
Automated Transformations and Alternate
Translations: A Case Study
Doni Pracner1,*, Nataša Sukur1 and Zoran Budimac1

1University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovića 4,
21000 Novi Sad, Serbia

Abstract
An important part of software maintenance is understanding its logic. This is especially true for
old systems and new developers, and can be additionally complicated when the source is in low-level
structures. In this paper we take a look at one specific process that translates bytecode into an intermediate
language (WSL) and then automatically transforms the code into high-level structures. Specifically we
evaluate how different translations of the same input programs (while using the same transformations)
influence the end results.

Keywords
Automated Maintenance, Hill Climbing, Bytecode, Translations, Program transformations

1. Introduction

Modern systems are mostly integrated with complex software that evolves as it is used. This
leads to new complexities that were introduced though many small changes and make the
software harder to change or replace. When a need for reengineering emerges, often the fist
step is to fully understand the software and its functionalities, so that the modifications do
not cause any new defects, but rather cause improvement and that they are done in a logical
manner [1, 2].

Understanding the original code can be hard, especially if all that is available is low-level
versions of the program. In these cases the ideal solution would be to somehow transform these
into high-level versions. One type of tools for these types of tasks are decompilers, but those are
usually focused on a single type of inputs and often specialise in reversing certain compilers,
while in other cases might lead to wrong outputs or even uncompilable code. In our previous
work we have shown an open source multistage, adaptable process with tools that are designed
to be used independently and guarantee to keep the original semantics [3]. The main stages are
1) translation from low-level code to an intermediate language and 2) transformation of that
low-level translation to a high-level program. The current implementation of the transformation

SQAMIA 2023: Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, September 10–13,
2023, Bratislava, Slovakia
*Corresponding author.
$ doni.pracner@dmi.uns.ac.rs (D. Pracner); natasa.sukur@dmi.uns.ac.rs (N. Sukur); zjb@dmi.uns.ac.rs
(Z. Budimac)
� https://perun.pmf.uns.ac.rs/pracner/ (D. Pracner)
� 0000-0002-3428-3470 (D. Pracner); 0000-0003-4701-9289 (N. Sukur); 0000-0001-5688-6320 (Z. Budimac)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

198
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



process is called Hill Climbing in Fermat or HCF for short. The transformer was made in such a
way that it is independent of the translator and makes no asumptions on the inputs, just that it
should transform low-level structures into more readable counterparts. It was also made to be
fully automatic and require no domain-knowledge from the developer to use it.

In this paper we will look at how different translations of the same input programs can
influence the transformation process. Specifically we will use a set of MicroJava bytecode
programs and different combinations of switches in our translation tool. While the results are
obtained from a single process and samples, some of the conclusions should be applicable to
other processes interested in making programs more readable.

The rest of the paper is organised as follows. Section 2 show a brief overview of related work.
Section 3 shows the main comparisons of the variants of the translated programs: the metrics of
these translations; the metrics of final transformed programs; the executions times; the numbers
of transformations selected and tried. In Section 4 we briefly show what are the results that can
be achieved with the best switches selected. Finally, conclusions are given in Section 5.

2. Related Work

Understanding existing systems can be a hard task, but is also very crucial for regular mainte-
nance, adding new features, or complete reengineering. Some of the simpler tools types that
help in these actions are code visualisers and browsers, these days common in some form in
most IDEs [4]. More advanced tools allow customisation and adaptability to the task at hand.

Automating the processes can reduce the work load for developers. Specifically when the
inputs are low-level programs the task is much harder for the developers. Tools such as
decompilers try to reassemble the original high-level structures. While they can be very good
with some inputs, they often rely on knowing the compiler being used and its specific techniques.
Working with assembly code is notoriously hard, due to the many optimisation techniques used
by compilers [5][6][7]. Even more abstract run-times, with much more data preserved, such as
Java bytecode can not be reliably decompiled in general, with some reports assessing even the
best decompilers to work at about 80% of the time [8].

In general, program transformations can be considered any actions that take a program as
an input and give a different program as the output. Most systems are interested in special
types of transformations. For instance, many helper tools have catalogues of refactoring
transformations, such as inline procedures, extract procedure, introduce constants, etc. Some
systems are designed around the idea of meta-programming, writing systems that are meant to
help build systems, such as Rascal [9]. One class of transformations are semantics-preserving,
which allow for changes in the structure of the code, while retaining all the functionality. These
are especially useful for comprehension, since they can be used to find a more understandable
version of the program.

2.1. FermaT/WSL

FermaT is a program transformation system, the current implementation of WSL language [10].
It is designed for software maintenance tasks, and among other things contains a large catalogue

199



of semantics-preserving transformations. It was successfully used to automatically restructure
industrial assembly projects (sometimes millions of lines) into maintainable C or COBOL code.

FermaT comes with several metrics built-in. In later sections these will be used to evaluate
the input and output programs at various stages: McCabe’s cyclomatic and essential complexity;
number of statements; control flow and data flow; size of the abstract syntax tree generated; and
finally structure, a custom weighted metric in WSL representing the complexity of structures in
the program [11].

3. Comparison of Translation Variants

This section presents the main experiments and results of the paper. The input programs are
MicroJava bytecode, and the end results of the Hill Climbing in Fermat (HCF) process are high-
level versions of these programs in the WSL language. WSL is also used for the intermediate
representations and is the one that is used for transformations.

The automated part of HCF is based on a hill climbing algorithm, a pre-selected set of
transformations and a fitness function. In our case the fitness function is the structure metric,
which gives a weighted sum of the parts of the program and gives a rough idea of “structuredness”.
The transformations are evaluated one by one on the input programs. If one of them leads to a
better program, i.e. one with a lower metric, it is selected as the base for further transformations.
The process continues until no further improvements can be found.

The translation tool mjc2wsl can produce serveral variants of the same input programs. These
variations of the tool itself will be described in more detail in Section 3.1. Then the differences
between the translated versions for this dataset will be analysed in Section 3.2. After that,
Section 3.3 compares the influences of these switches on the transformation process. Section 3.4
shows these influences on execution times and number of transformations tried. Finally, an
overview of the results for one of these variants are presented in Section 4.

3.1. Variations in Translations

The tool mjc2wsl translates MicroJava bytecode into WSL, which enables the programs to be
transformed. The translations are based on the idea of creating a virtual machine integrated with
the code. There are local variables that represent the state of the machine, such as the operation
stack, procedure stack and the heap. The translation results can be influenced by command line
switches. The following three switches are used in this paper, and their combinations produce
eight different variants. These translations will be reffered to as alpha-wsl-v8.

Stack operations --genPopPush or --genHeadTail influence how the storage and retrieval of
values from the expression and method stack are handled. These structures are internally
just lists, and the first option uses the specialised POP and PUSH commands. The other one
uses the more generic HEAD and TAIL to remove an element and a straight access to the
first element for retrieval.

Local variables --genLocalsAsArray or --genLocalsSeparate: the first option generates an
array of local variables that are accessed by their index; these arrays are then stored the

200



procedure stack. The second option generates all the local variables as separate names;
they are then stored one by one on the procedure stack.

VAR blocks --genLocalVars or --genGlobalVars influences the temporary variables used for
instance in arithmetic operations. The first option will try hard to make all of them in
local VAR blocks, while the other one will just use the same global variables for the these
needs.

For simpler references in future text, variants of programs will be marked with two letter
shorthands, all of which are shown in Table 1. Versions of programs are therefore marked with
three two letter codes, in the order given in the table.

Table 1
Abbreviations for the parameters used

Code Option used

Stack operations
ht HEAD and TAIL

pp POP and PUSH

Temporary variables
gl Global
lo Local VAR blocks

Local variables (procedures)
ar Stored together in an array
sp Separate variables

3.2. Influence of Switches on the Metrics of Translated Programs

In this section we will give an overview of how the previously explained switches influence the
metrics. The experiments were run using mjc2wsl version 1.0.0, FermaT 18c (internal version
number).

The main goal is to compare these variants, so the differences will be expressed as percentage
to the best results. This helps to normalise the input program samples, but also the metrics
themselves, since the values can vary a lot. For each metric and each program, a best version
will be found, and then all of them are compared to it. The formula used is the the difference
between the value and the best value for that sample and metric, divided by the best value.
These are then averaged per metric and variant group and will be shown in tables further on.

We start with an exception. McCabe’s Essential Complexity is not influenced by any of
combinations of the switches. Any additional IF statements and variants are not counted, as
they will be grouped into the same single-entry-single-exit block.

McCabe’s Cyclomatic Complexity is affected only by the switch for the temporary variables.
The different types of access to the stacks or the different storage of local variables are not
affecting this metric. The imlementation of local blocks for temporary variables uses additional
jump flags that need to be set and checked later on which results in higher values for this metric.

201



On average the increase is 27.25%, with a high standard deviation of 23 percentage points. This
is due to rare samples that have no or almost no extra jumps in the translation.

Number of statements is most influenced by the first two switches, specifically the combination
of pp-gl gives the lowest results (Table 2). The final option (ar or sp) has less influence on
the results, mostly just a few percent between them. Which one of these is better is sample
dependant. When either of the first two switches is changed (to ht or lo, respectively) the
results of the metric increase about 20%, while if both are changed at the same time it results
in almost 40% more statements. The first switch causes this difference since HEAD/TAIL need
more statements for the same operations than POP/PUSH. Local VAR blocks also generate extra
statements, including the block itself, but also extra jump flags. Finally, the third switch is
sample dependant – sometimes extra handling of the individual local variables at the start
and end of procedures will be more expensive than the array operations needed for the other
versions.

Table 2
alpha-wsl-v8, statements metric

avg stdev max min

ht-gl-ar 20.23 3.34 26.42 15.22
ht-gl-sp 19.19 2.79 23.77 14.29
ht-lo-ar 37.41 5.33 47.06 28.26
ht-lo-sp 36.37 6.45 47.71 28.21
pp-gl-ar 1.87 2.28 7.14 0.00
pp-gl-sp 0.63 0.94 2.41 0.00
pp-lo-ar 19.05 3.91 24.51 13.04
pp-lo-sp 17.81 4.85 26.51 9.43
percentage difference to lowest results

Control Flow/Data Flow metric values behave similar to the number of statements when
switches are changed, but the values are proportionally larger. The pp-gl combination is again
showing the lowest values, with pp-lo about 20% higher, ht-gl about 40% higher, and ht-lo about
55%. CFDF is more sensitive to the HEAD/TAIL variation since it introduces more list operations.

Table 3
alpha-wsl-v8, CFDF metric

avg stdev max min

ht-gl-ar 40.65 6.71 55.71 30.43
ht-gl-sp 39.45 5.06 45.74 31.03
ht-lo-ar 56.23 8.94 67.14 40.58
ht-lo-sp 55.04 8.56 67.96 39.66
pp-gl-ar 2.47 3.06 8.75 0.00
pp-gl-sp 0.93 1.40 3.59 0.00
pp-lo-ar 18.05 4.26 22.50 10.14
pp-lo-sp 16.51 4.64 23.51 8.62
percentage difference to lowest results

202



Size metric (of the abstract syntax tree) always has the best results on all of the samples for
the variation pp-gl-sp, as shown in Table 4. Next up is pp-gl-ar, which is on average 8% worse
(± 2.5 percentage points). As was the case with the previous two metrics, there are groups
based on the first two switches follow it, but the differences between them are bigger. In short,
pp-lo is about 30% worse, ht-gl 50–60%, ht-lo-sp 77% and ht-lo-ar 85%. The differences are more
pronounced since there are more generated nodes in the AST that earlier metrics would ignore.

Table 4
alpha-wsl-v8, size metric

avg stdev max min

ht-gl-ar 57.51 8.48 69.60 43.63
ht-gl-sp 50.14 9.15 64.25 35.29
ht-lo-ar 84.36 16.70 109.25 58.33
ht-lo-sp 77.00 17.45 104.74 50.00
pp-gl-ar 7.90 2.52 13.73 3.12
pp-gl-sp 0.00 0.00 0.00 0.00
pp-lo-ar 34.75 9.42 50.15 22.13
pp-lo-sp 26.86 8.98 40.52 14.71

percentage difference to lowest results

Structure metric values are very similar to the size metric (usually a few percentage points
higher), and just like there all of the samples have their best results with pp-gl-sp combination
(Table 5). Similarities are due to this metric being a weighted sum of the components of the
program, and higher weights are mostly correlated with more nodes in the abstract syntax tree.

Table 5
alpha-wsl-v8, structure metric

avg stdev max min

ht-gl-ar 57.42 4.75 67.35 51.49
ht-gl-sp 50.43 6.74 63.16 39.81
ht-lo-ar 86.93 11.20 110.21 71.88
ht-lo-sp 79.95 13.38 106.52 61.98
pp-gl-ar 7.60 2.62 13.45 3.17
pp-gl-sp 0.00 0.00 0.00 0.00
pp-lo-ar 35.91 7.02 48.30 24.21
pp-lo-sp 28.31 7.42 41.63 17.37

percentage difference to lowest results

Overall each of the switches shows differences in results for the metrics. The highest difference
in values is shown with the ht/pp switch, followed by the gl/lo. The sp/ar also shows differences,
but sometimes they are not very significant. The combination of pp-gl-sp proviedes the lowest
values for most metrics, usually closely followed or sometimes beaten by the pp-gl-ar variant.
On the other hand, the metrics will not always correlate with readability, as should be expected.
For instance, although the lo variants usually have worse numeric results, in most cases it is

203



easier to understand a program that has defined local variables. More importantly, since these
translations are meant to be automatically transformed in the next step, it is more important
how these switches will influence that process and the transformed end results.

3.3. Influence of Switches on the Final Results

This section will focus on comparing the influence of the translation switches on the final
outputs of the automated transformation process. Part of the process was automated using
GNU Parallel [12]. All of these variations of translations came from the same bytecode, so the
comparison can focus on the sizes of the final programs and therefore discover which versions
of the programs lead to the best end results for which metric. The percentage improvements
that the automated transformation made are not as relevant for this, since the start points were
different, but will be shown in a later section.

Like in the previous section, normalisation is done and percentage differences to the best
result for each sample and metric are used. In a few cases, this can lead to problems with the
formula, as the best value of CFDF (Control Flow and Data Flow) can reach 0, which would lead
to a “division by zero” error. To sidestep this problem the particular example has the values
offset by one, which maintains the raw difference and should be an acceptable approximation
of the percentage difference. Unlike in the previous section, for all shown metrics there are
samples that end up being the same as the best sizes in all variants (visible in the min column).
It is not the same sample across all of these tables, but shows how there are samples that will be
transformed to the same end result no matter the translation.

As in the previous section, McCabe’s metrics are less sensitive to the switches, and won’t
be shown in tables. Cyclomatic Complexity always has the best results with the pp-lo switches.
Using pp-gl gives slightly worse results (up to 16%) on a few of the samples. The ht variants
lead to varied results, sometimes same as pp, but sometimes twice as large. Essential Complexity
is mostly unaffected by the switches, but global variants tend to have a few percentage point
worse results.

Number of statements and Control Flow/Data Flow have similar trends in their results, like
in the previous section. On average, the best results are achieved with pp-gl-ar, with pp-lo-sp
being close, and in one case being the best. Tables 6a and 6b illustrate this in more detail. All
the ht versions are very consistently much worse.

Size (of the AST) and structure (weighted sum of elements) metrics are another pair with
similar trends. Variant pp-gl-sp is best on average, with a few samples where pp-gl-ar is better.
The ht variants are generally significantly worse, as can be seen from Tables 7 and 8.

Overall, the high standard deviation numbers in the given tables indicate that there is a high
variation of the differences in results within a single group across the different samples. This
was also verified by manual inspections. Part of the explanation is that for every metric there
were samples that would be transformed into the same form independent of the switches used.
On the other hand there would be a few samples with extremely bad results, shown in the max
columns in the tables.

Observing the results across all metrics at once, McCabe’s metrics (Essential more that
Cyclomatic) are less influenced by the switches. For other metrics, much clearer conclusions
can be made.

204



Table 6
Transformed alpha-wsl-v8, a) statements and b)CFDF metric

avg stdev max min

ht-gl-ar 80.19 119.08 360.00 0.00
ht-gl-sp 134.48 120.73 340.00 0.00
ht-lo-ar 73.13 117.46 360.00 0.00
ht-lo-sp 108.17 112.14 340.00 0.00
pp-gl-ar 15.18 20.68 50.00 0.00
pp-gl-sp 36.26 48.35 136.36 0.00
pp-lo-ar 2.78 8.61 33.33 0.00
pp-lo-sp 10.78 18.03 55.93 0.00

avg stdev max min

ht-gl-ar 137.55 219.51 720.00 0.00
ht-gl-sp 277.05 247.39 700.00 0.00
ht-lo-ar 133.10 218.03 720.00 0.00
ht-lo-sp 242.23 254.28 700.00 0.00
pp-gl-ar 19.38 29.15 100.00 0.00
pp-gl-sp 39.31 48.75 120.00 0.00
pp-lo-ar 4.39 14.93 60.00 0.00
pp-lo-sp 12.61 22.00 65.06 0.00

percentage difference to lowest results

Table 7
Transformed alpha-wsl-v8, size metric

avg stdev max min

ht-gl-ar 64.67 84.13 228.57 0.00
ht-gl-sp 115.47 122.66 500.00 0.00
ht-lo-ar 64.64 83.07 228.57 0.00
ht-lo-sp 102.31 124.33 500.00 0.00
pp-gl-ar 13.46 18.24 52.38 0.00
pp-gl-sp 16.64 20.05 52.05 0.00
pp-lo-ar 5.96 14.88 51.43 0.00
pp-lo-sp 3.48 6.68 21.83 0.00

percentage difference to lowest results

Table 8
Transformed alpha-wsl-v8, structure metric

avg stdev max min

ht-gl-ar 95.98 137.27 394.12 0.00
ht-gl-sp 155.21 166.62 662.50 0.00
ht-lo-ar 96.05 136.56 394.12 0.00
ht-lo-sp 140.31 169.54 662.50 0.00
pp-gl-ar 16.58 23.64 74.24 0.00
pp-gl-sp 19.44 23.52 62.25 0.00
pp-lo-ar 8.05 20.41 74.24 0.00
pp-lo-sp 3.88 7.30 22.29 0.00

percentage difference to lowest results

Using the ht option leads to worse results than pp, mostly due to the inability of the current
versions of the procedure parameters transformations to recognise HEAD/TAIL operations. This
could be solved in the future with expansions to these transformations, or building a new
specific transformation that changes these to POP/PUSH.

205



The differences between local and global temporary variables are more pronounced with the
pp group, where the advantage is clearly with the lo versions. With the ht group, these tend to
be more equal.

For most metrics (apart from McCabe’s) storing the variables in a single array shows better
results than handling them separately. However, best results overall for size and structure
are exactly with pp-lo-sp making this narrowly the best candidate for transformations in this
analysis.

A lot of the trends are reversed compared to the initial metrics of the translated programs.
The global variants usually had better results for the translation, yet the local ones end up with
better final transformed results. Similarly the advantage that sp had over ar in the translated
ones is mostly overturned in the transformation process.

3.4. Influence of Switches on Execution Times

Another aspect to be considered when choosing the translation variant to work with is the
length and complexity of the process. Table 9 shows the execution times for the variants, as
well as the number of total transformations tried, and the number of transformations that were
selected. The numbers are taken from experiments run on a Intel Xeon E5-2420, clocked at 2.2
GHz, with times taken as totals for transforming all the samples in a single run.

When comparing switches, there is an advantage on the side of pp against ht, and lo against
gl, both being several times faster. On the other hand sp and ar vary a lot combined with the
first two: ht-gl-ar it is twice as fast as ht-gl-sp; with the lo versions it is about 20% slower, while
pp-gl-ar is about 60% slower. The number of transformations tried rises with the times, although
it is not strictly correlated. For example, the slowest version was 162 times longer than the
fastest, while trying “only” 22 times more transformations. This is due to some transformations
being slower than others, and on more successful variants they get applied rarer and to shorter
pieces of code. The number of selected transformations is much more related to the variant at
hand, than to the times, with a big difference between the ht and pp versions.

Table 9
Execution times and counts for alpha-wsl-v8 transformations

Variant Time Tried Selected

ht-gl-ar 642m 17.394.246 2401
ht-gl-sp 1297m 22.359.953 2293
ht-lo-ar 29m 2.292.549 2405
ht-lo-sp 23m 1.798.537 2231
pp-gl-ar 168m 6.881.829 1669
pp-gl-sp 102m 7.233.491 1539
pp-lo-ar 10m 1.113.809 1851
pp-lo-sp 8m 1.021.643 1823

There is a correlation that the variants with better metrics took significantly less time
to execute. This is somewhat inherent to the hill climbing process used – there are more
transformations to try on longer programs, therefore when the transformations are successful

206



the process finds the local minimums faster.

4. Transformation Improvements With Best Switches

The analysis so far has shown that the pp-lo-sp variant is the best candidate for transformations
(with pp-lo-ar being a close second). The previous section was primarily showing results as
comparisons between variants. In this section, to give a better idea of what can be expected
from the transformation process, the end results of the transformations for this variant will
disscussed in comparison to the translated code. Table 10 shows the average values of the
original code, the transformed code, and the average percent of improvement per program in
alpha-wsl-pp-lo-sp sample set.

Table 10
alpha-wsl-pp-lo-sp transformation metrics

Metric WSL WSL-t % diff

McCabe Cyclo 8.62± 5 3.19± 3 66.38± 11
McCabe Essential 2.88± 1 1.06± 0 57.69± 13

Statements 166.44± 144 16.56± 23 91.31± 4
CFDF 239.69± 207 21.94± 35 93.62± 5

Size 782.06± 649 112.88± 130 87.88± 5
Structure 2367.81± 2070 243.88± 292 91.25± 3

All of the metrics tested show significant improvements, in line with the expectations of the
experiments. Most metrics show improvements in the range of 87− 94%. The two exceptions
are McCabe metrics. The least improved is McCabe Essential complexity at 57.69%. Most
translated programs don’t have very high values for this metric, and often the final transfromed
program will lower it to 1. The samples have a lot of variety in complexity and size, which is
reflected in high standard deviations on the “raw” values of the metrics. On the other hand the
percentage results have low standard deviations, showing that the process gives stable results
in terms of the improvements for a single program.

5. Conclusion

This paper presented a case study of how changing the translation of programs while using the
same transformation system can influence the final results. Specifically this is observed on an
automated process that transforms low-level MicroJava bytecode into high-level structures in
WSL. The used tool mjc2wsl provides several switches which were combined to get different
versions of same input programs.

The comparisons were done at several stages of the process. First, the translations themselves
were compared using several metrics (Section 3.1). Second, the final transformed versions were
also compared using those metrics (Section 3.3). Third, the execution times and the numbers of
tried and selected transformations were compared (Section 3.4).

207



The results show that switches influence all of these. When considering metrics, McCabe’s
Cyclomatic and Essential Complexity showed less change than others. Metrics of the translated
versions were proven to be mostly irrelevant since the metrics on end results reversed many
of the trends. On the other hand there was good correlation between execution times, and
transformation numbers with the best results metrics-wise.

The main contribution of this paper is the recommendation of a set of switches for the tools
at hand, empowered by empiric data and the analysis for these results. This analysis can be
used for other tools that could be used for similar transformation processes, or in designing
new tools.

Further experiments about these phenomena should be done to confirm the results for a more
general use case. Experiments could use different translation tools and different languages for
these comparisons. Different transformation tools should also be used. The sample set used
could also be expanded or replaced with another.

5.1. Reproducibility

The experiments presented in this paper used GPL licensed open source software and the
dataset is also publicly available. FermaT version 18c is available from out git repository1. The
translation tool is available from the repository: mjc2wsl, version 1.1.02. The used HCF script is
also available as part of the mjc2wsl repository in the “src-wsl” folder. The data sets is available
in the repository of the translator, in the “samples” folders.

All of the input files, translations, transformations and logs are available as an archive on the
project web site3.

Acknowledgments

The authors from the University of Novi Sad gratefully acknowledge the financial support of
the Ministry of Science, Technological Development and Innovation of the Republic of Serbia
(Grant No. 451-03-47/2023-01/200125)

References

[1] H. Yang, M. Ward, Succesful Evolution of Software Systems, Artech House, Norwood, MA,
USA, 2003.

[2] P. Tripathy, K. Naik, Software Evolution and Maintenance, John Wiley & Sons, 2014.
[3] D. Pracner, Z. Budimac, Enabling code transformations with FermaT on simplified bytecode,

Journal of Software: Evolution and Process 29 (2017) e1857–n/a. URL: http://dx.doi.org/10.
1002/smr.1857. doi:10.1002/smr.1857.

1https://gitlab.com/clatu/fermat3/-/tags/fermat-18-c
2https://github.com/quinnuendo/mjc2wsl/releases/tag/v1.1.0
3https://perun.pmf.uns.ac.rs/pracner/transformations/

208



[4] J. Siegmund, Program comprehension: Past, present, and future, in: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 5, 2016, pp. 13–20. doi:10.1109/SANER.2016.35.

[5] C. Cifuentes, D. Simon, Procedure abstraction recovery from binary code, in: Proceedings
of the Conference on Software Maintenance and Reengineering, CSMR ’00, IEEE Computer
Society, Washington, DC, USA, 2000, pp. 55–64. URL: http://dl.acm.org/citation.cfm?id=
518900.795261.

[6] E. J. Schwartz, J. Lee, M. Woo, D. Brumley, Native x86 decompilation using semantics-
preserving structural analysis and iterative control-flow structuring, in: Proceedings of
the USENIX Security ’13 Symposium, 2013, pp. 353–368.

[7] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, M. Smith, No more gotos: Decompilation
using pattern-independent control-flow structuring and semantic-preserving transforma-
tions, in: Network and Distributed System Security (NDSS) Symposium 2015, The Internet
Society, 2015.

[8] N. Harrand, C. Soto-Valero, M. Monperrus, B. Baudry, Java decompiler diversity and its
application to meta-decompilation, Journal of Systems and Software 168 (2020) 110645.

[9] M. Hills, P. Klint, Php air: Analyzing php systems with rascal, in: Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, IEEE, 2014, pp. 454–457.

[10] M. Ward, Assembler restructuring in FermaT, in: SCAM, IEEE, 2013, pp. 147–156. doi:http:
//dx.doi.org/10.1109/SCAM.2013.6648196.

[11] M. Ward, T. Hardcastle, S. Natelberg, WSL Programmer’s Reference Manual, 2008.
[12] O. Tange, Gnu parallel - the command-line power tool, ;login: The USENIX Magazine 36

(2011) 42–47. URL: http://www.gnu.org/s/parallel. doi:http://dx.doi.org/10.5281/
zenodo.16303.

209


