
Matrix Based Approach to Structural and Semantic
Analysis Supporting Software Product Line Evolution
Jakub Perdek1,*, Valentino Vranić2

1Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava, Ilkovičova 2, 842 16 Bratislava 4, Slovakia

Abstract
The evolution of product families is complex due to the exponential growth of new products with a
modified codebase. It is caused by the introduction of new such important or restrictive features that
allow transforming an existing solution into a new product as the basis for another one. Specifically, both
the structure of resulting components and semantic information need to be taken into account to provide
in-depth supporting materials by capturing feature interactions and their capabilities. Additionally,
data from heterogeneous applications usually differ and their handling needs account for different
scoring. We tackled these problems by creating various supporting views based on structural and
semantic information. Related applications are modeled as graphs, also instances of their components are
optionally included, and various matrix based algorithms based on similarity metrics are integrated. The
final integrated and automated approach is efficient because it runs in polynomial time, is extensively
focused on dependencies/connections between nodes, can be adapted to big data, and is extendable
and enhanced to support different metrics. Its capability to organize analyzed parts into hierarchies by
applying hierarchic clustering helps to specify the context to support comprehension or find a related
position of features based on their interaction, especially their coupling. With regards to possible design
issues, each updated product should be checked by an expert or more autonomously against performed
predictions, especially its complexity and coupling between components. Additionally, extendability
can be measured from the chosen sequence of such updates. An approach including an automated
matrix based feature recognition process is presented in the analysis of modular Angular applications.
Our future work will be more focused on semantic enhancements, and its applications on big data by
generating and analyzing various types of fractals including extracted knowledge from them.

Keywords
feature modeling, feature trees, matrix clustering, hierarchical clustering, graph comparison

1. Introduction

Software evolution, especially the evolution of software product lines, requires support decision-
making with domain information about features, components, and related software artifacts.
Even if the number of resulting products rises exponentially then the process is more complicated.
We tackle both problems by proposing a method capable of generating various supporting views

SQAMIA 2023: Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, September 10–13,
2023, Bratislava, Slovakia
*Corresponding author.
$ xperdek@stuba.sk (J. Perdek); vranic@stuba.sk (V. Vranić)
� http://fiit.sk/~vranic/ (V. Vranić)
� 0009-0003-3616-4373 (J. Perdek); 0000-0001-9044-4593 (V. Vranić)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

26
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

according to chosen metrics based on structural and semantic information. For this purpose,
we integrated various matrix based algorithms which are based on similarity measures.

We addressed scalability issues by selecting fast algorithms which are capable to process
graphs given by their adjacency matrices. In addition, issues related to restricted matrix size are
handled by selecting only a subset from all candidates. Available approaches are mostly focused
on semantics but do not directly handle structural information given by dependencies/connec-
tions between nodes. In our integrated approach, the information can be balanced with semantic
one to focus on different software aspects that can support decision-making. Consequently, it is
driven by calculated similarity metrics which selection depends on the chosen configuration.

The paper is focused on presenting the important aspects and applications of the used
algorithms followed by their integration. Additionally, we commented on some of their parts
and given decisions during their integration. Finally, We present our method applied to analyze
two Angular applications, namely Puzzle To Play and Design 3D. From both of them, graphs were
created. Extracted modular software fragments are mostly services or components. Connections
are created based on observed coupling given by imports and occurrences in the HTML template.
We made the proposed solution publicly available on GitHub1. The most of functionality is
verified with unit tests and results agree with ones from the authentic papers.

The paper is organized as follows: Section 2 provides a detailed analysis of semantic methods
for feature extraction and hierarchical mapping with a focus on graph merging and clustering
driven by semantics. The way how various matrix based methods are integrated to support
decision-making about software product line evolution is explained in Section 3. The solution
is discussed in Section 4. Comparison with other available semantic-based methods is stated in
Section 5. Finally, conclusions and future work are presented in Section 6.

2. Semantic Matrix Based Analysis of Features

Similarity can be measured by a lot of metrics. The main text-based approaches are shingles [1]
and the cosine index. Categorical data are measured by the Jaccard index to compare two distinct
sets which have evenly distributed data [2]. A few other metrics used to measure local structural
information are the Hub Promoted index, Hub Depressed index, and Leicht-Holme-Newman
index [3]. For problems not dependent, and thus unbiased on the number of overlapping items,
but only on how many items from a smaller set are covered by a bigger one, is beneficial to
use Inclusion index [4]. This index should be preferred over Cosine or the Jaccard index [4].
Another semantic approach focused on document categorization is Latent Semantic Indexing
(LSI) where the similarity between two documents is measured by using cosine similarity or
inner product on the vector representation of documents [5].

The farthest point algorithm (complete agglomerative clustering scheme [6]) was used as base
metrics to evaluate the distance between clusters and finally during the creation of dendrogram
in hierarchical clustering to get communities of manufacturing process [2]:

𝑑(𝑢, 𝑣) = 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡(𝑢[𝑖], 𝑣[𝑗])}

Also, they combined similarity calculations by summing and making square root from the

1https://github.com/jperdek/matrixBasedMethodsForGraphs

27

additive value of features where each feature is given by squared similarity (𝑆𝑖) of feature
multiplied by given feature weight (𝑘𝑖):

𝑆(𝑥, 𝑦) =

⎯⎸⎸⎷
𝑛∑︁

𝑖=0

𝑘𝑖 * (𝑆𝑖)2

Metrics measure similarity from different representations such as sets or vectors and thus is
necessary to choose also semantic attributes which should be processed. In the semantic-based
extraction approach [7], authors extract/tag information from source code using encoding rules
suitable for mapping into UML form. The return type, signatures, parameters, and lines of code
are some of these semantic relations which can be measured and transformed into similarity
scores. To extract appropriate information many metrics such as the Jaccard coefficient and
cosine similarity are forming the similarity model in the next analyzed methods.

2.1. Matrix Based Hierarchical Graph Clustering

Connections in the graph carry semantic information fulfilled by implication that each reference
from one source file to another one creates a relation between these documents [8]. Document
weight can be evaluated accordingly by using non-negative input and output weights [9]. The
maximal value from these two weights appropriately normalized is chosen to determine if the
document is a better hub or authority [10]. Adding one to this value helps to not decrease
overall weight during their multiplication. The next step consists of finding the correlation
between pages by multiplying each weight on the path and with chosen correlation factor
(0<F<1, but usually 0.5) powered by the length of the path to penalize longer paths:

𝑐𝑖𝑗 = 𝑤𝑖,𝑘1 * 𝑤𝑘1,𝑘2 * 𝑤𝑘2,𝑘3 * ... * 𝑤𝑘𝑛,𝑗 * 𝐹 𝑑𝑖𝑠𝑡(𝑖,𝑗)

where each correlation weight 𝑤𝑖𝑗 is the maximum from weights 𝑤𝑖 and 𝑤𝑗 or 1 if documents
match [10]. This part can be implemented using Floyd-Warshall algorithm [11] applied on
adjacency matrix where maximum weights of edges in this future shortest path matrix are
assigned for no connections (zeros) and self connections do not exist. The correlation weight
matrix is assigned according to evaluated input and output weights and updated together with
the distance matrix in each update of the shortest path matrix in this algorithm. If nodes are
the same resulting correlation is one [10].

The next important part is the creation of a similarity metric to take into account the input
and output contributions of links [10]:

𝑠𝑖𝑚(𝑖, 𝑗) = 𝛼𝑖𝑗 * 𝑠𝑖𝑚𝑖𝑛
𝑖𝑗 + 𝛽𝑖𝑗 * 𝑠𝑖𝑚𝑜𝑢𝑡

𝑖𝑗

For simplicity, we refer to each row and column of the matrix as vectors. Each mentioned
evaluated metric is multiplied by the coefficient consisting of the contribution of vector value
for each row or column divided by the contribution of rows and columns together [10]:

𝑟𝑜𝑤𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗 = |𝑟𝑜𝑤𝑖|+ |𝑟𝑜𝑤𝑗 | 𝑐𝑜𝑙𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗 = |𝑐𝑜𝑙𝑖|+ |𝑐𝑜𝑙𝑗 |

𝛼𝑖𝑗 =
𝑟𝑜𝑤𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗

𝑟𝑜𝑤𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗 + 𝑐𝑜𝑙𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗

𝛽𝑖𝑗 =
𝑐𝑜𝑙𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗

𝑟𝑜𝑤𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗 + 𝑐𝑜𝑙𝑠𝑐𝑜𝑛𝑡𝑟𝑖,𝑗

28

Cosine similarity metrics are used here to measure similarity between each type of links [10]:

𝑠𝑖𝑚𝑖𝑛
𝑖𝑗 =

(𝑐𝑜𝑙𝑖 * 𝑐𝑜𝑙𝑖)
|𝑐𝑜𝑙𝑖| * |𝑐𝑜𝑙𝑗 |

𝑠𝑖𝑚𝑜𝑢𝑡
𝑖𝑗 =

(𝑟𝑜𝑤𝑖 * 𝑟𝑜𝑤𝑖)

|𝑟𝑜𝑤𝑖| * |𝑟𝑜𝑤𝑗 |
Similarity for the same nodes in the resulting similarity matrix is 1 otherwise the value of

𝑠𝑖𝑚(𝑖, 𝑗). Finally, similar documents should be put together and clustered by the algorithm
based on matrix partition. How closely related attributes are (togetherness) is measured by
affinity metric [12]. In the Bond energy algorithm (BEA) columns of the similarity matrix are
permuted to maximize the global affinity matrix defined as [13]:

𝐺𝐴 =
𝑛∑︁

𝑖=1

𝑛∑︁

𝑗=1

𝑠𝑖𝑚𝑖,𝑗 * (𝑠𝑖𝑚𝑖,𝑗−1 + 𝑠𝑖𝑚𝑖,𝑗+1)

By this operation elements of greater values are put closer to each other [14]. Rows are then
permuted accordingly. Firstly, the algorithm initializes the first two columns according to the
first columns of the similarity matrix. Then in each iteration, a new column is inserted into the
new matrix in the place where the cont value is maximized. This value is evaluated for each
adjacent pair of columns by temporarily substituting a new column before, between, or behind
and given as [12]:

𝑐𝑜𝑛𝑡(𝑐𝑜𝑙𝐿𝑒𝑓𝑡, 𝑐𝑜𝑙𝑀𝑖𝑑𝑑𝑙𝑒, 𝑐𝑜𝑙𝑅𝑖𝑔ℎ𝑡) = 2 * 𝑏𝑜𝑛𝑑(𝑐𝑜𝑙𝐿𝑒𝑓𝑡, 𝑐𝑜𝑙𝑀𝑖𝑑𝑑𝑙𝑒) + 2 * 𝑏𝑜𝑛𝑑(
𝑐𝑜𝑙𝑀𝑖𝑑𝑑𝑙𝑒, 𝑐𝑜𝑙𝑅𝑖𝑔ℎ𝑡)− 2 * 𝑏𝑜𝑛𝑑(𝑐𝑜𝑙𝐿𝑒𝑓𝑡, 𝑐𝑜𝑙𝑅𝑖𝑔ℎ𝑡)

where bond (affinity) is given as [12]:

𝑎𝑓𝑓(𝑖, 𝑗) = 𝑏𝑜𝑛𝑑(𝑖, 𝑗) =
𝑛∑︁

𝑘=1

𝑠𝑖𝑚𝑖,𝑘 * 𝑠𝑖𝑚𝑗,𝑘

The global affinity matrix is iteratively created by inserting all columns into a new global
affinity matrix according to Bond (affinity) between the column before and the first column or
column after and the last column is 0 [13]. For the maximum value of cont, the new column is
inserted in the colMiddle position. The rows are permuted in the same order. The similarity
matrix then can be recreated by only swapping values according to evaluated permutations that
were required to form a global affinity matrix. Swapping is applied firstly on columns and then
on rows accordingly. Permuted similarity matrix should be then partitioned into submatrices
by choosing dividing point X positioned on a diagonal. Four matrices then can be evaluated
using the following metric [14]:

𝑊𝑆𝑀𝑝,𝑞 =

𝑟+(𝑚−1)*(𝑝−1)∑︁

𝑖=(𝑝−1)*𝑟+1

𝑟+(𝑚−𝑟)*(𝑞−1)∑︁

𝑗=(𝑞−1)*𝑟+1

𝑠𝑚𝑖,𝑗

and for each dividing point, the following function is maximized [14]:

𝐶𝑋 = 𝑊𝑆𝑀1,1 *𝑊𝑆𝑀2,2 −𝑊𝑆𝑀1,2 *𝑊𝑆𝑀2,1

Dividing point X divides the matrix into four sub-matrices and the algorithm recursively
clusters the upper left matrix (𝑆𝑀1,1) and then the bottom right one (𝑆𝑀2,2) [10]. The approach

29

has been also extended to cluster the same document into multiple clusters in the work of Hou
et al. [10]. The whole clustering process is depicted in Figure 1.

Figure 1: Matrix based hierarchical clustering. Source of algorithm: [10].

2.2. Matrix Based Comparison of Graphs

Similarity can be measured also between graphs and thus be applied in many fields. Feature
extraction, graph isomorphism, and iterative methods are the main categories for graph similar-
ity measurement [17]. In feature analysis of many applications, the main task is to find node
correspondence. Information about connections can be used to characterize the most important
nodes by finding if such a node is a good authority or hub. HITS [9] is a known iterative
algorithm used to evaluate the importance of web pages. Authoritative and hub scores thus
can be used as similarity scores of graph vertices (for given vertex j and vertex authority/hub)
and further generalized for different graphs [15]. This can be used to match given graphs in an

30

Figure 2: Graph matching based on node similarity. Source of algorithm: [15].

Figure 3: Graph matching based on node-edge similarity scores. Source of algorithm: [16].

iterative updating process until convergence. This approach has been used for web searching
and synonyms extraction [15] where similarity matrix X is updated according to the following
equation:

𝑋𝑘+1 = 𝐵 *𝑋𝑘 *𝐴𝑇 +𝐵𝑇 *𝑋𝑘 *𝐴, 𝑘 = 0, 1, 2, ...

where A and B are adjacency matrices. Obtained similarity matrix from even iteration [15] can
be further used to find maximum weight matching between vertices of two graphs in graph
matching approaches. The process of matching the vertices based on the adjacency matrix is
depicted in Figure 2. Many authors [18, 19, 16] used Hungarian method [20] mainly for its
asymptotic polynomial upper bound 𝑂(𝑛3) [21, 22, 23] to solve similar problems.

According to Zager and Verghese [16], this iterative process can be extended on edges as
well. First, each adjacency matrix needs to be transformed into the source-edge matrix and

31

terminus-edge matrix by determining each source node of edge in the first one (𝐴𝑆 and 𝐵𝑆)
and terminal node edge in the second one (𝐴𝑇 and 𝐵𝑇) by setting ones in given matrices [16].
In comparison with the first method oriented only on nodes, the update of edges (matrix Y) and
nodes (matrix X) are intertwined:

𝑌𝑘 = 𝐵𝑇
𝑆 *𝑋𝑘−1 *𝐴𝑆 +𝐵𝑇

𝑇 *𝑋𝑘−1 *𝐴𝑇

𝑋𝑘 = 𝐵𝑆 * 𝑌𝑘−1 *𝐴𝑇
𝑆 +𝐵𝑇 * 𝑌𝑘−1 *𝐴𝑇

𝑇

After each phase, matrices are normalized by the Frobenius norm. The steps of the whole
process applied to graph matching are depicted in Figure 3.

3. Integrating Matrix Based Methods for Structural and
Semantic Analysis

Product variants from the same product family share similar code fragments. Their aggregation
according to their interconnections and semantic content can potentially express domain
knowledge which can be organized into variability or other models. Used scores for connections
between nodes indicate the relation of a given software part with another, but mainly its coupling
and importance. Consequently, is important to take context, which is given by semantics, into
account. Semantic similarity scores must ensure balance of semantically related software
fragments in each group.

Identification of features from the given source code should help analyze and compose
different applications and even their parts on different hierarchy levels. Appropriate metrics
for different types of documents need to be selected to capture their semantic information and
relatedness. The most used metrics are various similarity scores. They are used in iterative
algorithms. Web components have not only methods and classes but also template code. Modules
in some environments such as Angular require different strategies to extract information and
represent their structure as a graph. All dependencies are represented as connections between
nodes and can be weighted. The remaining part is focused on the integration of matrix-based
algorithms and decisions applied during this process.

Firstly, the application code is parsed to extract and collect imports, links, and optionally in
the case of template of web components also elements that reference other ones. For future
analysis, relevant semantic information is collected as well such as method and class names,
variables, parameters, comments, attributes, and classes of markup language elements. Secondly,
the graph is constructed according to potential references between components and optionally
filled with semantic attributes. In a graph database given elements can be analyzed directly, but
mainly it allows transformation from the selected part of the graph to the adjacency matrix.

Many related applications from the same domain are required for deeper analysis of features
and further variability model creation such as a feature tree. Adjacency matrices from graph
representation allow the grouping of similar nodes together according to the relation between
software parts in each similar application modeled as a graph. In marginal cases, this grouping
can be strengthened by merging nodes into the new one. This provides a way to analyze,
process, and cluster unconnected graphs together. The methods for graph matching from
Section 2.2 are adapted here. The simplest way is to the algorithm by Blondel et al. [15] that

32

evaluates similarity among nodes/documents only. Following this one, the application matrix
with similarities between each pair of nodes/documents is produced. The higher the value, the
higher the similarity of nodes is. These values can be used further to decide if nodes should be
only grouped according to the introduced new node or merged into one. For analysis purposes
only the intersection of nodes represented as the mapping between them can be used to only
reinforce the existing application structure by grouping more related information. The second
node-edge graph matching algorithm [16] which is performing the update of both node and
edge similarity matrices in each iteration is due to the additional edge matrix being more flexible.
The similarity between each pair of edges can be directly used in the clustering algorithm in
time when document weight is evaluated according to input, and then output connections. Also
in the process of grouping or merging nodes this information is useful to not lose edge weight
determining the similarity of connection between nodes (if this value is low, the probability
that nodes are semantically related in the given context is low).

The next important step is to extract given features from prepared sources. Connections
amongst files are represented as an adjacency matrix with associated labels. To semantically
enhance clustering additional information about indexed nodes is collected. From this matrix
page weight and correlation matrix are created according to Section 2.1 which is based on Hou
et al. [10]. If a similarity matrix of edges is available then these values are useful (depending on
configuration) to use while evaluating document/node weight. In such cases mainly those which
are analyzing graph intersection weights are updated according to the following additional
change. During counting the number of edges, the adjacency matrix value referring to the
given connection of nodes is multiplied by the appropriate edge similarity value increased by
about one (to make weight at least one). Then it is possible to propagate the information of
similarity of nodes during graph matching to the clustering process and thus make connections
that appear in many applications stronger (the higher edge weight value) and match amongst
each other as much as possible as those connected only in one or few applications or those
partially matched according to their lower edge similarity score. Clustering of results, during
which the additive value (for each node similarity score) of connections is enhanced by this
scoring, are more precisely evaluated to support timeless compression of use cases and final
feature detection. This is important to partially capture domain knowledge and what the system
is.

In the following step, the similarity matrix used for clustering purposes is created. The
connections of documents are evaluated using cosine similarity metric according to Hou et al.
[10] and multiplied by a special coefficient given for each node pair as a ratio where the value of
rows (columns) is divided into whole value. If we create additional matrices for each similarity
metric and cluster them in case of equal values of this base similarity matrix then our model
will not be easily scalable. To prevent this issue we extended the previous similarity equation
about values by adding other semantic metrics multiplied by the given coefficient which value
should be found during model tuning:

𝑠𝑖𝑚(𝑖, 𝑗) = 𝛼𝑖𝑗 * 𝑠𝑖𝑚𝑖𝑛
𝑖𝑗 + 𝛽𝑖𝑗 * 𝑠𝑖𝑚𝑜𝑢𝑡

𝑖𝑗 + 𝛾𝑖𝑗 * 𝑠𝑖𝑚𝑠𝑒𝑚1
𝑖𝑗 + ...+ 𝜖𝑖𝑗 * 𝑠𝑖𝑚𝑠𝑒𝑚2

𝑖𝑗

Other graphs, especially those created from component instances, can be processed and
evaluated similarly. Final graph structure and results from clustering support further decision-
making which is based on structural and semantic similarity of analyzed graphs. The process

33

flow of our integrated approach is displayed in Figure 4.

Figure 4: Matrix based structural/semantic analysis of features enhanced about node scores. Sources
of integrated algorithms: [10, 15, 16].

4. Discussion

We apply integrated functionality on two Angular applications that significantly differ from
each other but are tied up by the same domain in general. Thus they are characterized by
overlap of the same components, operations, and problems. Our approach enables merging
these two applications and then cluster source files. It allows us to analyze visualized results of
the likely feature names or similarly coupled nodes. We decided to use the Neo4j graph database
due to the possibility to perform fast evaluation and visualization of the aggregated results. It
allows us to realize another analysis with inserted data. The same process has been applied to
the Design 3D application. Finally, a hierarchy was created from given clusters.

Results show that semantic metrics are necessary, otherwise similarly coupled nodes will be
clustered together in the clustering phase. Two tested applications are not enough to test full
strength and tune algorithm parameters. For this purpose, we propose another fractal-based
software product line capable to produce an extensive number of fractal products. Additionally,
the evolution process will be automated and driven by knowledge handled by this integrated
method. Information and component instances from each application will be merged, clustered,

34

and then used for classification purposes as input especially to graph neural network (GNN) or
naive Bayes (NB) models.

5. Related Work

The most similar approach to ours is proposed in the AMPLE project [24]. Features and their
dependencies are mined from documentation by using latent semantic analysis and feature
models are also created by hierarchic clustering [25]. The significant difference with our
approach is in its restriction to given semantics related to requirements. Our approach evaluates
connections and node importance given by them and is additionally enhanced by semantic
information from different metrics. Also merging graphs, and adding or removing nodes is done
according to resulting scores and thus extend analytic possibilities that can be even automated.
Our integrated approach can process big data and be reused for general problems.

6. Conclusions and Future Work

The exponential growth of information from related and mostly heterogeneous products makes
decision-making about software product line evolution more complex. Specifically, both the
structure of resulting components and semantic information need to be taken into account to
provide in-depth supporting materials by capturing feature interactions and their capabilities.
Consequently, this process needs to handle big data and incorporate fast techniques into the
resulting solution. We address these problems by creating various semantic and structural views.
These views consist of related knowledge that is organized into hierarchies or groups. The
process is based on various matrix based algorithms with hierarchic clustering that all process
graph data represented as adjacency matrices. Thanks to used algorithms and no introduced
bottleneck, it runs in polynomial time which flexibly makes it suitable for processing big data,
but due to restrictions on matrix size (very large matrices cannot be processed at once), further
adaptations are required. Except for integrated algorithms designed for graph matching, other
ones, especially algorithms used to solve a graph isomorphism problem, are NP-hard, or are not
designed for massive amounts of data because of no directed selections from a large number
of nodes. Integrated algorithms extensively use similarity metrics that are based on input
and output connections. These can be easily replaced or adapted to other metrics by slightly
modifying algorithms or just calculating single similarity values which will be used across all of
them. This makes the integrated solution extendable. We enhanced it by calculating Jaccard’s
index from class-based categoric semantic variables such as class names or attributes from
HTML templates. Still, for such a supporting similarity-based tool verification is required.

The resulting information can be merged or grouped on different abstraction levels such as
merging whole graphs by merging or grouping the most similar nodes and optionally connecting
(or disconnecting) remaining unmatched nodes. Nodes are grouped also in hierarchic structures
and new more significant connections can be introduced even to newly and optionally created
representative nodes for each group called medoids. Visualized results (mostly in a graph
database) help to discover the related context which is necessary for making predictions and
recognizing features. The overall process is based on similarity measures and thus results can be

35

different for their various settings and calculated metrics. This opens space for further analysis
and possibilities in directing software product line evolution in an automated way. Created
variability models and associated knowledge support decision-making about software product
line evolution. An approach is presented in the analysis of modular Angular applications.

In future work, we will focus more on semantic enhancements, and their applications on
big data by generating and analyzing various types of fractals including extracted knowledge
from them. Possible future improvement is to calculate different metrics from software systems
such as complexity scores or using various models to calculate semantic similarity. Integration
into automated software product line evolution based on fractals will provide more information
on which similarity measures should be used and in which way are the most beneficial to
implement. This can be fulfilled by checking products against the best ones or using thresholds
for measured metrics, and then omitting poor ones. Large space of generated products according
to structural/semantic configuration and possibilities to insert given features needs to be handled.

Acknowledgments

The work reported here received funding from the Operational Programme Integrated Infra-
structure for the project: Support of Research Activities of Excellence Laboratories STU in
Bratislava (ITMS code: 313021BXZ1), co-funded by the European Regional Development Fund
(ERDF).

Bibliography

[1] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, S. Demeyer, Comparison of similarity metrics
for refactoring detection, in: Proceeding of the 8th working conference on Mining software
repositories - MSR ’11, ACM Press, Waikiki, Honolulu, HI, USA, 2011, p. 53.

[2] K. Li, W. Z. Bernstein, Developing a capability-based similarity metric for manufacturing
processes, in: Volume 3: Manufacturing Equipment and Systems, American Society of
Mechanical Engineers, Los Angeles, California, USA, 2017, p. V003T04A015.

[3] T. Zhou, L. Lu, Y.-C. Zhang, Predicting missing links via local information, The European
Physical Journal B 71 (2009) 623–630.

[4] C. Sternitzke, I. Bergmann, Similarity measures for document mapping: A comparative
study on the level of an individual scientist, Scientometrics 78 (2009) 113–130.

[5] A. Kuhn, S. Ducasse, T. Gîrba, Semantic clustering: Identifying topics in source code,
Information and Software Technology 49 (2007) 230–243.

[6] D. Müllner, Modern hierarchical, agglomerative clustering algorithms, ArXiv (2011).
[7] R. Kadar, S. M. Syed-Mohamad, N. Abdul Rashid, Semantic-based extraction approach

for generating source code summary towards program comprehension, in: 2015 9th
Malaysian Software Engineering Conference (MySEC), IEEE, Kuala Lumpur, Malaysia,
2015, pp. 129–134.

[8] K. Bharat, M. R. Henzinger, Improved algorithms for topic distillation in a hyperlinked
environment, in: Proceedings of the 21st Annual International ACM SIGIR Conference on

36

Research and Development in Information Retrieval, SIGIR ’98, Association for Computing
Machinery, New York, NY, USA, 1998, pp. 104–111.

[9] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM 46 (1999)
604–632.

[10] J. Hou, Y. Zhang, J. Cao, Web page clustering: A hyperlink-based similarity and matrix-
based hierarchical algorithms, in: Web Technologies and Applications, volume 2642,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 201–212.

[11] R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (1962) 345.
[12] M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems, Springer International

Publishing, Cham, 2020.
[13] D. B. Crouch, C. J. Crouch, G. Andreas, The use of cluster hierarchies in hypertext

information retrieval, in: Proceedings of the second annual ACM conference on Hypertext
- HYPERTEXT ’89, ACM Press, Pittsburgh, Pennsylvania, United States, 1989, pp. 225–237.

[14] Jitian Xiao, Yanchun Zhang, Xiaohua Jia, Tianzhu Li, Measuring similarity of interests for
clustering web-users, in: Proceedings 12th Australasian Database Conference. ADC 2001,
IEEE Comput. Soc, Gold Coast, Qld., Australia, 2001, pp. 107–114.

[15] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, P. Van Dooren, A measure of similarity
between graph vertices: Applications to synonym extraction and web searching, SIAM
Review 46 (2004) 647–666.

[16] L. A. Zager, G. C. Verghese, Graph similarity scoring and matching, Applied Mathematics
Letters 21 (2008) 86–94.

[17] D. Koutra, A. Parikh, A. Ramdas, J. Xiang, Algorithms for graph similarity and subgraph
matching (2011) 50.

[18] S. Umeyama, An eigendecomposition approach to weighted graph matching problems,
IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988) 695–703.

[19] H. Almohamad, S. Duffuaa, A linear programming approach for the weighted graph
matching problem, IEEE Transactions on Pattern Analysis and Machine Intelligence 15
(1993) 522–525.

[20] H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics
Quarterly 2 (1955) 83–97.

[21] N. Tomizawa, On some techniques useful for solution of transportation network problems.,
Networks 1 (1971) 173–194.

[22] J. Edmonds, Theoretical improvements in algorithmic efficiency for network flow problems
(1972) 17.

[23] E. Munapo, Development of an accelerating hungarian method for assignment problems,
Eastern-European Journal of Enterprise Technologies 4 (2020) 6–13.

[24] A. Rashid, J.-C. Royer, A. Rummler, Aspect-Oriented, Model-Driven Software Product
Lines: The AMPLE Way, first edition ed., Cambridge University Press, New York, 2011.

[25] K. Chen, W. Zhang, H. Zhao, H. Mei, An approach to constructing feature models based
on requirements clustering, in: 13th IEEE International Conference on Requirements
Engineering (RE’05), 2005, pp. 31–40.

37

