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Abstract
Federated learning is a potential ML approach that promotes cooperative learning among many distributed
systems while ensuring data privacy. In this study, we present a wide review of the design and evaluation
of FL, with a particular focus on data partitioning. We discuss the challenges and solutions associated
with FL implementation and demonstrate the design and execution of our proposed FL architecture.
The main contribution of this paper is an investigation of data partitioning in FL and its impact on
system performance. Using real-world public opinion data, we evaluate our proposed FL architecture and
investigate performance measures such as binary accuracy, F1 score, loss, communication overhead, and
data transmission between the server and clients. The experimental results provide useful information
on the effective use of FL in various contexts. We underline the distinct advantages of various data
partitioning algorithms based on data distribution and privacy requirements. Our findings contribute to
the creation of successful FL systems that protect privacy.
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1. Introduction

Machine learning (ML) algorithms have achieved remarkable success in various applications,
ranging from image and speech recognition to natural language processing and recommendation
systems. However, these algorithms typically require large amounts of data to be collected and
analyzed, which can pose privacy and security concerns. Decentralized ML approaches, such as
Federated Learning (FL), have emerged as a promising solution to address these challenges [1].
FL enables multiple entities to jointly train a model without sharing their raw data. Instead,
each entity develops a local model using its own data and shares only model updates with a
centralized server, which combines them to produce a global model. This strategy is especially
helpful in situations where data is distributed across multiple devices or organizations, and data
exchange is restricted by privacy considerations.

Despite its great potential, FL is still a developing topic with a considerable information gap
on the impact of data partitioning on performance, particularly in the context of data from
public opinion surveys. The purpose of this research is to examine the effects of different
data partitioning strategies on FL systems. Our goal is to contribute to the existing literature
by examining state-of-the-art approaches, identifying their limitations and challenges, and
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suggesting best practices for selecting and implementing data partitioning techniques in FL for
public opinion survey data.

Although a variety of model performance evaluation metrics are discussed, such as commu-
nication efficiency, model performance, privacy, system performance, system and statistics het-
erogeneity, and motivitibility, our experimental evaluation only focuses on model performance
(accuracy and F1 score) and communication overhead using public opinion data. Furthermore,
this work does not address the ethical issues of FL, which would require further investigation.
An additional study is required to investigate the influence of data partitioning strategies on
other areas of FL system performance in order to provide an improved understanding of their
effects and potential best practices.

In this context, the remainder of this paper is structured as follows: it starts with a brief
review of related work and highlights the differences and contributions of our paper in Section 2.
The contribution and motivation of the research in the context of data from the public opinion
survey are described in Section 2.2. The proposed design of the FL architecture is described in
Section 3. Data partitioning in FL is discussed in Section 4. The performance evaluation of the
FL architecture using public opinion data and presenting the metrics and techniques used for
this evaluation is done in Section 5, and Section 5.1. Finally, the article concludes the work and
suggests potential research directions in Section 6.

2. Related Work

Recent years have seen a considerable increase in the level of research on FL, and many studies
have been conducted on its application in various domains. In this section, a systematic
literature review is applied to select and highlight relevant work on its design, application, and
evaluation. The review is targeted searches in reputable databases using topic keywords to
ensure completeness. Table 1 summarizes the review according to the focus area of the study,
the method used to determine the main findings and limitations.

The paper [2] presents a scalable production system for FL on mobile devices, with an
emphasis on the difficulties of privacy, security, and communication. Although the study
provides useful insights into the practical implementation of FL, it does not evaluate or compare
the performance of the system with other systems. The paper [3] looks at the latest developments
and problems in FL, including ways to mitigate privacy risks, without focusing on their limits.
The paper [4] proposes a practical FL method that reduces communication costs and is robust
to non-IID data distributions, but its limitations include experiments conducted on a limited
number of data sets and model architectures, as well as a lack of consideration for privacy
preservation. The paper [5] proposes an algorithm that minimizes learning loss within a given
resource budget, although it has constraints such as focusing on a certain class of ML models
and conducting experiments in a simulated environment. The paper [6] presents a complete
study of current research in the management of non-Independent and Identically Distributed
(non-IID) data on ML models in FL, but no concrete conclusions are presented.
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Table 1
Summary of Related Work. Source: author’s contribution.

Study Focus Area Methodology Main Findings Limitations

[2] FL challenges and
design

The paper describes a scalable
FL system for mobile devices
based on TensorFlow that ad-
dresses privacy, security, and
communication issues.

The paper provides insights into
the design and implementation
of a practical FL system that
handles privacy, security, and
communication problems.

The paper lacks a detailed
evaluation, comparisons with
other systems, and discus-
sion of FL limitations, open
challenges, and future possi-
bilities.

[3] FL and its recent
advances, open
problems, and
challenges.

The study investigates FL ap-
proaches, obstacles, and open
problems, such as compressed
communication, decentralized
optimization, and differential
privacy.

The paper highlights recent
developments, challenges, and
privacy-protection strategies in
FL research, as well as unre-
solved issues and concerns.

The paper’s limitations are
not stated, but it highlights
shortcomings and unresolved
issues in methods and ap-
proaches related to FL.

[4] FL: A Decentral-
ized Machine
Learning Ap-
proach.

FL is suggested for decentral-
ized ML along with empirical
tests with various models and
data sets.

FL decreases communication
costs while being resistant to un-
balanced and non-IID data Ex-
periments show that communi-
cation rounds are reduced by 10-
100 times.

The limited data set and
model architectures used in
experiments, as well as the
lack of privacy-preserving FL,
are limitations of this paper.

[5] Algorithm for op-
timal edge learn-
ing.

The proposed technique opti-
mizes local updates and global
aggregation to minimize the
loss within a resource budget,
evaluated using distributed
gradient descent.

The proposed algorithm works
well. Adjusts global aggregation
frequency dynamically to mini-
mize learning loss under a par-
ticular budget.

focuses on specific models,
conducts experiments in a
virtual environment, and as-
sumes that all nodes have an
equal amount of resources.

[6] FL on non-IID
data: challenges
and solutions.

Evaluates the influence of Non-
IID data on ML models in FL
and reviews techniques to ad-
dress it.

The study gives a complete anal-
ysis of existing research on FL
with Non-IID data and makes
recommendations for future re-
search.

There are no limitations
stated, the paper also does
not give new experimental
data, but rather summarizes
previous studies.

2.1. Challenges and Solutions in Federated Learning Implementation

Implementing FL can be difficult because it requires balancing the privacy and utility of local
data with the effectiveness of the ML process. Due to its distributed nature, FL encounters a
variety of challenges during training, including problems with communication, heterogeneity
of data and systems, and data privacy and security. In general, it requires careful consideration
when designing an FL system [7], [8].

Table 2, describes the main issues in FL architecture due to privacy requirements and data
volume, leading to limited communication in FL networks. Local updating, compression ap-
proaches, decentralized training, and importance-based updating are some of the solutions
suggested by researchers. These strategies are designed to maintain the balance between ef-
fective communication, convergence, and accuracy of the model. Federated networks face
the challenge of system heterogeneity, which causes participants with various communica-
tion, processing, and storage capacities. To address this issue, asynchronous communication,
client participation, and fault tolerance are used. Client participation selects devices based on
their resources and data quality, while fault tolerance adds algorithmic redundancy or coded
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computation to handle device failures.
The existence of non-IID data throughout the network causes challenges in statistical hetero-

geneity in FL. To solve this, the researchers propose employing multitask learning, measuring
heterogeneity with measures such as local dissimilarity, and representing user preferences
with personalization layers. Recent research has revealed that FL may not always provide
adequate privacy guarantees during model updates and may be vulnerable to two types of
attack, including poisoning attacks and inference attacks [9], [10]. Poisoning attacks can be
carried out during the model’s training phase or on the data. Inference attacks can occur during
model updates and expose participants’ private information to the adversary [11]. There are
various privacy-preserving mechanisms, such as Secure Multiparty Computing (SMPC), Differ-
ential Privacy (DP), and Homomorphic Encryption (HE), that can be used in FL. By integrating
numerous parties, the SMPC maintains security. To preserve individual privacy, DP adds noise
to the data, while HE modifies the encryption parameters to protect user data.

Table 2
Federated Learning Challenges and Proposed Solutions. Source: author’s contribution.

Possible Solutions
Challenges

Citations
Communication Systems

heterogeneity
Statistic
heterogeneity

Privacy
leakage

Local updating ✓ [12]

Quantization and Compression techniques ✓ [13]

Decentralized training ✓ [14]

Importance-based updating ✓ [15]

Asynchronous communication ✓ [16]

Client participation ✓ [17]

Fault tolerance ✓ [18]

Local dissimilarities ✓ [19]

Leveraging the idea of personalization lay-
ers

✓ [20]

DP, SMPC, HE ✓ [21]

2.2. Motivation and Contribution

Federated learning has limited use in the real world despite its benefits, such as improved model
accuracy and privacy preservation. These issues can be resolved and its practical adoption
improved by looking into the effects of data partitioning in FL. This article’s goal is to investigate
how data partitioning techniques affect FL system performance with our following contributions:

1. An examination of data partitioning techniques in FL, focusing on how they affect system
performance and communication effectiveness.

2. A novel approach to choosing and putting into practice the best data partitioning strategies
for certain use cases.

3. Evaluating the effectiveness of the proposed methodology in increasing model accuracy
and decreasing communication overhead using data from public opinion surveys.
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3. Federated Learning Architecture Design and Implementation

The hardware and software requirements for implementing the FL architecture can vary de-
pending on the individual use case and the scale of the devices involved. However, in general,
clients, servers, models, and algorithms are components of the FL architecture [3]. Hardware
requirements include a collection of distributed devices (such as smartphones, laptops, and the
Internet of Things (IoT) devices) with enough processing power to locally train an ML model,
a server that meets certain criteria, and a reliable network connection that can interact with
the central server and other participating devices. Each client (local device) has its own data
set, which is used to train the ML model. The FL process is coordinated by the server, which
sends model updates to the clients and aggregates their updates. The server also keeps the
global model safe and secure. The model is an ML model that has been trained using the FL
method. It is usually a deep neural network that is trained and decentralized across clients. The
optimization technique used to train the model is called an algorithm. In terms of software
requirements, they are as follows [22, 23].

Client.n

Client.2

Client.1

Use model to find 
patterns in data, 
gain insights, and 
take action.

Yes

Evaluate

Deploy

Deploy

Deploy

Evaluate

Evaluate

Evaluate

No

No

No

Yes

Yes

Yes No

Deploy

Client side model evaluation  and deployment
Server side model evaluation
          and deployment

train

Workflow

Train

Train

Train

Sever

Figure 1: Federated Learning Architecture. Source: author’s contribution.

ML frameworks that support the FL process such as TensorFlow or PyTorch. A central server
software that manages the process, including model aggregation and device synchronization.
which can be built with technologies like Apache Kafka, RabbitMQ, and Redis. A client-side
software library that allows devices to participate in FL and communicate securely with the
central server. Protocols for secure and encrypted communication to protect the privacy of

142



data on participating devices. FL architecture design workflow for the public opinion survey
example is depicted in Fig. 1, the central server distributes the initial model parameters to all
clients. Clients train their local models with initial parameters and exchange the results with
the central server. The central server aggregates the local models and distributes the global
model to the clients.

Depending on the particular use case and privacy restrictions, many methodologies can be
utilized to evaluate and deploy the model. Clients do a local evaluation of the model and send
the results to the central server for aggregation. The performance of the global model is then
evaluated in general by the server. As an alternative, the server validation data set can be used
for evaluation. When privacy is an issue, clients can also receive the global model that has been
aggregated for local predictions. The global model, on the other hand, can be hosted by the
server and made available as a service to clients, who can then send their data for predictions.
Data privacy, resource limitations, and the complexity of the model management process are a
few examples of considerations that impact the decision to choose client-side or server-side
evaluation and deployment [24].

4. Data Partitioning in Federated Learning

FL partitioning distributes data across multiple parties who collaborate to increase the usefulness
of their combined data. This method overcomes the limitations of domain-specific data and
makes it easier for clients with various interests to work together. Based on data flow between
parties, FL data partitioning can include transfer learning, vertical partitioning, and horizontal
partitioning (Fig. 2). It takes careful preparation to bring together the interested parties and
partition the data in a way that produces an FL environment, as proper data partitioning is
crucial for the FL process [25].

Horizontal FL (HFL) combines data from entities with similar features but different samples.
In the HFL example, two research organizations (regions A and B) collect data from a public
opinion survey but are only able to share limited information because of privacy concerns. The
purpose is to develop an ML model that uses parameters such as age, gender, and service type
to predict how satisfied clients are with government services. Each organization first trains
a local model using its own data, then shares model updates with a central server to create a
global model, and then deploys the aggregated model to clients.

Vertical FL (VFL) combines data from entities with the same sample IDs but distinct features.
VFL allows different respondents to share demographic data while maintaining the privacy of
survey responses. Each client trains a local model using local data and survey results and then
shares model updates with the server, which constructs a global model capable of generating
predictions across all attributes.

Transfer FL (TFL) involves the use of a previously trained model on a similar task to improve
the performance of a new model on a new task. TFL can be applied for both VFL and HFL. TFL
involves training a model on one set of data and then fine-tuning it on another. When one
region has more data than the other, the model is trained on the bigger data set first and then
fine-tuned on the smaller data set.
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Vertical Federated Learning
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Figure 2: Data Partitioning in Federated Learning. Source: author’s contribution.

5. Performance Evaluation of Data Partitioning in Federated
Learning Architectures

Evaluation of FL architecture is a crucial component because it allows us to measure the
efficiency of the model and make additional improvements. Evaluation metrics, methods, and
best practices for FL architecture will be discussed in this part. The metrics shown in Table 3
are frequently used to assess the effectiveness and efficiency of the FL approach. These metrics
include communication costs, model performance, system scalability and performance, attack
rates, computation and energy costs, convergence rates, statistical and system heterogeneity,
client motivation, and data and device security [26, 27].

5.1. Experimental Results and Discussion

The performance of HFL, VFL, and TFL was compared using data collected by the Asia Founda-
tion. It was a public opinion survey to obtain civilian thoughts and impressions on a variety
of Afghanistan-related issues. The data set includes survey questions and responses related to
security, governance, and country development.

Due to the FL nature, clients send their local model updates to the server, which aggregate
these updates to improve the global model. Communication is a substantial bottleneck in the
FL process, especially if the network bandwidth is limited or a large number of clients are
participating. In our experiments, the quantization technique was investigated as a substantial
solution to this problem for three FL architectures (HFL, VFL, and TFL). The findings showed
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Table 3
Summary of Evaluation Metrics. Source: author’s contribution.

Evaluate Metric Interpretation

communication
efficiency

Communication cost, dropout ra-
tio, system running time

FL communication efficiency can be increased by lowering expenses,
dropout rates, and system running time.

Model Perfor-
mance

AUC-ROC, F1-score, precision,
recall, and perplexity

These metrics are important to evaluate the performance of the FL model.

System Perfor-
mance

attack rate, costs, dropout, con-
vergence rate, running time.

These metrics are used in FL to evaluate system performance and suit-
ability for a specific task.

Statistical het-
erogeneity

Model and Equation Proof In FL, statistical heterogeneity measures the variation in model and
equation proof and the distribution of data between different clients.

System hetero-
geneity

device dropout ratio due to lim-
ited resources

Measures device variances that affect performance. Hardware resources,
dropout ratio, communication and processing costs, and system running
time are a few examples.

Client moti-
vatability

incentive rate In FL, client motivation is the incentive for clients to participate in pro-
viding data.

System scala-
bility

Communication Cost and Run-
ning Time

determining the system’s ability to handle an increasing number of
clients and data while maintaining high performance.

Data privacy SMPC, HE, DP FL requires data privacy mechanisms that must be evaluated for effi-
ciency, performance, scalability, and sensitive data protection.

Without Quantization With Quantization

Figure 3: Data Exchanged and Communication Overhead for Different Data Partitioning in FL. Source:
author’s contribution.

in Fig. 3 that the transmission overhead without quantization was HFL:14.44 MB, VFL:0.12
MB, TFL:17.32 MB, while, the communication overhead for the three techniques decreased
significantly after applying quantization to model updates as HFL:7.22, VFL:0.06, TFL:8.70.

These findings indicate the efficiency of quantification in reducing communication overhead
in FL systems. Reduced overhead can result in faster convergence, improved scalability, and
lower communication costs. However, it is critical to assess the impact of quantization on the
accuracy and loss metrics of the model. In this research, we also conducted tests for binary
classification models in horizontal, vertical, and transfer FL setups. The results showed that
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Table 4
Summary of the Experimental Methodology and Analysis. Source: author’s contribution.

Item Description

Data set A public opinion survey data set

Framework TensorFlow Federated (TFF)

Models Used 2 regional client models, 1 server model

Optimization Algorithm Stochastic Gradient Descent (SGD)

Server Model Feed-forward neural network with sigmoid activation function

Loss Function Binary cross-entropy

Data Partitioning Methods HFL, VFL, and TFL

Learning Model Federated Averaging (FedAvg)

Hyperparameters Learning rate: 0.01, Local epochs: 5, Batch size: 1

Evaluation Metrics Binary Accuracy, F1 score, Loss, Data Exchange, Communication overhead

Experimental Procedure 1. Preprocess the data set

2. Apply data partitioning methods

3. Train the model using FedAvg

4. Evaluate the model

Analysis Compared the performance of partitioning methods

Figures 3, 4, and 5 Results Obtained from experiments

the use of quantization maintained acceptable levels of accuracy and loss, making it a feasible
solution to reduce communication overhead in FL systems.

Table 4, summarizes the experimental methodology and analysis performed in our study. It
includes key elements such as the description of the data set, the comparison of different data
partitioning methods, the specific federated learning model used, the hyperparameters chosen
for training, the evaluation metrics used, and an outline of the experimental procedure, details
about the analysis process, and the source of the results shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6.
Mentioned and presented figures represent the author’s contribution in this research.
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Figure 4: HFL Model Performance
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Figure 5: VFL Model Performance.

The performance of three different FL approaches for HFL, VFL, and TFL is studied. The
performance of each approach is evaluated using three metrics: test loss, accuracy, and F1 score.
The findings of the HFL experiment are indicated in Fig. 4.
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Figure 6: TFL Model Performance. Source: au-
thor’s contribution.

The initial loss of the HFL test is 0.69,
the test accuracy is 0.53, and the F1 score is
0.54. Model performance improved consis-
tently throughout 90 rounds, with the test
loss dropped to 0.32, the accuracy increased
to 0.85, and the F1 score increased to 0.83. As
shown in Fig. 5, the first test loss for verti-
cal FL is 0.66, the accuracy is 0.55, and the
F1 score is 0.0. Over 90 rounds, the model
improved in all metrics, with the test loss de-
creased to 0.30, the accuracy increased to 0.85,
and the F1 score increased to 0.84.

Finally, for TFL in Fig. 6, the initial test loss
in the initial data set is 0.32, the accuracy is
0.8461, and the F1 score is 0.8292. The model
improved during 90 rounds, with the test loss
dropped to 0.30, and the accuracy and F1 score slightly increased to 0.8480, 0.8329 respectively.

In summary, during 90 rounds, the three FL approaches showed a continuous improvement in
performance in all evaluation metrics. The findings show that FL can be efficiently applied to a
variety of situations, each strategy providing unique benefits based on specific data distribution
and privacy needs.

6. Conclusion

The paper provides a thorough investigation of the architecture of FL, with a particular emphasis
on data partitioning. The importance of FL has been emphasized and the problems and limita-
tions of existing FL techniques have been studied. The design concepts and factors necessary to
establish an FL architecture have also been investigated. FL architectures have been evaluated
using metrics and approaches related to data partitioning strategies. The implementation and
evaluation of the FL architecture was carried out using various data partitioning architectures
and the results were thoroughly explained. By evaluating the FL system using new measures,
future development of more efficient, effective, and privacy-preserving FL systems can be helped.
These measures should address statistical and system heterogeneity, system performance, client
motivation, system scalability, and data privacy, in particular. Taking these factors into account,
we can improve our understanding of FL, leading to the development of more efficient, effective,
and secure FL learning systems.
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