-completeness of any DECIS-𝑘-Edit problem, with 𝑘 ≥ 3, since: a) Algorithm 2

works for any DECIS-𝑘-Edit; b) There exists a polynomial time reduction from DECIS-𝑘-Edit to

DECIS-(𝑘 + 1)-Edit (𝑘 ≥ 2). Again, the reduction has to inhibit any (𝑘 + 1)-substitution not

representing a 𝑘-substitution. □

3.4. DECIS-2-Edit NEXPTIME-completeness

We now prove the NEXPTIME-completeness of DECIS-2-Edit. To prove that DECIS-2-Edit ∈
NEXPTIME, one can employ the same algorithm given in Section 3.3 (Algorithm 2). Instead of

explicitly showing that exists a polynomial time reduction from any problem in NEXPTIME

to DECIS-2-Edit, we show a polynomial time reduction from a NEXPTIME-complete problem.

Indeed, we proved in Section 3.3 the NEXPTIME-completeness of DECIS-3-Edit, but the same

proof actually holds for a restricted version of the problem, named DECIS’-3-Edit, where for

each instance < 𝑣,𝑤,𝐷, ℎ >: a) any insertion, deletion or substitution costs either 1 or ℎ+ 1;

b) 3-substitutions costs are limited to 1, 3 or ℎ+ 1.

Therefore, to prove the NEXPTIME-completeness of DECIS-2-Edit, it is sufficient to show a

reduction from DECIS’-3-Edit to it.

Theorem 9. There exists a polynomial time reduction from DECIS’-3-Edit to DECIS-2-Edit.

Proof. The reduction transforms any instance 𝑥 =< (𝑣, 𝑤,𝐷, ℎ) > for DECIS’-3-Edit in an

instance 𝑥′ =< (𝑣, 𝑤,𝐷′, 5ℎ) > for DECIS-2-Edit as follows:

1. if Σ is the alphabet of the input instance, Σ′ for the output instance is augmented by

adding the following new symbols:

a) 𝑆𝑖
(𝑎𝑏𝑐)(𝑑𝑒𝑓), ∀𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ Σ, 𝑖 ∈ {1, 2, 3};

b) the supporting symbol *;

2. for each 𝜖 → 𝑎 ∈ 𝐷 s.t. 𝛾(𝜖 → 𝑎) = 1, add 𝜖 → 𝑎, with 𝛾 = 5, in 𝐷′;

3. for each 𝑎 → 𝜖 ∈ 𝐷, s.t. 𝛾(𝑎 → 𝜖) = 1, add 𝑎 → 𝜖, with 𝛾 = 5, in 𝐷′;

4. for each 𝑎 → 𝑏 ∈ 𝐷 s.t. 𝛾(𝑎 → 𝑏) = 1, add 𝑎 → 𝑏, with 𝛾 = 5, in 𝐷′

5. for each 3-substitution 𝑎𝑏𝑐 → 𝑑𝑒𝑓 ∈ 𝐷 s.t. 𝛾(𝑎𝑏𝑐 → 𝑑𝑒𝑓) = 𝑘 ≤ ℎ, add the following

operations to 𝐷′:

a) 𝜖 → 𝑆1
(𝑎𝑏𝑐)(𝑑𝑒𝑓), with 𝛾 = 5𝑘 − 4;

b) 𝑎𝑆1
(𝑎𝑏𝑐)(𝑑𝑒𝑓) → 𝑑𝑆2

(𝑎𝑏𝑐)(𝑑𝑒𝑓), with 𝛾 = 1;

c) 𝑆2
(𝑎𝑏𝑐)(𝑑𝑒𝑓)𝑏 → 𝑒𝑆3

(𝑎𝑏𝑐)(𝑑𝑒𝑓), with 𝛾 = 1;



d) 𝑆3
(𝑎𝑏𝑐)(𝑑𝑒𝑓)𝑐 → 𝑓*, with 𝛾 = 1;

e) * → 𝜖, with 𝛾 = 1;

6. any other operation has cost 5ℎ+ 1 in 𝐷′.

The algorithm requires polynomial time. Source and target strings are unchanged, the limit ℎ
has to be multiplied by 5 and the size of the alphabet (and of 𝐷′) is increased by a polynomial

function: |Σ′| = 𝑂(|Σ|6).
We can observe that the algorithm is actually a reduction, i.e:

𝑥 ∈ DECIS’-3-Edit ⇐⇒ 𝑥′ ∈ DECIS-2-Edit

Suppose 𝑥 =< 𝑣,𝑤,𝐷, ℎ >∈ DECIS’-3-Edit, i.e. ∃𝑇 𝑠.𝑡. 𝑇 (𝑣) = 𝑤, 𝛾(𝑇 ) ≤ ℎ. Let

𝑇 = 𝑡1𝑡2 . . . 𝑡𝑛: it is possible to “simulate” each 𝑡𝑖 on 𝑥′ with a sequence of one or more

operations 𝑇 ′𝑖 at cost 𝛾(𝑇 ′𝑖 ) = 5 * 𝛾(𝑡𝑖). Insertions, deletions and substitutions require a single

operation, while, for 3-substitutions, the whole sequence of operations described at point 5 is

needed, with total cost of 5𝑘, where 𝑘 is the original 3-substitution cost. Therefore,

𝑥 =< 𝑣,𝑤,𝐷, ℎ >∈ DECIS’-3-Edit ⇒ 𝑥′ =< 𝑣,𝑤,𝐷′, 5ℎ >∈ DECIS-2-Edit

On the other hand, suppose 𝑥 =< 𝑣,𝑤,𝐷, ℎ >/∈ DECIS’-3-Edit. It can be observed that

each operation on 𝑥′ either:

• has cost larger than 5ℎ+ 1 and can not be part of an acceptable sequence;

• corresponds to an operation 𝑡𝑖 on 𝑥, with cost 5 * 𝛾(𝑡𝑖);
• is part of a 3-substitution simulation. Each step of the sequence can be executed only after

the previous and the first step introduces a symbol that can not be part of 𝑤′. The only

possibility to remove “exogenous” symbols is to apply all the operations in the sequence,

at cost 5 * 𝛾(𝑡𝑖), where 𝑡𝑖 is the simulated 3-substitution.

Therefore,

𝑥 =< 𝑣,𝑤,𝐷, ℎ >/∈ DECIS’-3-Edit ⇒ 𝑥′ =< 𝑣,𝑤,𝐷′, 5ℎ >/∈ DECIS-2-Edit

□

4. Conclusions

In this work we studied the computational complexity of the problems of computing the cost of

the 𝑘-Hamming and 𝑘-Edit distances, for 𝑘 ≥ 2, proving that the decision versions that include

the description of the distance as part of the instances are, respectively, P-SPACE-complete and

NEXPTIME-complete. Negative results as these ones are of theoretical relevance but can also

facilitate further researches, as discussed in the following.

We have some preliminary results, not included in this paper, for some special cases where

the size of the description of the distance is considered constant. For instance, we found a

polynomial time algorithm to compute the 2-Hamming distance when every operation has the

same constant cost.



It is an open problem to find the complexity of solving both problems as the lengths of the

two words increase when the distance is fixed, or, more generally, when the complexity is

further parameterized analogously as done in [7, 15] for the swap-insert correction distance.

This new open problem is thus connected with the forty-year open problem contained in

[23], since swap operations are special 2-Substitutions.

Our results suggest that if polynomial algorithms exist, they must non-polinomially depend

on some parameter such as the maximum of the ratio between all possible operations costs.
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