
Power of Artificial Neural Networks and Taguchi's Orthogonal
Arrays in Software Effort and Cost Estimation

Nevena Rankovic 1, Dragica Rankovic 2 and Mirjana Ivanovic 3

1Tilburg University, School of Humanities and Digital Sciences, Department of Cognitive Science and Artificial
Intelligence, Warandelaan 2, 5037 AB Tilburg, The Netherlands
2Union University “Nikola Tesla”, Faculty of Applied Sciences, Department of mathematics, informatics and
statistic, Dusana Popovica 22a, 18 000 Nis, Serbia
3University of Novi Sad, Faculty of Sciences, Department of mathematics and informatics, Trg Dositeja
Obradovica 4, 21 000, Novi Sad, Serbia

Abstract
In this paper we provide an overview of the research conducted on three novel models for
estimating effort and costs in software project implementation. All three models utilize
different architectures of artificial neural networks (ANNs) constructed based on Taguchi's
orthogonal vector plans. The idea behind the conducted research is to optimize these novel
models to avoid experiment repetition and reduce training time when estimating software
projects. The structure of the proposed models could be improved by employing different
encoding functions and clustering techniques for input data, aiming to mitigate the
heterogeneous nature observed in various sets of real projects. Additionally, studies suggest
the homogenization of input values across projects, leading to higher reliability and accuracy
in the obtained results. Optimization with the Taguchi method, coupled with increased
coverage of a wide range of industrial projects, results in the efficient and successful
completion of various software projects, bringing benefits to the modern software industry.

Keywords 1
software estimation, ANN, Orthogonal Arrays, COCOMO2000, COSMIC FFP, UCP.

1. Introduction

In the contemporary software industry, there is an increasing demand for rapid, high-quality, and
precise estimation of effort and costs prior to commencing software product development [1]. An
essential factor for successful software project development and risk reduction involves accurately
estimating the effort and costs associated with implementation. This process entails a meticulous
evaluation of essential resources, such as time, personnel, and materials, necessary for project
execution. The primary objective of effort and cost estimation lies in providing informed decision-
making support for planning, budgeting, resource allocation, and project management [2]. The precise
and reliable estimation of effort and costs facilitates efficient project management, mitigates risks, and
leads to successful outcomes. Statistics reveal that only one-third of projects are successfully completed
and implemented, nearly half exceed budget and implementation timelines, while around 20%
experience complete failure. Therefore, precise and comprehensive estimation of effort and costs is a
crucial determinant of software project success [3, 4]. It enables the determination of project initiation,
conditions, and constraints necessary for successful execution and practical implementation.
Consequently, software development teams must devote additional effort to ensure adequate estimation
of effort and costs, thereby achieving favorable outcomes and meeting client expectations [5].

SQAMIA 2023: Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, September 10–13, 2023, Bratislava,
Slovakia
EMAIL: N.Rankovic@uvt.nl (N.R); dragica.d.rankovic@gmail.com (D.R); mira@dmi.uns.ac.rs (M.I)
ORCID: 0000-0002-9910-5886 (N.R); 0000-0002-4464-0726 (D.R); 0000-0003-1946-0384 (M.I)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

186
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

ANNs are artificial intelligence techniques constructed based on mathematical models and the
architecture of each ANN [6] consists of an input layer, hidden layers, and an output layer. Each neuron
utilizes an activation function that computes values based on the input layer and transmits them through
the links to the subsequent neurons until reaching the output layer. The number of input features varies
in our experiments. In the first COCOMO2000 approach, the number of input features is 3, with 1
output value and different numbers of nodes in the hidden layer [5]. In the second COSMIC FFP
approach, the number of input features is 4, with 1 output value and varying numbers of nodes in the
hidden layer [7]. In the third UCP approach, the number of input features is 6 for the first architecture,
4 for the second, with 1 output value, and different numbers of nodes in the hidden layer. In all
experiments, the sigmoid activation function was used. All architectures were constructed based on
Taguchi's orthogonal arrays. When selecting a specific architecture, considerations were made
regarding the number of input features, the number of weight coefficients, and the number of levels in
the orthogonal array. The aim was to construct the simplest architecture that, in the initial testing phase,
achieves the minimum number of iterations, converges to the minimum error model, and satisfies the
set Gradient Descent (GA) criterion, GA<0.01 [8]. The synergy between AI tools and Taguchi's
optimization method proves highly potent, leading to cost reduction, enhanced quality, and accelerated
development timelines for software projects. Employing a robust design strategy alongside orthogonal
array plans enables the acquisition of dependable parameter information through a minimal set of
experiments. Taguchi achieved optimal results through orthogonal arrays based on a unique set of Latin
squares. This method significantly reduces key parameters and enables faster estimation of effort and
project costs using factorial experiments with all possible combinations of parameters [9]. The robust
design of Taguchi's experiment in an orthogonal array plan depends on the number of parameters,
weighting factors, and the number of levels for each parameter. Each level of every parameter needs to
be tested a certain number of times. For a complete factorial analysis, the number of iterations is N=LP.
However, by applying Taguchi's orthogonal array plan with 13 parameters at three levels, only 33 = 27
experiments are needed. Taguchi's robust design method reduces the number of experiments by
99.99830649%. The orthogonal array plan selects a subset of non-repetitive combinations, properly
considering all parameters. All levels of each parameter are tested at least once, and the Taguchi plan is
applied for each level of a specific parameter [10] Table 1.
 Table 1
 Taguchi design vs. Full Factorial Design (FFD).

Taguchi design No. of experiments FFD No. of experiments
𝐿𝐿4(23) 4 23 8
𝐿𝐿8(27) 8 27 128
𝐿𝐿12(211) 12 211 2048
𝐿𝐿16(215) 16 215 32768
𝐿𝐿9(34) 9 34 81
𝐿𝐿18(37) 18 37 2187

In this paper, new enhanced approaches and constructed models will be analyzed, which utilize

different ANN architectures, to improve the accuracy and efficiency of effort and cost estimation during
software project implementation. What is innovative compared to previous models is the construction
of different ANN architectures based on Taguchi's orthogonal array plans. This enables fast, precise,
and efficient estimation of effort and costs presented through three different models, using three
commonly employed approaches. The main objectives of these models are: the construction and
identification of the best model; the selection of an optimal ANN architecture that quickly converges to
minimal magnitude relative error; reduction of the number of experiments; and shortening the time
required for software effort estimation through high convergence rates. The structure of the paper is as
follows: Section 2 outlines prior software estimation approaches. Section 3 introduces three new
improved models' methodology. Section 4 presents achieved results. Section 5 discusses these results.
Concluding remarks are in Section 6.

187

2. Previous approaches in software estimation

As a result of insufficiently adequate processes in the past, a large number of software projects were
unsuccessful or not realized. Commonly used methods were similarity-based estimation, analysis and
synthesis method, expert knowledge-based estimation, and various parametric methods [11].

The Analysis/Synthesis method is an approach to estimating software project effort and cost that
involves dividing the project into smaller parts that are estimated separately. The advantage is that the
method breaks down the project into smaller parts that are easier to estimate, allowing for a more
detailed analysis and synthesis of effort and cost. However, this method requires more time as each part
needs to be thoroughly estimated. Additionally, the overall estimation may be less reliable [6, 11].

Expert knowledge-based estimation is a rapid and simple method that relies on the experience of
experts who have worked on similar software projects. The advantage of this method lies in the rapid
estimation of effort and cost. However, the subjectivity of the experts can lead to variations in the
estimates. Consensus among experts can be challenging, so it is important to establish clear guidelines
and criteria for estimation. Validating the estimates through comparison with actual results from
previous projects can improve the accuracy of the estimates [7, 11].

Parametric (algorithmic) methods rely on project metrics to construct an algorithm for determining
time and cost. This method has advantages in objectivity, speed, and simplicity. Objectivity is achieved
by using quantitative measures. Speed is achieved through automated calculation based on the
algorithm. Ease of use is reflected in the requirement for basic knowledge of project size measurement
and tracking historical data. However, drawbacks include the need for relevant and reliable historical
data and lower precision in cases of high variability or novel technological concepts [9, 12].

The COCOMO2000 (Constructive Cost Model) is the most frequently employed model based on
the source lines of code [13]. Parametric methods employ mathematical models that combine
experimentally derived parameters to calculate the size of the system during design. The measurement
of source code lines determines the size and complexity of the software project. COCOMO2000 is the
prominent parametric method in this category, employing lines of source code as the measurement unit
for software size. It enables estimation of the required production time. However, relying solely on lines
of code for effort estimation has limitations, including variations across programming languages (e.g.,
C++, Java, C#) and the need for equivalence mappings with specific databases. COCOMO2000 is an
algorithmic cost model that establishes the relationship between software metrics and project costs
through mathematical functions. The actual effort is expressed in person-months (PM) [6, 7].

The approach based on analyzing function points is utilized to estimate the size of software
functionality during development [14]. Initially, two models were distinguished within this approach:
IFPUG (International Function Point Users Group) and Mark II. Subsequently, NESMA (Netherlands
Software Users Metrics Association), IFPUG (version 4.1), and COSMIC FFP (Common Software
Measurement International Consortium Full Function Point) became the most commonly used within
the IFPUG framework [11, 15]. Function Point Analysis (FPA) addressed the limitations of the previous
method that relied on measuring system size using lines of code. FPA measures the functionality of a
system based on function points. Different systems may exhibit similar functionalities but utilize
distinct technologies or programming languages, resulting in variations in the number of lines of source
code. COSMIC FFP is one of the latest approaches, considering four reduced input values for estimating
effort and costs based on functional size parameters. Fourteen parameter systems are evaluated to
reliably measure functional size, encompassing aspects such as data communication, distributed data
processing, performance, heavily used configuration, transaction rate, real-time data entry, user
efficiency, real-time updating, complex processing, reusability, ease of installation, ease of use,
multiple locations, and change facilitation [16]. In contrast to the previous COCOMO2000 method,
which relies on three input parameters, COSMIC FFP incorporates four: Entry, Exit, Read, and Write.

The approach of analyzing users and use cases is also utilized to estimate software effort. COBRA
(Cost Estimation, Benchmarking, and Risk Assessment) and UCP (Use Case Point Analysis) are the
most commonly used models within this approach [17]. The UCP method is primarily employed to
estimate the actual size of a software project. It considers the system's use cases to assess the effort
required for implementation. Twenty-one parameters are used for estimation, with thirteen for the
technical characteristics of the system and the remaining for environmental factors. The technical

188

characteristics include features such as a distributed system, system response time, efficiency,
complexity of internal processes, code reuse, ease of installation and use, portability, maintenance,
concurrency, security requirements, and user training. Environmental factors include compliance with
development processes, application experience, knowledge of object-oriented technologies, analyst
capability, team motivation, stability requirements, team availability, and programming language
complexity. The UCP method combines system users and use cases, categorizing them based on their
interaction complexity and transaction volume, to determine the actual size using weighted factors. The
system size is defined using a four or six-dimensional vector representing user(s) and use case(s)
complexity [8, 11].

3. The Methodology of three new models

In this section, three new models constructed using different ANN architectures based on Taguchi's
orthogonal vector plans will be presented [11, 17].

3.1. New COCOMO in combination with ANN based on Orthogonal Arrays

Twenty-two parameters are the input variables of the COCOMO2000 model, divided into two groups:
The first group consists of five parameters known as scale factors: PREC, FLEX, RESL, TEAM, PMAT.
The second group consists of seventeen parameters known as effort multipliers: RELY, CPLX, DATA,
RUSE, TIME, STOR, PVOL, ACAP, PCAP, PCON, APEX, PLEX, LTEX, TOOL, SCED, SITE,
DOCU. Finally, the COCOMO2000 formula was obtained by formulas (1)-(7):

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 × [𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸]𝐸𝐸 × ∏ 𝐸𝐸𝑀𝑀𝑖𝑖 ,17
𝑖𝑖=1 (1)

𝐸𝐸 = 𝐵𝐵 + 0.01 × ∑ 𝑆𝑆𝑆𝑆𝑆𝑆5
𝑗𝑗=1 ,𝐴𝐴 = 2.94,𝐵𝐵 = 0.91, (2)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[𝑃𝑃𝑀𝑀] = 2.94 × [𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸]𝐸𝐸 × 𝑃𝑃𝐸𝐸𝑀𝑀𝑖𝑖, (3)
𝑃𝑃𝐸𝐸𝑀𝑀𝑖𝑖 = ∏ 𝐸𝐸𝑀𝑀𝑖𝑖

17
𝑖𝑖=1 , (4)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶 × (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)𝐹𝐹 , (5)
𝑆𝑆 = 𝐷𝐷 + 0.2 × 0.01 × ∑ 𝑆𝑆𝑆𝑆𝑆𝑆5

𝑗𝑗=1 ,𝐶𝐶 = 3.67,𝐷𝐷 = 0.28, (6)

𝑃𝑃𝑇𝑇𝐸𝐸𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇

, (7)
where A and B are basic calibration constants; KSLOC (thousands of lines of source code) is the size of
the software project; SFj is five scale factor; EMi is seventeen effort multiplier. Our experiments utilize
the COCOMO2000 Post Architecture model. This model combines the effort factors and multipliers to
calculate the required person-months [PM] for the implementation of a specific software project.
Variables E, PEMi, and KSLOC are used as input for four different ANN architectures constructed based
on Taguchi's orthogonal vector plans: ANN-L9, ANN-L18, ANN-L27, and ANN-L36 [6, 17].

The first ANN architecture, in the COCOMO2000 approach, ANN-L9, is based on Taguchi's
orthogonal vector plan (L9) with four parameters (𝑊𝑊𝑇𝑇, i=(1,4)) and three different levels (L1, L2, L3).
The experiments are conducted with 9 ANNs candidates labeled as ANN1,..., ANN9 Figure 1. The
second constructed ANN architecture, labeled as ANN-L18, is based on Taguchi's orthogonal vector
plan (L18) with eight parameters (𝑊𝑊𝑇𝑇, i=(1,8)) and three different levels (L1, L2, L3). The experiments
are conducted with 18 candidate ANNs labeled as ANN1,..., ANN18 [5, 17] Figure 2. The third
constructed ANN architecture, labeled as ANN-L27, is based on Taguchi's orthogonal vector plan (L27)
with 13 parameters (𝑊𝑊𝑇𝑇, i=(1,13)) and three different levels (L1, L2, and L3). The experiments are
conducted with 27 candidate ANNs labeled as ANN1, ANN2,..., ANN27 Figure 3. The fourth constructed
ANN architecture, labeled as ANN-L36prim, is based on Taguchi's orthogonal vector plan (L36prim)
with 23 parameters (𝑊𝑊𝑇𝑇, i=(1,23)) and three different levels (L1, L2, and L3). The experiments are
conducted with 36 candidate artificial neural networks labeled as ANN1, ANN2,..., ANN36 Figure 4.
Table 2 provides basic statistical data on the used datasets in all three phases of the experiment: training,
testing, and validation [7, 17].

189

Figure 1. ANN architecture with none Figure 2. ANN architecture with one hidden
 hidden layer (ANN-L9). layer (ANN-L18).

Figure 3. ANN architecture with one hidden Figure 4. ANN architecture with two hidden
 layer (ANN-L27). layers (ANN-L36).
 Table 2
 Basic sta�s�cs about datasets (COCOMO2000).

Dataset N Min Max Mean Std. deviation Experiment
COCOMO2000 100 6.0 8211.0 616.0 1131.5 Training
COCOMO2000 20 28.1 606.8 277.0 206.3 Testing
COCOMO81 51 33.0 11399.9 841.8 1994.9 Validation1
NASA 60 8.4 3240.0 406.4 656.9 Validation2
Kemerer 15 23.2 1780.0 316.7 456.7 Validation3

3.2. New COSMIC FFP in combination with ANN based on Orthogonal Arrays

Unlike the previous COCOMO2000 method, which relies on three input parameters, COSMIC FFP
relies on four: Entry, Exit, Read, and Write. It can be concluded that the functional size of the system
represents the total number of all used messages. The system can be viewed as a four-dimensional
vector space representing the total number of messages in form of: input data, reported data, written
data, or data read from files. The advantage of this method is its technology independence and absence
of an upper limit for the value of the functional quantity. Therefore, there is no saturation as the
complexity of functionality can increase indefinitely depending on the number of messages in the
system [15, 17].

Functional size is determined based on a four-dimensional vector denoted as FFP as follows (8):
𝑆𝑆𝑆𝑆𝑃𝑃 = (𝐸𝐸,𝑋𝑋,𝑅𝑅,𝑊𝑊) (8)

where FFP represents the total number of messages in the entire observed system and is
calculated as the norm of the vector, formula (9):

�𝑆𝑆𝑆𝑆𝑃𝑃��������⃗ � = 𝐸𝐸 + 𝑋𝑋 + 𝑊𝑊 + 𝑅𝑅 (9)
where E = Entry, X = Exit, W = Write, and R = Read.

The first constructed ANN architecture, in the COSMIC FFP approach, labeled as ANN-L12, is
based on Taguchi's orthogonal vector plan (L12) with 11 parameters (𝑊𝑊𝑇𝑇, i=(1,11)) and two different

190

levels (L1, L2). The experiments are conducted with 12 ANNs candidates labeled as ANN1,..., ANN12
Figure 5. The second constructed ANN architecture, labeled as ANN-L36prim, is based on Taguchi's
orthogonal vector plan (L36prim) with 16 parameters (𝑊𝑊𝑇𝑇, i=(1,16)) and combined two and three
different levels (L1, L2, L3). The experiments are conducted with 36 ANNs candidates labeled as
ANN1,..., ANN36 Figure 6. In Table 3, basic statistics is provided for the datasets used in all three phases
of the experiment: training, testing, and validation. The table includes the dataset names, the number of
projects in each dataset, as well as the minimum, maximum, mean, and standard deviation values
expressed in Functional Size (FS) [11,15,17].

Figure 5. ANN architecture with one hidden Figure 6. ANN architecture with one hidden
 layer (ANN-L12). layer (ANN-L12).
Table 3
Basic sta�s�cs about datasets (COSMIC FFP).

Datasets N Min Max Mean Std. deviation Experiment
ISBSG (FS<10) 52 2.0 9.0 5.404 2.4031 Training, Testing
ISBSG (10< FS<50 62 10.0 48.0 24.823 11.3203 Training, Testing
ISBSG (50< FS<100) 43 50.0 99.0 77.116 15.1441 Training, Testing
ISBSG (100< FS<500) 77 104.0 492.0 234.130 113.8159 Training, Testing
ISBSG (FS >500) 21 561.0 2090.0 1016.048 458.4442 Training, Testing
Desharnais datasets 14 140.0 3860.0 1011.429 920.4251 Validation1
Combined datasets 33 493.0 2589.0 1193.424 419.4201 Validation2

3.3. New UCP in combination with ANN based on Orthogonal Arrays

The estimated value of the UCP method utilizes twenty-one parameters for estimation, of which
thirteen parameters represent the technical characteristics of the system, while the remaining eight are
environmental factors. It is calculated based on G. Karner's formulas. The representation of actual effort
using the UCP approach is a six-dimensional vector, where its value is calculated as the norm of the
vector as follows, formulas (10), (11):

 UCP = (UAW, UUCW, UUCP, TCF, ECF, AUCP) (10)
�𝑈𝑈𝐶𝐶𝑃𝑃��������⃗ � = 𝑈𝑈𝐴𝐴𝑊𝑊 + 𝑈𝑈𝑈𝑈𝐶𝐶𝑊𝑊 + 𝑈𝑈𝑈𝑈𝐶𝐶𝑃𝑃 + 𝑇𝑇𝐶𝐶𝑆𝑆 + 𝐸𝐸𝐶𝐶𝑆𝑆 + 𝐴𝐴𝑈𝑈𝐶𝐶𝑃𝑃 (11)

where UAW is the unadjusted actor weight, UUCW is the unadjusted use case weight, UUCP is
calculated as UUCP = UUCW + UAW, TCF is the technical factor, ECF is the environmental factor,
and AUCP is calculated as AUCP = UUCP x TCF x ECF. Representation of the actual effort using the
UCP approach as a four-dimensional vector is achieved calculating the value, as the vector norm, by
formulas (12), (13):

 UCP = (UAW, UUCW, TCF, ECF) (12)
�𝑈𝑈𝐶𝐶𝑃𝑃��������⃗ � = 𝑈𝑈𝐴𝐴𝑊𝑊 + 𝑈𝑈𝑈𝑈𝐶𝐶𝑊𝑊 + 𝑇𝑇𝐶𝐶𝑆𝑆 + 𝐸𝐸𝐶𝐶𝑆𝑆 (13)

where UUCP= UAW+ UUCW, and AUCP= UUCPxTXFxECF.

191

In both cases, the Real Effort is obtained as the norm of the UCP vector and represents the actual
functional size or the number of use case points. This method is currently widely used for effort
estimation, although it is not standardized within the ISO standard like the previous two methods. Four
input variables, UAW, UUCW, TCF, ECF, or six input variables, UAW, UUCW, UUCP, TCF, ECF,
AUCP, are used as inputs for two different ANN architectures constructed based on Taguchi's
orthogonal vector plans, namely ANN-L16 and ANN-L36prim [11, 17].

The first constructed ANN architecture, denoted as ANN-L16 in the UCP approach, is based on
Taguchi's orthogonal vector plan (L16) with 15 parameters (𝑊𝑊𝑇𝑇, i=(1,15)) and two different levels (L1,
L2). The experiments are performed with 16 ANN candidates labeled as ANN1,..., ANN16 Figure 7. The
second constructed ANN architecture, denoted as ANN-L36prim in the UCP approach, is based on
Taguchi's orthogonal vector plan (L36prim) with 23 parameters (𝑊𝑊𝑇𝑇, i=(1,23)) and three different levels
(L1, L2, L3). The experiments are conducted with 36 ANN candidates labeled as ANN1, ..., ANN36
Figure 8. Table 4 provides basic statistical data on the datasets used in all three phases of the experiment:
training, testing, and validation. The table includes the dataset names, the number of projects in each
dataset, as well as the minimum, maximum, mean values, and standard deviation expressed in Real
Effort (RE) [8,17].

Figure 7. ANN architecture with one hidden Figure 8. ANN architecture with one hidden
 layer (ANN-L16). layer (ANN-L36prim).
Table 4
 Basic sta�s�cs about dataset (UCP).

Datasets N Min Max Mean Std. deviation Experiment
UCP Benchmark 50 5775.0 7970.0 6506.940 653.0308 Training
UCP Benchmark 21 6162.6 6525.3 6393.993 118.1858 Testing
Combined 18 2692.1 3246.6 2988.392 233.2270 Validation1
Combined Industrial 17 2176.0 3216.0 2589.400 352.0859 Validation2

3.4. Experimental setup

The algorithm of robust experimental design involves the following steps:
Step 1. Input values:

COCOMO2000 approach has three input values: X1=E, X2=PEMi, and X3=KLOC for all four
proposed architectures: ANN-L9, ANN-L18, ANN-L27, and ANN-L36;

COSMIC FFP approach has four input values: X1=Entry, X2=Exit, X3=Read and X4=Write
for both proposed architectures: ANN-L12 and ANN-L36prim;

UCP approach for the first proposed architecture ANN-L16 has six input values: X1=UAW,
X2=UUCW, X3=UUCP, X4=TCF, X5=ECF and X6=AUCP, while for the second proposed architecture
ANN-L36prim there are four input values: X1=UAW, X2=UUCW, X3=TCF and X4=ECF.

192

Step 2. Fuzzification of the input values 𝜇𝜇𝐷𝐷(𝑋𝑋)∶ 𝑅𝑅 → [0, 1] formula (14):
 𝜇𝜇𝐷𝐷(𝑋𝑋𝑖𝑖) = (𝑋𝑋𝑖𝑖−𝑋𝑋𝑇𝑇𝑖𝑖𝑚𝑚)/(𝑋𝑋𝑇𝑇𝑚𝑚𝑚𝑚 −𝑋𝑋𝑇𝑇𝑖𝑖𝑚𝑚). (14)
Step 3. The sigmoid function, as the activation function of the hidden layer was used (15):
 𝑦𝑦𝑖𝑖= 1

1+𝑒𝑒−𝑥𝑥𝑖𝑖
 , 𝑖𝑖=1,𝑚𝑚����� , 𝑦𝑦𝑖𝑖∈[0,1]. (15)

Example: Hidden and output layer functions for ANN-L36prim architecture (16)-(19):
𝑌𝑌1 = 1

1+𝑇𝑇−(X1∙W1+X2∙W4+X3∙W7+X4∙W10) (16)

𝑌𝑌2 = 1
1+𝑇𝑇−(X1∙W2+X2∙W5+X3∙W8+X4∙W11) (17)

𝑌𝑌3 = 1
1+𝑇𝑇−(X1∙W3+X2∙W6+X3∙W9+X4∙W12) (18)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 − 𝐿𝐿36𝑃𝑃𝐸𝐸𝑇𝑇𝑇𝑇 = 1
1+𝑇𝑇−(Y1∙W13+Y2∙W14+Y3∙W15+1∙W16). (19)

In the first proposed ANN-L16 architecture, an orthogonal vector plan of two levels L1 and L2, and
the initial values of the weighting factors Wi that take the values from the interval [-1, 1], were used.

The second proposed architecture has an orthogonal vector plan of three levels and the initial values
of the weighting factors Wi that take the values from the interval [-1, 0, 1]. For each subsequent iteration,
new weight factor values must be calculated as follows (e.g., for ANN-L16 architecture) [17], (20):

W1L1 = cost1 + cost2 + . . .+cost8,
W1L2 = cost9 + cost10 + . . .+cost16,
….

 W15L1 = cost1 + cost6 + . . .+cost16,
W15L2 = cost2 + cost3 + . . .+cost15,
where cost(𝑇𝑇) = Σ 𝑀𝑀𝑅𝑅𝐸𝐸(𝐴𝐴𝐸𝐸𝐸𝐸(𝑇𝑇)). (20)

For each subsequent iteration, the interval [-1, 1] is divided depending on the cost effect function
as follows [17], (21):

W1L1new = W1L1old
W1L2new = W1L2old + (W1L3old − W1L2old)/2
W1L3new = W1L3old (21)

where W1L1old, W1L2old, and W1L3old are values form the previous iteration.
The set of input values of each dataset converges depending on the value of the cost effect function.

Step 4. Defuzzification of the input values, formula (22):
 𝑋𝑋𝑇𝑇 = (𝑋𝑋𝑇𝑇𝑇𝑇𝑚𝑚 + 𝜇𝜇𝐷𝐷(𝑋𝑋𝑇𝑇)) ∙ (𝑋𝑋𝑇𝑇𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑇𝑇𝑇𝑇𝑚𝑚), (22)
 OA(ANNi) = Xi , where i = 16, i = 36.

Step 5. Different evaluation metrics are used to validate the obtained results, formulas (23)-(28):
𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑚𝑚 = |𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸|, (23)
𝑀𝑀𝐴𝐴𝐸𝐸𝑖𝑖 = 1

𝑚𝑚
∑ |𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸|𝑚𝑚
𝑖𝑖=1 , (24)

𝑀𝑀𝑅𝑅𝐸𝐸 = 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑚𝑚/𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, (25)
𝑀𝑀𝑅𝑅𝐸𝐸 = 1

𝑚𝑚
 ∙ ∑ 𝑀𝑀𝑅𝑅𝐸𝐸𝑖𝑖𝑚𝑚

𝑖𝑖=1 , (26)
MMRE = mean (MRE), (27)

where MRE refers to Magnitude Relative Error and MAE refers to Mean Absolute Error.
For each of the experimental part in every iteration, the Gradient Descent is monitored with the

condition GA<0.01, calculated as (28):
𝐺𝐺𝐴𝐴 = 𝑀𝑀𝑅𝑅𝐸𝐸𝑖𝑖1 − 𝑀𝑀𝑅𝑅𝐸𝐸𝑖𝑖2 < 0.01, 𝑤𝑤ℎ𝑇𝑇𝐸𝐸𝑇𝑇 𝑇𝑇 = 1, … ,𝑚𝑚 𝑚𝑚 𝑇𝑇𝐸𝐸 𝑚𝑚 𝑚𝑚𝑛𝑛𝑇𝑇𝑛𝑛𝑇𝑇𝐸𝐸 𝐸𝐸𝐸𝐸 𝐴𝐴𝐸𝐸𝐸𝐸. (28)

Step 6. Pearson’s, Spearman’s and R2 coefficients are monitored during the experiment, formula (29):

 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃(𝑋𝑋,𝑌𝑌) = ∑ (𝑚𝑚𝑖𝑖𝑁𝑁
𝑖𝑖=1 − �̅�𝑚)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)

�∑ (𝑚𝑚𝑖𝑖− �̅�𝑚)2 ∑ (𝑦𝑦𝑖𝑖− 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 (29)

Additionally, Prediction at 25%, 30%, and 50% is the percentage of the total number of
ANNs that meet the GA criterion (30).

193

𝑃𝑃𝑅𝑅𝐸𝐸𝐷𝐷(𝑚𝑚)
1
𝑚𝑚
∙��1, 𝑇𝑇𝐸𝐸 𝑀𝑀𝑅𝑅𝐸𝐸 ≤ 𝑚𝑚,

0, 𝐸𝐸𝐸𝐸ℎ𝑇𝑇𝐸𝐸𝑤𝑤𝑇𝑇𝐸𝐸𝑇𝑇.

𝑚𝑚

𝑖𝑖=1

PRED(k) = count(MRE) < 25%,
PRED(k) = count(MRE) < 30%,
PRED(k)=count(MRE)<50%,

where k=25, k= 30, and k = 50 [5,8,17]. (30)

4. Overview of the Achieved Results

After conducting numerous experiments with different ANN architectures within the three approaches
and utilizing various activation functions, the authors in [5, 7, 8, 17] concluded that the number of
iterations in the first COCOMO2000 approach is significantly higher compared to the other two,
reaching a maximum of 8 iterations for the ANN-L18 architecture, while the lowest number of iterations
(6) was achieved with the ANN-L27 architecture, Figure 9. By analyzing the achieved MMRE (%), it
can be observed that it is highest in the parametric COCOMO2000 model, reaching 193.1%, which is
completely unacceptable and acknowledged by the authors themselves, who sought alternative
solutions. The application of the new methodology on the improved COCOMO2000 model leads to a
significant reduction, especially in more complex architectures. The simplest ANN-L9 architecture in
this approach achieves an error of 72.0%, while the more complex ANN-L36 architecture achieves a
significantly lower error of 43.3%. Using the improved models within the COSMIC FFP approach, the
value of MMRE (%) decreases significantly, with the ANN-L36prim architecture achieving the lowest
error on all 7 used datasets, 28.8%. For UCP approach, both architectures achieved the lowest MMRE
(%) to data, 7.5%, which is a significant result considering that the lowest values in multiple research
studies were around 10% Figure 10. High values of correlation coefficients (Pearson's and Spearman's
rho and R2) indicate the degree of agreement between estimated and actual effort and cost values,
reaffirming the effectiveness and reliability of the proposed models. In the ANN-L36prim architecture
of the UCP approach, the value of the Pearson's coefficient is high at 0.784, the Spearman's rho
coefficient is very high at 0.983, and the R2 value is again very high at 0.931, indicating an extremely
strong relationship between the estimated and actual values obtained. In all models, all three coefficients
have values greater than 0.6, indicating a high and very high degree of correlation [18] Table 5. In the
COCOMO2000 approach, approximately one-quarter of the projects have a prediction of 25, around
one-third of the total number of projects have a prediction of 30, while the prediction of 50 is higher
than 50%, for more than half of the projects. In the COSMIC FFP approach, the prediction of 25 is
higher than 40%, the prediction of 30 is higher than 50%, and the prediction of 50 is higher than 80%.
In the UCP approach, the prediction of 25 for both models is 100%, thus the prediction of 30 and the
prediction of 50 were also 100% [7, 8, 9, 17] Table 6.

Table 5
 Pearson’s, Spearman’s rho and R2 correla�on

Correlation ANNs Pearson’s Spearman’s rho R2

COCOMO2000

ANN-L9 0.617 0.869 0.827
ANN-L18 0.615 0.864 0.861
ANN-L27 0.714 0.862 0.862
ANN-L36 0.866 0.904 0.869

COSMIC FFP ANN-L12 0.794 0.787 0.803
ANN-L36prim 0.751 0.772 0.794

UCP ANN-L16 0.875 0.982 0.917
ANN-L36prim 0.784 0.983 0.931

194

Figure 9. Convergence rate for all ANN architectures in COCOMO2000, COSMIC FFP and UCP

approach.

Figure 10. MMRE value for used approaches.

 . Table 6
 Prediction on 25, 30 and 50.

5.Discussion

In the new COCOMO2000 model, four different neural network architectures were used, along with
five datasets divided into three clusters, sigmoid activation function, fuzzification method, and Taguchi
method for effort and cost estimation. The experiments showed that this approach guarantees reliable
and stable results, as confirmed by monitoring the MMRE values. The convergence speed of the

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4

1 2 3 4 5 6 7 8 9

D
EL

TA
(I

)

NO. OF ITERATION

Convergence rate all ANNs

ANN-L9 ANN-L18 ANN-L27 ANN-L36

ANN-L12 ANN-L36prim ANN-L16 ANN-L36prim

193,1%

72,0% 59,7% 45,3% 43,3% 29,7% 28,8%
7,5% 7,5%

0,0%
50,0%

100,0%
150,0%
200,0%
250,0%

(%
)

MMRE(%)

Prediction ANNs PRED(25)
(%)

PRED(30)
(%)

PRED(50)
(%)

COCOMO2000

ANN-L9 26.1 35.1 66.8
ANN-L18 24.3 28.3 58.2
ANN-L27 27.2 31.2 54.8
ANN-L36 25.7 34.2 57.4

COSMIC FFP ANN-L12 43.4 50.5 81.2
ANN-L36prim 44.8 56.0 87.0

UCP ANN-L16 100.0 100.0 100.0
ANN-L36prim 100.0 100.0 100.0

195

architecture depends on the cost function and project nature, and the number of iterations is less than
10. More complex architecture exhibits faster convergence, shorter iteration time, and minimal MMRE.
Fuzzification as an encoding function along with clustering of input data proposed in [7] partially
alleviate the heterogeneous structure of the projects. The ANN-L36 architecture yields the best results
with the lowest MMRE of 43.3%, which is nearly twice as good as many previous studies where the
lowest error was 80.9%. The advantages of the model include short estimation time, high coverage of
actual effort, and minimal MMRE. The drawback is the need to find new methods to further reduce the
MMRE. There are no specific limitations for applying this approach [5, 9, 17].

The new COSMIC FFP model in this study demonstrates that the application of two different ANN
architectures, based on Taguchi Orthogonal Arrays, further reduces the MMRE value. This model
belongs to user-functional requirement-based approaches with four input values. By using data input
clustering methods from the ISBSG dataset and fuzzification as encoding method, the different project
structures are successfully controlled and mitigated [16]. The results show that models constructed
based on these two proposed ANN architectures (ANN-L12 and ANN-L36prim) significantly reduce
the MMRE value by approximately 14.5% compared to the previous experiment on the improved
COCOMO2000 model. The efficiency and stability of the proposed model are confirmed through the
calculation of two correlation coefficients, while tracking the predictions on three different criteria
further validates the accuracy and reliability of this model. Additional advantages of this approach
include a lower number of iterations (5 to 6), the use of simple ANN architectures, optimization through
Taguchi Orthogonal Arrays, wide coverage of different functional size values of software projects, and
the utilization of the ISBSG repository of real project data collected from various companies. This
approach is not limited and can be applied in various business and scientific domains [15, 17].

The new UCP model utilizes two different ANN architectures and four distinct datasets, a sigmoid
activation function, fuzzification method, and Taguchi method for software development effort and cost
estimation. This model yields significantly better results compared to the previous two, as evidenced
by the MMRE value and convergence rate of each architecture. Based on the three parts of the
experiment, it is concluded that the ANN-L16 architecture converges after the fourth iteration, resulting
in an MMRE value of only 7.5%, which is 35.8% better than the first COCOMO2000 model. The error
value of the UCP model is 21.3% lower than the second proposed COSMIC FFP model. Both
architectures of this model demonstrate 100% accuracy in predictions. The advantages of this model
include a lower number of iterations (4-6), simple architectures, high coverage of different effort values,
and the lowest MMRE value of 7.5%. A potential drawback is the need for finding new methods to
further reduce of the MMRE. This model can be used independently or in combination with the previous
two, depending on the company's historical data. Although not standardized, it is increasingly used in
the software industry for effort estimation for software project implementations [8, 17].

6. Conclusion

The proposed, new models in the studies [5, 7, 8, 9, 12, 16, 17, 18] can inspire the development of
efficient tools for accurate and reliable estimation of effort and costs in all phases of software project
development. These models target software companies, engineers, and project managers, enabling them
to obtain fast and precise results for proper assessment of project requirements. Using these models can
significantly reduce common problems in software engineering, improving efficiency and facilitating
work for professionals and teams. The selection of models relies on historical data from software
companies and their direct applicability to real-world situations. Looking ahead, our endeavors will
encompass the utilization of specific types of Recurrent Neural Networks and the implementation of
WHAT-IF simulations to enhance this capability.

7. References

[1] A Guide to the Project Management Body of Knowledge (PMBOK Guide). Third Edition, Project
Management Institute, Inc. 2004. ISBN: 1-930699-45-X.

[2] B. W. Boehm, C. Abts, and S. Chulani. Software development cost estimation approaches-A
survey. Annals of software engineering, 10 (1): 177-205, 2000.

196

[3] P. S. Kumar et al. Advancement from neural networks to deep learning in software effort
estimation: Perspective of two decades. Computer Science Review, 28 (11):100288, 2020.

[4] P. S. Kumar and H. Behera. Estimating software effort using neural network: An experimental
investigation. Computational Intelligence in Pattern Recognition, Proceedings of CIPR, pages
165–180, Springer, 2020.

[5] D. Rankovic, N. Rankovic, M. Ivanovic, & L. Lazic. Convergence rate of Artificial Neural
Networks for estimation in software development projects. Information and Software Technology,
138, 106627, Elsevir, 2021.

[6] S. Devnani-Chulani et al. Calibration Approach and Results of the COCOMO II Post-Architecture
Model. In Proceedings of the 20th Annual Conference of the International Society of Parametric
Analysts (ISPA) and the 8th Annual Conference of the Society of Cost Estimating and Analysis
(SCEA), 1998.

[7] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. A new approach to software effort estimation
using different artificial neural network architectures and Taguchi orthogonal arrays. Ieee access,
9, 26926-26936, 2021.

[8] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. A novel UCP model based on artificial neural
networks and orthogonal arrays. Applied Sciences, 11(19), 8799, 2021.

[9] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. Influence of input values on the prediction
model error using artificial neural network based on Taguchi's orthogonal array. Concurrency and
Computation: Practice and Experience, 34(20), e6831, 2022.

[10] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. (2021). Improved effort and cost estimation
model using artificial neural networks and taguchi method with different activation functions.
Entropy, 23(7), 854, 2021.

[11] J. Popović. Enhancing methods for effort estimation in software projects. Doctoral dissertation,
University of Belgrade, School of Electrical Engineering, Belgrade, Serbia, 2016.

[12] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. Artificial Neural Network Architecture and
Orthogonal Arrays in Estimation of Software Projects Efforts. In 2021 International Conference
on INnovations in Intelligent SysTems and Applications (INISTA) (pp. 1-6). IEEE, 2021.

[13] B. W. Boehm. Safe and simple software cost analysis. IEEE software, 17 (5): 14-17, 2000.
[14] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and development effort

prediction: a software science validation. IEEE transactions on software engineering, (6): 639-648,
1983.

[15] R. Meli et al. On the applicability of COSMIC-FFP for measuring software throughout its life
cycle. In Proceedings of the 11th European Software Control and Metrics Conference, pages 18-
20, Springer, 2000.

[16] N. Rankovic, D. Rankovic, M. Ivanovic, & L. Lazic. COSMIC FP method in software development
estimation using artificial neural networks based on orthogonal arrays. Connection Science, 34(1),
185-204, 2022.

[17] N. Ranković, Estimation of Effort and Costs in the Development of Software Projects Using
Artificial Neural Networks Based On Taguchi’s Orthogonal Vector Plans (Doctoral dissertation,
University of Novi Sad (Serbia)), 2022.

[18] D. Rankovic, N. Rankovic, M. Ivanovic, & L. Lazic. The Generalization of Selection of an
Appropriate Artificial Neural Network to Assess the Effort and Costs of Software Projects.
In Artificial Intelligence Applications and Innovations: 18th IFIP WG 12.5 International
Conference, AIAI 2022, Hersonissos, Crete, Greece, June 17–20, 2022, Proceedings, Part I (pp.
420-431). Cham: Springer International Publishing, June 2022.

197

