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Abstract

The performance of C++ code can be improved with move semantics significantly. This approach
is established by the C++11 standard. Applying these constructs, programmers can build faster and
more memory-efficient code, however, there are not only pros in the move semantics, it has its own
problems as well. The integrated development environments and their code comprehension capabilities
are taken advantage of by the massive amount of programmers. These tools are typically based on static
analysis which processes the source code with no execution. In this paper, we define scenarios when the
programmers should pay attention to code because of the weird circumstances. We present an approach
that can assist the programmers in validation of the move-related code. For this approach, we take
advantage of the Clang compiler infrastructure and the Microsoft’s web-based IDE, called Monaco. We
present how our code comprehension approach helps the programmers.
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1. Introduction

One of the fundamental differences between classic and modern C++ belongs to the move
semantics [1]. With the help of the related constructs, one can pass heap memory or other
resources from an object or block to an other one in a very efficient way [2]. However, the
resource in the original may become unavailable. C++’s move semantics may improve the
execution time of algorithms since slow copying code snippets can be avoided, and the approach
can improve the memory consumption, if the resource to move is heap memory [3]. Move
semantics are designed to improve the performance of the classical copy semantics, but using
the new approach can fall back to the former solution in special cases [4].

Methods of static code analysis take advantage and process of the source code without
execution. Static analysis can be used for many purposes, for instance, finding bugs, refactor or
rejuvenate the code [5]. These methods can be for used measuring software metrics, or visualize
the code [6]. Approaches for better code comprehension are important to highlight specific
details of the source code and assist the developers to understand the code base and maintain it
in a more convenience way [7].
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In this paper, we propose a code comprehension approach for the move semantics. The
proposed approach takes advantage of the Clang compiler infrastructure for parsing the C++
code and finding move semantics-related parts and Microsoft’s Monaco web-based IDE for the
code comprehension because we successfully used these tools earlier [8].

The rest of this paper is organized as follows. In Section 2, the background of the move
semantics is detailed. Section 3 presents the proposed approach regarding the Clang-based
static analysis tool and the visualization in the Monaco editor. The evaluation of the method is
discussed in Section 4. Finally, this paper concludes in Section 5.

2. Move Semantics in C++11

C++ is notorious for effective hardware utilization and fast execution. C++ compilers are able
to generate efficient executable code that takes advantage of the hardware elements [9].

Classic C++ is based on the copy operations. By default, an object is passed or returned by
value that means its copy constructor is called and the passed or returned object instance is a
copy, not the same object. However, C++ objects can encapsulate resource management [10].

Next to the classical copy operations, C++11 introduces the move operations (e.g. the move
constructor and the move assignment operator) which have weaker postconditions than the
classical ones. They do not guarantee that copied object remains in the same state, it can be
invalidated. This solution gives opportunity to the pass the ownership of object to another
object which can be in a different block or function.

Listing 1: "Copy semantics vs move semantics”

std::string £( int id )

{
std::string s = "Hello";
/S
s.push_back( ’!’ );
return s;
3
std: :string&& g( int id )
{
std::string s = "Hello";
/S
s.push_back( ’!’ );
return std::move( s );
}

Listing 1 presents two similar functions, both return a std: : string objects. Function f
uses copy constructor to return a std: : string. In this case, the copy constructor allocates
heap memory for the caller and the destructor deallocates the heap memory allocated in the
function. Function g takes advantage of the move semantics and the caller utilizes the heap
memory allocated in the callee. The object remains in an invalidated state, but it does not cause
any problem because the execution of the function is over.



3. The Proposed Approach

While the move semantics introduced in modern C++ has a lot of benefits and great potential
when it comes to optimizing the source code execution, over-, or misusing it can lead to
unexpected behavior. In our paper, we aim to identify and address some of the potential faults
when it comes to implementing move semantic-based operations.

3.1. Static Analysis Approach
3.1.1. Static Analyser Checkers

Clang-Tidy is a Clang-based static analyser tool providing hints and options to optimize the
source code, make it more readable and less bug-prone. It implements static analyser checkers,
covering the most common issues when it comes to using move semantics. However, these
checkers can have their own limitations and also lack visualization. Therefore, we extend the
move semantics-related functionality of the Clang-tidy and visualize of the retrieved code smells.
For the latter, tools like CodeChecker or - in our case — Microsoft’s Monaco web-based IDE can
be used to enhance the analysis results.

In this paper, we focus on two specific move related issues: using an entity which has already
been moved hence making it invalid, and calling move operations when doing so will not
have any effect on how the program executes, although it would be expected to do so. Both of
these issues are covered by already existing clang-tidy checkers: bugprone-use-after-move and
performance-move-const-arg.

The purpose of the first is to warn for all the occurrences, when an object (local variables or
function parameters) is used after it has already been moved, without reinitializing it as Listing
2 presents this scenario.

Listing 2: "Use after move"

std::string str = "Hello, world!\n";
std::vector<std: :string> messages;
messages.emplace_back(std: :move(str));
std::cout << str; // Warning

It can be seen in Listing 3, the checker is flow-sensitive but not path-sensitive, meaning
that it will consider the fact if the std: :move call to be examined is reachable or not (e.g. it
appears in a dead block), but for example mutually exclusive branches are not considered (non
path-sensitive).

Listing 3: "Use after move - false positive"

if (1 == 1) {
messages.emplace_back(std: :move(str));

3
if (i == 2) {
std::cout << str; // Warning (false positive)

}




Checker performance-move-const-arg emits a warning by default for the following scenarios:

o if std: :move() is called with a constant argument,
« if std: :move() is called with an argument of a trivially-copyable type,
« if the result of std: :move() is passed as a const reference argument.

Listing 4: "Move with no effect”

const string s;
return std::move(s); // Warning: std::move of the const variable has no
effect

int x;
return std::move(x); // Warning: std::move of the variable of a
trivially-copyable type has no effect

void f(const string &s);

string s;

f(std::move(s)); // Warning: passing result of std::move as a const
reference argument; no move will actually happen

3.1.2. Indirect Copy Fallbacks

While the expected behavior of this clang-tidy checker might be straightforward, there are
scenarios which are currently not covered by this analyser, but we would want to examine with
the help of our visualization tool. For this, we have enhanced the logic implemented: instead of
focusing only on the “trivial” cases, we would like to cover implementations when the calling
std: :move indirectly would result in copying instead of moves. This would mean that the
function call examined and warned for would not appear in our source code directly, but rather
in a library we include. In the current iteration of the tool we prepare, we focus mainly on
std: :move calls where the fallback to copy would happen in the Standard Template Library
(STL) library itself. In these scenarios, we would be interested in the location of the indirect
std: :move call in our own implementation instead of emitting messages for the STL library,
since falling back to copy might be the expected behavior in some scenarios. Let us consider
the following code snippet:

Listing 5: "Calling std::move on std::set will result in copy"

std: :set<std::string> set_s{"string_1", "string 2"};

std::vector<std: :string> vec_v{"string_3", "string 4"};

std::vector<std: :string> vec_v2{"string 5", "string 6"};

std: :move(set_s.begin(), set_s.end(), vec_v.begin()); // Warning should be
emitted

std: :move(vec_v.begin(), vec_v.end(), vec_v2.begin()); // No warning should
be emitted




In this example, calling std: :move would not fulfill the criteria listed earlier (having const
arguments, etc.). These conditions would not be true when std: :move is called indirectly,
only for the std: :move calls executed in the internal implementation of the library itself. In
this case, since elements of the std: : set would be considered as constants when the move
operation would happen, a copy will be executed. To notify the developer it might not be
the intended behavior, triggering the warning is only useful if it highlights the exact location
where the copy-fallback is triggered indirectly — since this is the source code what the user if
responsible for, and which should rely on the functionalities provided by the standard template
library in the expected way.

To achieve this, we had to improve the business logic of the checker, while overcoming some
limitations of the current AST-matching mechanism provided by the LLVM. There are three
different matcher categories we can rely on: node, narrowing and traversal matchers. The first
two matches for criterias concerning specific attributes or types of the nodes, while the third
one allows traversal between the nodes, meaning that we can define our own conditions which
the parent or child objects of the AST-node to be matched has to fulfill.

Example: The function call

Listing 6: "Example std::move call"

std::move(set_s.begin(), set_s.end(), vec_v.begin());

will result in the following (simplified) AST:

Listing 7: "Example AST"

‘-CallExpr
| -ImplicitCastExpr
| ‘-DeclRefExpr // Function template: std::move
| -CXXConstructExpr
| ‘-MaterializeTemporaryEXpr
| ‘-CXXMemberCallExpr
| ‘-MemberExpr // .begin
| ‘-ImplicitCastExpr
| ‘-DeclRefExpr // set_s
| -CXXConstructExpr
| ‘-MaterializeTemporaryEXpr
|  ‘-CXXMemberCallExpr
| ‘-MemberExpr // .end
| ‘-ImplicitCastExpr
| ‘-DeclRefExpr // set_s
¢ -CXXConstructExpr
‘-MaterializeTemporaryExpr
¢ -CXXMemberCallExpr
‘-MemberExpr // .begin
‘-DeclRefExpr // vec_v

If we want to have the desired indirect matching mechanism described earlier, it is not enough
to traverse the AST by following the direct connections between the nodes: we want to identify



all the std: :move calls, which indirectly (or directly) can lead to an std: :move call, when
a fallback to copy can happen. This means that when a std: :move call happens, we have
to examine the definition of the given std: :move instance, which is defined as a template
method implemented in the algorithm library (see the example above — instead of relying on
child nodes, we have to analyse the definition of a method referenced by our call expression). To
make the checker as robust as possible, we examine the std: :move calls in a recursive manner,
until we find the last method call which will be responsible for the actual move operation to
be performed. When we have found the function call we looked for, we mark it, as well as
the indirect method call triggering the whole procedure. The indirect method call should be
the last one in the call chain, which is not part of the std namespace, since that is our own
implementation and not part of the library we included. Now that we have marked both the
direct and indirect calls, we will able to check the direct one for copy fallbacks, and we can emit
the warning for the indirect call location.

For the example seen in Listing 5, the warning which can be seen on Listing 8 is generated
and emitted.

Listing 8: "Now emitting a warning for copy fallbacks when moving std::set"

warning: std::move of the const expression has no effect; remove
std: :move() [performance-move-const-arg]

std: :move(set_s.begin(), set_s.end(), vec_v.begin());
A

Future work: checker could distinguish between other third-party libraries as well, therefore
the warning message would not be triggered for the internal implementation of the library
itself, but for the way how we use it in our own source code. Currently, this mechanism is
implemented only for the std namespace provided by the STL library.

3.1.3. Input for visualization

For visualization purposes, we have to create the proper output format, which we will be able
to process by using Monaco. For this, we have defined the following JSON format:

Listing 9: "Analysis result in JSON format"

{
"<IDENTIFIER/NONE> | LINENUM_COLUMNSTART-COLUMNEND": {

"moveNoEffect": [

[
{
"move_location": "LINENUM_COLUMNSTART-COLUMNEND"
}2
{
"path": "<PATH TO THE WARNING LOCATION>"
}5
{
"reasoning": "WARNING MESSAGE CONTENT"
}



]
]

s
"<IDENTIFIER/NONE> | LINENUM_COLUMNSTART-COLUMNEND": {
"useAfterMove": [
[
{
"use": "LINENUM_COLUMNSTART-COLUMNEND"
s
{
"move": "LINENUM_COLUMNSTART-COLUMNEND"
s
{
"path": "<PATH TO THE WARNING LOCATION>"
s
{
"reasoning": "WARNING MESSAGE CONTENT"
}
]
]
s

The first JSON object represents a finding for the performance-move-const-arg checker. If
it is possible, we determine the identifier the match applies for (meaning we have a named
declaration instead of an expression), the line number, and position in the given line where
the variable or expression triggering the warning is used. The tag “moveNoEffect” means the
result is based on this checker, "move_location" refers to the move call which (indirectly) leads
to a copy fallback: since we have distinguished between the indirect and direct move calls, it
is possible that the "move_location" attribute points to our own source code, while the exact
fallback location does not appear in the results.

Tag “path” refers to the file path which was analysed when the warning was triggered: this
is useful since it is possible that a finding located in a compilation unit originates in a header
file which was included in our source code. Attribute “reasoning” contains a briefly modified
version of the warning message originally emitted by the checker.

The second JSON object is tagged with “useAfterMove” meaning it is generated by the
bugprone-use-after-move checker. Here “use” refers to the source code location when we try to
use the previously moved variable without reinitializing it, “move” points to the location where
the std: :move call happens, while “path” and “reasoning” attributes behave similarly to the
previous example.

To make the results easily readable and processable for larger projects, the checkers will
generate a JSON structure containing entries defined above for each compilation unit. The name
of the JSON file generated will equal to the name of the source code file which is currently being
analysed. To avoid duplications, a file-structure similar to the original project structure will be
generated under a given root directory ("move_stats") containing all the JSON files generated



for our original C++ source files.
For example, when analysing the clang-tidy project itself, the following result structure will
be generated:

Listing 10: "Example file structure”

move_stats
| __ home
| __ koldaniel
[__ 1lvm
|__ llvm-project
| __ clang-tools-extra
_ clang-tidy
ClangTidy.cpp.json
ClangTidyCheck.cpp. json
ClangTidyDiagnosticConsumer.cpp.json
ClangTidyModule.cpp.json
ClangTidyOptions.cpp. json
ClangTidyProfiling.cpp.json
GlobList.cpp.json
abseil

| |__ AbseilTidyModule.cpp.json

3.2. Visualization in the Monaco Editor

After our parser has finished its job and generated the right output, we need to parse that output
and transform the information from it. The output generated by the parser is not in the correct
shape, therefore we need to transform the data into the shape that will be processable for the
Monaco Editor.

Listing 3.2 presents a snippet from the JSON generated by the parser.

"variableName | rowNr_colNrStart-colNrEnd": {
"moveNoEffect": [
[
{"move_location": "rowNr_colNrStart-colNrEnd"},
{"path": "pathToTheAppropriateHeaderOrCppFile"},
{"reasoning": "theCorrespondingErrorOrWarningMessage"}

113

Every object in the JSON file starts with a key which is assembled by the variable name and
the exact location in the file separated with a pipe character. Note that the pipe, underline and
dash characters are necessary for the JavaScript parser to be able to split the string in a correct
way. Then comes the effect’s name. It can be moveNoEffect or useAfterMove. These two
keys are hardcoded in the static parser. The designations speak for themselves. Every effect is
an array of an array of objects. The inner arrays represent different usage of the given variable
in the source code. Every inner array gives more information about how the variable was



handled. The key names are strict. Every inner array has the “path” and the “reasoning” keys.
The former stores the file where the effect happened the latter gives descriptive information
about what is the problem with the usage of the variable. The “move_location” refers to where
the variable was moved. If the variable is used after a move the object would have two new
keys. Namely the “use” and the “move”.

The next step was to create a JavaScript parser that will be able to process this JSON file
and transform it into a new shape. First, we need to create a container that will hold the raw
source code and will display it like the Visual Studio Code editor. The source code comes from
a file selected by the user. If a file was analyzed with the static parser the JSON will be placed
right beside the file. When a source file is opened the JS parser will automatically open up the
corresponding JSON file too and start to process it.

To create the VSCode-ish-like editor a new model must be instantiated from the MonacoEditor.
Its input parameters are the source code passed in an array and a string that represents the
programming language. In our case, the latter will be "cpp’. This is necessary to add because the
editor will highlight the code as it was opened in a real IDE or text editor. After the model is
created, we are ready to add different markers or decorators as they are called. Delta decorators
are responsible to color the selected background in the editor. They take an array of objects
as an input parameter. Every object is a configuration of what the current decorator should
do. The Listing 3.2 presents the schema in which ‘className’ is the name of the CSS class in
string format that should be applied on the selected range.

{
range: new monaco.Range(rowNr, colStart, rowNr, colEnd),
options: {
iswholeLine: false,
>className’ ,
hoverMessage: [
value: ’messageComesHere’
]
}
}

Figure 1 presents a visualized sample code.

Different colors represent different effects in the code. The green stands for variable declara-
tion, blue indicates the usage of the std: :move () without any negative effect in the program,
the red presents a usage of a variable that was moved previously, and yellow indicates the usage
of the std: :move () that can cause an error in the program.

Figure 2 presents whether we hover the cursor on any of the highlighted text the appropriate
message will show up. Figure 3 presents a warning message when a variable is used after it is
moved.

We have added one more feature to show the possible error with messages in another way.
Monaco Editor provides an option to display model markers in the editor instance. First, we
need to assemble the list of the markers we want to add. One of the biggest advantages of these
markers is that we can use different levels of severity in every marker. For example, we can
show it as an error, warning, or as a simple information marker. And with the help of the up



1 #include <memory=>

2 #include <iostream>

3 #include <string=>

4

5 std::string f(const std::string &s) {
P std:imove(s);

7

8 std::string s2;

9 f(stdizmove(s2));

10 ¥

11

12 int main() {

13 struct S {

14 std::string str;

15 int i;

16 +i

17 S s = { "Hello, world!", 42 };
18 S s_other = std::move(s);

19 = "Lorem ipsum";

20 = 99,

21 = 100;

22 std::cout << SUSEH;

23 S s_other_other = std::move(s_other);
2 EHOHRERE - 42;

25

26 int x;

27 return

28 return -

29 ¥

Figure 1: Visualized sample C++ code

6 | std::move(s);
o~

® 1 3 of 5 problems L1 x

Warning: std::move of the const variable has no effect

Figure 2: A highlighted warning

and down arrows on our keyboard, we can jump from one marker to another.
Markers can be added with the setMode1Markers method. The appropriate model and its
markers should be passed as input arguments.
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22 P S e = - _.
23 s_other used after it was moved 's_other);

Figure 3: A highlighted warning

Table 1
Numbers of move-related findings in the source of Clang and Clang-Tidy
Finding Numbers of Findings in Clang  Numbers of Findings in Clang-Tidy
Trivially-copyable 4870 (70.13%) 767 (94.23%)
const reference 1174 (16.91%) 32(3.93%)
used after moved 740 (10.66%) 14 (1.72%)
const expression 156 (2.25%) 1(0.12%)
const variable 1(0.01%) 0 (0%)
Sum 6944 (100%) 814 (100%)

4. Evaluation

We evaluated our static analysis tool on two software artifacts. We analyse the source code of
the Clang compiler and Clang-Tidy tool and searching for problems related to move semantics.
Our tool found five different kinds of misuse of the move constructs:

« moving a trivially-copyable variable

« passing the result of std::move() as a const reference argument
« variable usage after it is moved

» moving the const expression that has no effect

« moving the const variable that has no effect

These problems do not mean runtime bugs necessarily, but improvement of the referred code
snippets is considerable.

Table 1 presents the numbers of different smell findings in Clang and Clang-Tidy. As one
can see, the most typical problem is the moving of trivially-copyable variable that causes no
problem at all. However, a rather high number of findings means our proposed visualization
tool is considerable.

5. Conclusion

C++11 introduces the move semantics for improved performance. However, it is not a straight-
forward mechanism, its usage contains many pitfalls. In this paper, we propose a compound
solution to avoid the pitfalls. First, we extended a Clang-Tidy static code analysis checker
that processes the C++ code and detect the problematic or overcomplicated code snippets and
prepares these issues for visualization. The visualization is executed in the Microsoft Monaco
editor for an improved code comprehension. We evaluated our tool with open-source software

11



artifacts and realized that IDE visualization is considerable in order to reduce the move-related
problems.
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