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Abstract

The notion of circular string attractor has been recently introduced by Mantaci et al. [TCS 2021]. It
consists of a set I of positions in a word such that each distinct circular factor has at least an occurrence
crossing one of the elements of I'... Its definition is an extension of the notion of string attractor by Kempa
and Prezza [STOC 2018], which has been introduced as a unifying framework for some dictionary-based
compressors.

In this paper, we present the first linear time algorithm to check whether a set is a circular string
attractor of a word w € {ai,...,as}" by using O(nlogn) bits of space. We further show that, for
each p > 0, the decision problem of having a circular string attractor of size < p is NP-complete. The
proof is obtained through a reduction from the analogous problem for string attractors, for which Kempa
and Prezza [STOC 2018] proved the NP-completeness. This reduction naturally leads to a new algorithm
for checking whether a set is a string attractor that, unlike one of the solutions proposed by Kempa et al.
[ESA 2018], it is independent from the size of the alphabet.
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1. Introduction

The notion of string attractor has been introduced by Kempa and Prezza [1] in the fields of
data compression and indexed data structures. Given an alphabet ¥ = {a1,aq,...,a,}, an
integer n > 0, and a word w € X", the string attractor of a word is a subset I' of positions in w
such that every distinct factor of w has at least one occurrence crossing a position in I'. The
measure v*, which counts the size of the smallest string attractor of a word, has been subject of
different combinatorial studies [2, 3, 4, 5, 6]. From an algorithmic perspective, given an integer
p > 0, it has been proved that the decision problem of finding a string attractor of size < p is
NP-complete [1, 7].

Later, Mantaci et al. [2] introduced the notion of circular string attractor: instead of considering
only the factors that occur within words, they further take into account the (circular) factors
that appear on some conjugate of the word, and they denote by « the corresponding size of a
smallest circular string attractor. They further proved that for every word w, while it holds that
the bound 7} (w) € O(y*(w)) is tight, the measure 7 can be asymptotically smaller than v*.

In this work, we present the first algorithm for checking if a set I'. is a circular string attractor
for a n-length word w. Such an algorithm operates in time O(n) using O(nlogn) bits. First we
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show the properties that the data structures used verify, then we use these results to prove the
correctness of the algorithm proposed. Later, we analyze the complexity of the decision problem
of finding a circular string attractor of a word w of size at most p > 0. This complexity is
obtained through a reduction from analogous problem on classical string attractor, leading to a
new algorithm for checking whether a set I' is a string attractor. Even if the bounds obtained are
analogous to those of one of the algorithms presented by [7], we use well-known and simpler
data structures widely used in combinatorial pattern matching, namely the Suffix Array and the
Longest Common Prefix Array.

2. Preliminaries

An alphabet ¥ is a set of elements called letters (or characters). We assume . to be finite, and
we denote by o = |X| its cardinality. A word (or string) w is a sequence of letters from ¥, and
its length is denoted by |w|. We denote with ¢ the empty word, that is the only word such that
le| = 0. We denote by :* the set of all words over X, by ¥ = ¥*\ {£} the set of all non-empty
words over ¥, and by ¥" = {w € ¥* | |w| = n} the set of all words of length n, for some
integer n > 0. We denote by alph(w) C ¥ the set of letters from X that occur in w.

For each pair i,j € [1,n], we denote by wli, j] the factor (or substring) of w starting at
position ¢ and ending at position j. Further, if i = 1 or j = n, then w[i, j] is called prefix or
suffix, respectively. Note that w[1,n| = w, and if i > j, we assume that w[i, j] = €. The set of
factors of a word w is denoted by F(w).

Given two words u,v € ¥*, if u = u[1]u[2] - - - u[|u|] and v = v[1]v[2] - - - v[|v]], the concate-
nation of v and v, denoted by w - v or simply uw, is the word u[1|u[2] - - - u[|u|] - v[1]v[2] - - - v[|v]].

If a total order on the elements of ¥ is defined, then we can induce different orders on words.
Given two words u, v € ¥*, we say that u < v if u is prefix of v, or there exists a word w and
two letters a < b € X such that wa and wb are prefixes of u and v respectively. We refer to this
order of the words as lexicographical order.

Given two words wi,we € X*, we say that wy is a conjugate (or cyclic rotation, or simply
rotation) of ws if there exist u,v € ¥* such that w; = uwv and wy = vu. We denote by R(w)
the set of rotations of the word w. Note that R(w1) = R(ws2) if and only if w; and wq are
respectively conjugate. A finite word w is then primitive if and only if |R(w)| = |w|, ie.,
when all rotations of w are distinct. A circular factor of a word w is a factor that occur in
at least one of the rotations of w. The set of all circular factors of a word w is denoted by
C(w) = Uyrenu F@).

The Suffix Array (SA) of a word w € X" is an array of length n such that w[SA[i], n] <
w[SA[j],n] for every 1 < i < j < n. The Inverse Suffix Array (ISA) is the inverse of SA, i.e.
ISA[i] = j if and only if SA[j] = i. Analogously, let CA be the Conjugate Array of a word w,
defined as:

CA[i] = j if w; = w[j,n]w[l, j — 1],

where wj is the ith rotation in lexicographical order.

Given two words u, v € ¥*, let £cp(u, v) be the the longest common prefix between u and v,
thatis cp(u, v) = ull, [lep(u, v)|] = v[1, [€ep(u, v)]|], but u[|lep(u, v)|+1] # v[[lep(u, v)|+1]
(assuming fcp(u, v) < min{|ul, |v|}). The Longest Common Prefix Array (LCP) of w € ¥™ is an




array of length n such that LCP[1] = 0 and LCP[i] = |ep(w[SA[i — 1], n], w[SA]i],n))|, where
1 <% < n. Analogously, we denote by LCP,. the circular Longest Common Prefix Array, defined
as follows:

0 ifi =0
|lep(wi—1,w;)| otherwise

LCP.[i] = {

A string attractor of a word w € X" is a set of y positions I' = {p1, ..., p,} such that every
factor w(i, j] has an occurrence w[i’, j'| = w[i, j] with p € [i’, j'], for some k € [1,~] [1]. We
denote by v*(w) the size of a smallest string attractor of a word w. Furthermore, we say that
an occurrence w|i, j| crosses a position p € I'if p € [i, j|, and symmetrically that p is crossed by
wli, .

Throughout the paper, we will show examples of the algorithms applied on the family of
finite Fibonacci words, which can be defined recursively as follows: fy = b, fi = a, and
fix1 = fi - fi—1, for all integer ¢ > 1.

3. Circular String Attractors

Analogously to the definition of string attractor, Mantaci et al. [2] extended such a notion in
order to capture factors that occur on the boundaries of a word.

Definition 1 Let w € X", for somen > 0. A setI'c = {j1,J2,...j.} € [1,n] is a circular
string attractor of w if each circular factor of w has at least a circular occurrence that crosses a
position of I'.. Moreover, we denote with v (w) the size of a smallest circular string attractor of
the word w.

Example 1 Let w = abbbcaaacaaa be a word over the alphabet > = {a,b,c}. The setT' =
{2,5, 8} is a string attractor for w, since it covers any of its factors, but it is not a circular string
attractor since the circular factor (in blue) caaaa escapes from it. On the other hand, the set
I'. ={1,4,9} is a circular string attractor for w = abbbcaaacaaa but it is not a string attractor.
In fact, the factor aaa (in blue), fully contained in w, is covered only if we consider its circular
occurrence crossing position 1.

From the definition, it easily follows that the sizes 7 of smallest circular string attractors of
conjugate words are equal [2].

The following lemma shows not only that v} (w) = ¥ (w™), for all w € ¥* and integer
m > 0, but that also the structures of the respective circular string attractors are related.

Lemma 1 Let w € ¥* be a finite word and I'. = {p1,p2,...,py.} € [1,|w]|]. Then, T is a
circular string attractor of w if and only if, for allm > 1 and for all d € [0, m — 1]7¢, the set
I’ = Ui {pi + dilwl} is a circular string attractor of w™.

Proof For the first direction, note that since the word w™ has period |w|, all circular factors of
length at most |w| which cross the position p; for some i € [1,~.] have another occurrence crossing
the position p; + d;|w|. For all the circular factors of w™ of length greater than |w|, for the same
argument we can find (at least) m circular occurrences through w™ at distance |w|, covering the




a a b a a b a b a a b a b
a a b a b a a b a a b a b
a a b a b a a b a b a a b
a b a a b a a b a b a a b
a b a a b a b a a b a a b
a b a a b a b a a b a b a
a b a b a a b a a b a b a
a b a b a a b a b a a b a
b a a b a a b a b a a b a
b a a b a b a a b a a b a
b a a b a b a a b a b a a
b a b a a b a a b a b a a
b a b a a b a b a a b a a

Figure 1: Matrix of the sorted rotations for the finite Fibonacci word fg = abaababaabaab. The
underlined positions correspond to the positions of a circular string attractor I'. = {12,13}. We
underline in the other rotations the corresponding positions.

whole word, and therefore these factors can be moved to every other occurrence of w where a
position from T falls.

For the second implication, by hypothesis the set I, is a circular string attractor of w™. Sym-
metrically to the previous direction, since the set of all circular factors of w™ of length at most |w|
corresponds to the set C(w), and each of these circular factors from C(w) is fully covered from the
elements in I, the thesis follows.

4. Checking the Circular Attractor Property in Linear Time

Given a word w of length n > 0, let us consider the matrix M(w) = {w1,...,w,} of the
rotations of w sorted in lexicographical order. For every factor u € C(w), we denote with Z,,
the set of rotations from M (w) starting with u, taken in lexicographical order. In order to
give a high-level view of how the algorithm works, let us consider the finite Fibonacci word
f6 = abaababaabaab. In Figure 1, it is shown the matrix of sorted rotations of fg and, for each
rotation, the positions of a circular string attractor described in [2]. One can verify that, for
each circular factor u € C( f), the rotations having u as prefix are consecutive, and at least one
of these prefixes crosses a position of the circular string attractor. Note that this is not a matter
of chance, since each occurrence of every circular factor is a prefix of a rotation.

For each u € C(w) \ {e}, let £, ry, with 1 < ¢, < r, < n, be the indices such that
Z, = {we,, we 41, - - -, wy, }. The following lemma summarises how to detect the indices ¢,
and r,, from the LCP, array.

Lemma 2 Letw € X", for somen > 0. The following hold:

1. 4, =1orLCP.[l,] < |ul;
2. ry =norlLCPr, +1] < |u

>



3. LCP.JK] > |u

Jforallk € [0, + 1,1y).

Proof For case 1., suppose {,, > 1. By contradiction, if LCP.[(,] > u, then also the rotation wy, 41
has u as prefix, which is a contradiction by hypothesis on 0.

Case 2. is treated symmetrically.

Case 3. follows by observing that all the rotations in Z,, are consecutive and share the same

prefix of length |u|. O

Given an ordered set I'. = {p1,p2,...,py.} and a word w € X", let succ. € {0,1,...,n —
1}™ be the array of circular distances of each position ¢ € [1,n] of w to the next position p in
I, that is:

p1—1 ifl<i<p
succe[i| =< pjp1 — ¢ ifp; <i<pjyr, foral je[l,v. —1]
(n—1)+p1 ifp,y <i.

Example 2 Let us consider the word w = abbabaa and the setI'. = {3,5,6} (the underlined
positions in w). Then, succ. = [2,1,0,1,0,0, 3].

By Lemma 1, we know that a set I'; is a circular string attractor for the word w™, where n > 1,
if and only if T, = U cp {(p — 1 mod |w|) + 1} is a circular string attractor of w. Thus,
we can assume that w is primitive, otherwise we can find its root w in linear time and check
whether the set I"/, obtained as just described is a circular string attractor of u.

Lemma 3 Letw € X" be a primitive word, and let T' C [1,n] be a set of positions in w, for some
n > 0. Then, I'; is a circular string attractor of w if and only if; for all u € C(w), there exists
i € [ly,ry) such that succ.[CA[i]] < |ul.

Proof For the first implication, if T'.. is a circular string attractor, then for each u € C(w) there
exists at least one occurrence that is crossed by a positionp € T'.. Leti € [{,,r,] be the index
of the rotation starting with such an occurrence of u. Thus, if we project the position from I'. in
the ith rotation, such a position falls at most at distance |u|, and therefore succ.[CA[i]] is at most
|u| — 1.

The other direction is treated symmetrically. In fact, by contradiction, if for all i € [ly,r,]
it holds that succ.[CA[i]] > |u|, then none of the occurrences of u crosses a position in I'¢, and
therefore it can not be a circular string attractor; contradiction. (]

Thus, in order to check whether a set I'. is a circular string attractor, we need to check if,
for all u € C(w), there exists i € [{,,7,] such that succ.[CA[i]] < |u|. In Algorithm 1 we
describe the designed procedure. We store in a stack S the ranges of lengths of the circular
factors left to cover, and proceeding by comparing in order the LCP, with the succ, array. We
use Lemma 2 to understand if we are still in the range [(,,, r,] without even knowing u, but
just by using the LCP, array (line 8). Note that this is legit since for all u, v € ¥* it holds that
[Cuvs Tuv] C [lu,Ty], i.e., we can not leave the range [¢,,, r,,] before checking if the factor uv
is covered within [{,,,, 7,,]. The consecutive lengths of the circular factors left to cover are
inserted as a pair (s,e) in S.

We can then obtain the following:




Algorithm 1: Algorithm for checking if a set I'. is a circular string attractor of a word
w

1 S < empty stack

2 succ. < computeCircSucc(w,I")

3 CA < computeConjugate Array(w)

4 LCP, < computeCircular LongestCommonPrefix Array(w)
5 fori € [1,n] do

6 if S is not empty then

7 (s,e) < S.pop()

8 if LCP.[i] < e then

9 ‘ return false

10 else

11 if LCP.[i] < succ.[CA[i]] then
12 if e = LCP.[i] then

13 ‘ S.push((s,succ.[CA[i]]))
14 else

15 L S.push((s,e))

16 if LCP.[i] w2 succ.[CA[i]] then S.push((LCP.[i] + 1,succ.[CA[i]]))
18 else

19 while S is not empty A succ.[CA[i]] < s do

20 L (s,e) « S.pop()

21 if s < succ.[CA[i]] then

22 L S.push((s, min{e, succ.[CA[i]]}))

23 else

24 | if LCP.[i] < succ[CAi]] then S.push((LCP.[i] + 1, succ.[CA[i]]))

(5]

25 if S is empty then
26 ‘ return true
27 else

28 L return false

Theorem 1 Given a primitive wordw € X" and a setT'. C [1, n], Algorithm 1 checks whether or
not the set I'. is a circular string attractor for w. Moreover, it runs in O(n) time using O(nlogn)
bits of space.

Proof The Conjugate Array CA can be computed in linear time [8]. The LCP, array can be
computed in linear time from CA [9, 10]. The main loop (line 5) is executed at most n. times. Further,
the inner loop in line 19 where we empty the stack S can be executed at most |\S| times in total.
Since we add at most one pair in S at each iteration of the main loop, it holds that the number of
elements in the stack is |S| = O(n), occupying at most O(n logn) bits of space. Thus, Algorithm 1
works in O(n) time using O(nlogn) bits of space and the thesis follows. O



Example 3 In Figure 2, we show the steps of Algorithm 1 applied to the 5th finite Fibonacci word
f5 = abaababa with the set I'. = {4,5}. The matrix of the sorted rotations is shown to give to
the reader a graphical interpretation of the procedure, however recall that we do not use it.

The stack S is initially empty, so at the iteration i = 1 we start to fill it with the lengths of the
prefixes of the first rotation in lexicographical order that need to cross a position from I',. Since
succ.[CA[1]] = 4, this means that all prefixes of the first rotation with length greater than 4 cross
a position from I'.. On the other hand, we can not say anything yet on the prefixes from length
1 to 4, which are a, aa, aab, and aaba. In fact, since LCP[1] = 0 < 4 = succ.[CA[1]], we push
into the stack S the pair (1,4) (line 24), as displayed in Subfigure 2a.

On the iteration i = 2, we pop from the stack the ranges of lengths (1,4), and we compare the
maximum (4) with LCP,[2], since we want to check whether there is another occurrence of all the
factors represented in the stack. Since LCP.[2] = 4, we have another rotation with prefix aaba, and
therefore such a rotation starts by a, aa, and aab as well. In Subfigure 2b, since succ.[CA[2]] = 1,
analogously to the previous case all prefixes longer than 1 cross a position from I, and therefore
only a is left to cover, and we insert in the stack the range (1, 1) (line 22).

Then, at the iteration i = 3 (Subfigure 2c), the prefix a still occurs (LCP.[3] = 1), but it does not
cross a position from I'. (succ.[CA[3]] = 6), so we extend the range from (1,1) to (1,6) and push
it in S (line 13), that is we keep track of the factors a, ab, aba, abaa, abaab, and abaaba.

The algorithm proceeds as shown in Subfigure 2d, by shrinking the range (1, 6) to (1, 3) (line 22).
At the following iteration shown in Subfigure 2e the stack is emptied for the first time, since
succ:[CA[5]] = 0 and the condition of line 21 is not met.

We keep following the procedure for the iterations 6, 7, and 8, respectively shown in Subfigures 2f,
2g, and 2h. Since at the end of the main loop the stack is empty, each circular factor crosses at least
a position from I, and therefore we return true.

Remark 1 Given a pair (s,e) in S, every pair (s, €’) that goes on top of (s, €) must verify that

s’ > e, since if ' = e then (s, e) is replaced with (s, €’). Thus, in the worst-case scenario S would
n

contain the pairs (1,1),(3,3),..., (| 2], |%]). that is S requires at most nlogn bits of space.

Overall, Algorithm 1 requires up to 4nlogn bits of space to run.

5. Complexity of circular-attractor

In their original work, Kempa and Prezza [1] have formulated the following decision problem
attractor = {(w, p) : w has a string attractor of size < p}.

In the same work, they proved that this problem is NP-complete. Here we define the analogous
problem extended to the notion of circular string attractor:
circular-attractor = {(w, p) : w has a circular string attractor of size < p}.

The following lemma shows a reduction to the analogous problem on circular string attractors.

Lemma 4 Given an integern > 0, let w € X" be a finite word and let $ ¢ . A set T is a string
attractor for w if and only if ' U {n + 1} is a circular string attractor for w$
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in f5 correspond to the positions of the circular string attractor I'., and the corresponding succ. and

LCP, arrays are shown right above. Each subfigure shows one of the 8 iterations of the algorithm, and
for which we have not found an occurrence crossing a position in I'.. The lengths of these prefixes

the stack S at the end of the iteration. The dashed boxes surround the prefixes of the current rotation
correspond to the ranges in S.

Figure 2



Proof Let Cg(w$) denote the set of all circular factors of w$ containing the letter $. One can
observe that C(w$) = F(w) U Cg(w$). Indeed, F(w) N Cg(wg) = 0, and the position {n + 1} is
crossed by all and only circular factors from Cg(wg). Thus, the factors to cover in w are the same
as the circular factors in C(w$) \ Cg(w$), and since they are located in the same positions in both
words the thesis follows. (]

From the reduction above, we can deduce the computational complexity of the
circular-attractor problem.

Theorem 2 The circular-attractor problem is NP-complete.

Proof By Theorem 1, each solution for the circular-attractor problem can be checked in polynomial
time and space, and therefore circular-attractor € NP. Furthermore, Lemma 4 shows how to reduce
an instance (w, p) for the problem attractor to circular-attractor by replacing w and p with w$
and p + 1 respectively, since for each string attractor I' of w the set ' U {n + 1} is a circular string
attractor of w$. O

6. Novel Algorithm for Checking the Attractor Property

If we consider the same problem on classical string attractors, Kempa et al. presented two
algorithms for checking whether a set I is a string attractor for a word w € X" [7]. The
first algorithm uses optimal O(n log o) bits of space and operates in O(n log® n) time, for any
constant € > (. To reach the linear time, Kempa et al. proposed another algorithm requiring
O(n(log o 4 logn)) bits of space. Both algorithms are based on suffix trees and other data
structures supporting range-minimum queries, for which the implementation is not trivial in
all programming languages.

Here we present a novel algorithm taking the same time and space complexities as Algo-
rithm 1. The algorithm is constructed from the strategies developed in Algorithm 1 and from
the equivalence of Lemma 4. Recall that appending a $ smaller than any other symbol in ¥
implies that CA = SA and LCP. = LCP. We can then derive the following Theorem.

Theorem 3 Given a wordw € X" and a set T C [1,n], Algorithm 2 checks whether or not the
set I' is a string attractor for w in O(n) time using O(nlogn) bits of space.

Proof The correctness of Algorithm 2 is derived from its equivalence in Lemma 4 with Algorithm 1.
The Suffix Array SA, the LCP array, and the succ array can be computed in O(n) time using
O(nlogn) bits of space. Note that, unlike Algorithm 1, Algorithm 2 takes in input also words
that are not primitive, since by appending the letter $ ¢ 3 every word becomes primitive. Since
Algorithm 2 takes the same time and space as Algorithm 1, the thesis follows. O

Example 4 Let us consider the word f' = ababaaba, that is a rotation of the word f5 from
Example 3, and let us consider the set of positions I' = {7,8}. In Figure 3, the iterations of
Algorithm 2 with f' and T in input are shown. Recall that we compute the LCP, succ, and SA
arrays for the word f'$, and we extend I with the position of the $, i.e. T = {7,8,9}.



Algorithm 2: Algorithm for checking if a set I is a string attractor for a word w

1 S < empty stack

2 '+ Tu{n+1}

3 SA < computeSuf fizArray(w$)

4 succ < computesucc(w$, T")

5 LCP <« computeLongestCommonPre fix Array(w$)
6 fori € [1,n] do

7 if S is not empty then

8 (s,e) < S.pop()

9 if LCP[i] < e then

10 ‘ return false

11 else

12 if LCP[i] < succ[SA[i]] then

13 if e = LCP[i] then

14 ‘ S.push((s, succ[SA[i]]))
15 else

16 L S.push((s,e))

17 if LCPi] < succ[SA[i]] then S.push((LCP[i] + 1,succ[SA[i]]))
18 else

19 while S is not empty Asucc[SA[i]] < s do

20 L (s,e) < S.pop()

21 if s < succ[SA[i]] then

22 L S.push((s, min{e, succ[SA[i]]}))

23 else

24 L if LCP[i] < succ[SA[i]] then S.push((LCP[i] + 1, succ[SA[i]]))

25 if S is empty then
26 ‘ return frue

27 else

28 L return false

As shown in Subfigure 3a, at first the stack is empty and the condition of line 24 is not met, since
LCP[1] = succ[SA[1]] = 0, and therefore nothing is added into S. The same procedure occurs at
the following iteration, in Subfigure 3b.

Since at the third iteration the stack is still empty, each factor that is prefix of the first two rotations
has an occurrence crossing at least a position in I". Since this time 1 = LCP[3] < succ[SA[3]] = 2,
we add to the stack in line 24 only the factors that have not occurred yet (i.e. of length at least
LCP[3] + 1) and that are not crossing a position in I" (i.e. of length at most succ[SA[3]]), and
therefore we add the range (2, 2). As shown in Subfigure 3c, such a range corresponds to the factor
aa.
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Figure 3: Running example of Algorithm 2 on the word f = ababaaba$. The underlined positions
in f’ correspond to the positions of a set I that we want to check whether it is a string attractor for
f'. The corresponding succ and LCP arrays are shown right above. Each subfigure shows one of the 4
iterations of the algorithm, and the status of the stack S at the end of the iteration. The dashed boxes
surround the prefixes of the current rotation for which we have not found an occurrence crossing a
position in I'. The lengths of these prefixes correspond to the ranges in S.

Finally, in Subfigure 3d, one can see that the factor aa does not occur as prefix in the following
rotations. In fact, at the iteration ¢ = 4 Algorithm 2 checks in line 9 whether the factor that we are
looking for occurs again as prefix by comparing LCP[4] = 1 with the maximum value from the top
of the stack. Since the condition is not met, the algorithm returns false, i.e. the factor aa is not
crossed by any position in I, and therefore I is not a string attractor.

7. Conclusions

In this work, we have shown an easy reduction from the attractor decision problem to its
circular version, leading to an NP-completeness for circular-attractor. We have also presented
the first algorithm in literature that checks whether a set I, is a circular string attractor for
aword w € X", operating in O(n) time and O(n logn) bits of space. Furthermore, given the
reduction above mentioned and the equivalence between the order of the rotations and order
of the suffixes for words of the type w$, we have presented a new algorithm for checking the
attractor property of a set by using the suffix and the Longest Common Prefix Arrays, using



the same time and space bound as the previous one. With respect to the solutions proposed by
Kempa et al., the algorithm here proposed is independent from the size of the alphabet.
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