
Code Based Selected Object-Oriented Mechanisms
Identification
Kristián Jablonický1, Ján Lang1

1Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava, Ilkovičova 2, 842 16 Bratislava 4, Slovakia

Abstract
This article deals with select mechanisms that are provided by the object-oriented programming language
Java. Using these mechanisms is crucial for a proper approach to object-oriented programming. However,
this is often difficult for many programmers that are new to writing code in the said language. This
paper looks at these mechanisms, defines them by quoting various sources, and proposes a solution that
spots these described mechanisms in code. It does so by reading source code from .java files inputted by
its user, gathering information about the defined and used classes, interfaces, methods, etc. With this
information gained it outputs data which would often require a larger context of the code and good
knowledge of the files’ contents. Thanks to the strict definitions and rules, that will be stated later in
this paper, the application can consistently spot these mechanisms in code and inform its user about the
fact. As a result, the application can help programmers that are new to object-oriented programming
languages by ensuring them, that they implemented these mechanisms correctly, or by informing them
about their absence. The core mechanisms described in this paper are inheritance, encapsulation, class
association, and polymorphism.

Keywords
programming, Java, object-oriented, refactoring, inheritance, encapsulation, class association, polymor-
phism

1. Introduction

Object-oriented mechanisms are widely used in object-oriented programming languages such as
C#, C++, Python, and Java to approach coding from a different perspective. These mechanisms
allow programmers to write code with a different paradigm that is more easily upgradable,
enables code reusability, data hiding, and so on. Many people that first start writing code
in such programming languages have a background in procedural programming languages
such as C, Fortran, and Pascal. Since these languages do not support the implementation of
most object-oriented mechanisms, programmers have to learn how to implement these new
mechanisms wisely from scratch. Definitions of these object-oriented mechanisms that can be
found online, in books, or in articles are often vague, and thus their implementations in code
can be varied. This is why this article dives into these mechanisms and gives them strict and
precise definitions. The solution proposed spots these select mechanisms in code and informs

SQAMIA 2023: Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, September 10–13,
2023, Bratislava, Slovakia
$ kristianjablonicky@gmail.com (K. Jablonický); jan.lang@stuba.sk (J. Lang)
� 0009-0008-4124-9482 (K. Jablonický); 0000-0002-3271-7271 (J. Lang)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

50
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

the user about which mechanisms were (or were not) detected. The solution itself does not hint
to the user what changes should be made to the code or how to interpret the data - that is left
up to the user. Doing so could help with obtaining a deeper understanding of these mechanisms,
their usage, and their impact on the code. The rest of the paper is organized as follows, Section
2, which follows up this introduction, shows related works which provide similar tools to the
one proposed in this article, or sources dealing with similar topics. Section 3 states how the
proposed solution functions and what features it provides its users with. On top of that, it quotes
various definitions of mentioned mechanisms from other sources and states the application’s
strict definitions. Section 4 demonstrates how the proposed solution works when put to use
on various source codes, either written for testing purposes or source codes of open-source
projects. Lastly, section 5 wraps up what was discussed and discovered in this article.

2. Related work

Projects and applications with similar goals to ours have been made in the past, but the differ-
ences in their implementation make our solution more suitable for some uses. A number of
books were written that take real-life examples and use them as inspiration for programmers
to write better object-oriented code. These books include [1], [2], [3], and [4], to name a few.
These books provide great explanations for many of the mechanisms this paper discusses, which
is why they will be cited a number of times in the following section. Eclipse Metrics plug-in
is an IDE extension of Eclipse that provides the user with various object-oriented mechanism
usage statistics1. As its title suggests, it focuses on providing various metrics, rather than on
pointing out where said mechanisms are detected. This tool will be used later in the fourth
chapter. There are many tools that claim to detect design patterns from source code. The article
[5] proposes such a tool, however, the tool can no longer be installed on computers with newer
operating systems. The website from which the tool can be downloaded lists links to related
works, but none of these links currently work.

Some tools such as the ones proposed in [6] and [7] implement bots that automatically provide
their users with suggestions on how to improve their code. These tools are however fairly
hard to set up and are mainly focused on aiding the user with improving a source code, not on
understanding and analyzing it.

There are so many articles published that deal with this topic, that a number of articles were
published that compare these solutions. Articles [8], [9], and [10], to name a few, compare the
features and accuracies of these tools. The tool proposed in [11] shows great potential and will
be brought up again in the evaluation section.

Refactoring is another field that deals with similar tasks. The published book [12] states, that
refactoring represents a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior. The article [13]
states a similar definition, and adds that Refactoring is the process of changing the structure of
software without changing its behavior. It is widely practiced by developers, and considerable
research and development effort has been invested in refactoring tools. However, the fairly
recent article [6] informs that empirical studies have shown that these solutions are not widely

1Frank Sauer. Eclipse Metrics plugin. Last visited at (2nd of January 2023): https://metrics.sourceforge.net/

51

accepted by software developers and most refactorings are still performed manually. The paper
agrees that continuous refactoring is necessary to maintain source code quality and to cope
with technical debt. It also adds that manual refactoring is inefficient and error-prone, which is
why these automated refactoring solutions have been proposed in the past. To mention a few
of these works, the article [14] proposes a tool, which allows its users to refactor their code
with features such as "rename method", "rename field", "add method argument" etc. What is
also important is that this article allows its readers to take a closer look at how exactly this
process works. Similarly, [7] cites the previous work as an influence, and proposes an Eclipse
IDE plugin, which suggests its users changes that aim to improve their code without altering its
function. Since the tool proposed in this paper is a stand-alone application and does not rely on
any refactoring library or IDE APIs, it has to work carefully with the source code. The following
section explains what steps it has to take to provide the user with correct information.

3. Object-Oriented Mechanisms Identification Solution Proposal

This section briefly goes over the principles upon which the proposed solution is built. This
includes prerequisites, steps it takes during its runtime, and outputs that the whole process
leads to. The solution is an application written in Python code that takes the user’s specified
folder path and searches for all Java source code files within that folder, as well as folders nested
within these folders. The files are open in succession, and their contents are read line by line.
These lines get altered so that the program can rely on certain things that may not necessarily
be true for the raw source code. Once all source code is read, altered, and sorted, the program
goes over all the lines with now larger context about the source code to detect mechanisms
that were impossible to detect before. Once all this is done, all the detected information gets
communicated to the program’s user.

It is assumed that the inputted files’ content is fully valid and is contained in ".java" or ".aj"
type files. An inputted file that was not compiled before may contain uncompilable code, and
thus our solution might give the user incorrect or irrelevant information.

The before-mentioned alterations to the read source code include: the removal of all string
values; the removal of all comments (both single-line and multi-line); the removal of symbols
that imply a variable is an array or a list when the information is irrelevant to our application;
making each keyword and symbol separated by exactly one space character (this means either
squeezing multiple white characters or adding exactly one); the removal of all ";" symbols

The following insights regarding how certain mechanisms are detected will make it clearer
why such alterations are made.

3.1. Class hierarchies

As [1] states, inheritance is the most important “is a” hierarchy, and is an essential element of
object-oriented systems. Basically, inheritance defines a relationship among classes, wherein
one class shares the structure or behavior defined in one or more classes (denoting single
inheritance and multiple inheritances, respectively). Inheritance thus represents a hierarchy of
abstractions, in which a subclass inherits from one or more superclasses. Typically, a subclass

52

augments or redefines the existing structure and behavior of its superclasses. Hierarchy is
defined as a ranking or ordering of abstractions.

Inheritance in code is the easiest to detect, since it is declared by the use of the keyword "
extends ". The application can rely on there being exactly one space character before and after
the keyword, because of the steps described in the third section. Most other object-oriented
mechanisms unlike this one can not be detected by simply searching for a string, which makes
those mechanisms harder to spot in code. A class can only extend a single other class (but can
be extended by multiple). Once the solution detects the said keyword, it inserts the current
class’ declaration that extends a different class into an inheritance tree as a new node. Since
all the keywords and class/interface names are separated with exactly one space character, the
solution can calculate the index at which class names start and end.

Once all the source code is read and the tree gets expanded, the application prints out to the
user which class extends which, and at which line in the source code this happens. Then it
prints out all the inheritance trees formed in the program’s runtime.

3.2. Encapsulation

Encapsulation is one of the core elements of Object-oriented programming. As [1] puts it,
encapsulation is most often achieved through information hiding (not just data hiding), which
is the process of hiding all the secrets of an object that do not contribute to its essential
characteristics; typically, the structure of an object is hidden, as well as the implementation of
its methods.

As the application goes through the separated contents of all the class’ bodies it searches
for hints of encapsulation. When a line containing a declaration of an attribute is read, the
application checks whether this attribute has a "private" or "protected" access modifier. If not,
this attribute is globally accessible by all the other classes and thus not encapsulated properly.
This lack of encapsulation is communicated to the application’s user. On the other hand, when
all the lines of a class are read, and no non-encapsulated attributes were spotted, the class is
considered to be encapsulated as a whole. Furthermore, the program points out all the attributes
that are encapsulated correctly - an encapsulated attribute has at least one "setter" or "getter"
method defined. This serves as an encouragement for the user to approach attributes this way.

3.3. Class association

Class association is another crucial Object-oriented mechanism. This includes aggregation and
composition, both will be discussed respectively since their detection in code is vastly different.

As [2] states, general class association is especially useful, when we first start looking into
relationships between classes, since at that point we do not know what exactly are they used
for. Further, [3] states that it is the simplest and most general kind of relationships, which
simply indicates that the objects of the two classes are related in some non-hierarchical way.
An association implies that an object of one class is making use of an object of another class
and is indicated simply by a solid line connecting the two class icons.

Aggregation is a special type of association, according to [1] it is a "part of" type hierarchies
that describe aggregation relationships. Aggregation permits the physical grouping of logically

53

related structures, and inheritance allows these common groups to be easily reused among
different abstractions.

A less direct kind of aggregation is also possible, called composition, which is containment by
reference. The textbook [3] says that composition implies that each instance of the part belongs
to only one instance of the whole and that the part cannot exist except as part of the whole.

Association is the simplest one to detect. The program states that two classes are associated
when there is a relation between them, but it is not aggregation nor composition. Relations
between classes are detected by finding a mention of another class in a class’ body. There are
two things the program needs to look out for in order to spot any type of association. A method
of another class is being called, or an object of another class’ type is being declared and/or used.

Composition is a special type of association, where the class’ constructor creates a new object
of another class’ type. This means that this class’ objects contain other class’ object/objects as
attributes.

There are three different ways to detect aggregation: a class’ method returns an object of
another class’ type; a class’ constructor takes another class’ object as a parameter; a class’
attribute is of another class’ type, and composition was not detected.

3.4. Polymorphism

read a new line

find method

move to next
class

check object's
parent type

checkparent's
method
declaration

output
polymorphism

successful

unsuccessful

unsuccessful

successful

unsuccessful successful

successful

unsuccessful

Figure 1: UML diagram demonstrating the
detection of polymorphism

According to [1], polymorphism is per-
haps the most powerful feature of object-
oriented programming languages next to
their support for abstraction, and it is
what distinguishes object-oriented pro-
gramming from more traditional pro-
gramming with abstract data types. Poly-
morphism represents a concept in type
theory in which a single name (such as a
variable declaration) may denote objects
of many different classes that are related
by some common superclass. Any object
denoted by this name is therefore able to
respond to some common set of opera-
tions.

The following criteria have to be met
in order for the application to detect poly-
morphism: an object is declared of a cer-
tain class type; the previously declared
object is upcast by being instantiated to
another class; the upcast object calls a
method that is overridden from the super-
class.

The figure 1 depicts a UML diagram that shows how this process works.
To describe the process a bit more precisely, first, the solution finds a mention of another

54

class’ name on a line. Then it makes sure that an object of said class is being declared. Then it
searches for the object’s upcast, which could look like the following:
c l a s s A objName ;
objName = new c l a s s B () ;

This example shows a "classA" type object called "objName", which is shortly upcast to "classB"
type.

Lastly the application searches for an instance of this upcast object calling a method. If it
succeeds, it makes sure that this method is overridden (the object’s type superclass declares a
method with the same name).

Another way to detect an upcast object is when it is received as a method parameter. When
an object of a type that is extended by at least one other class is found as a method argument, it
is safe to assume that the parameter could receive an upcast object.

The last way of detecting upcast objects is searching for object declaration in a "for" cycle
expression. An object is declared in a "for" loop only if the loop iterates over a list of objects.
The list may contain both objects of a class or objects of a class that extends the mentioned class
in the "for" loop. Thus the application assumes all the objects within this list to be potentially
upcast.

Now that all the core object-oriented mechanisms are introduced, defined, and their detection
in code is specified, the following section can evaluate the results such detection methods lead
to.

Listing 1: Source code example utilizing many object-oriented mechanisms

in te r face I 1 {
public void method () ;

}
in te r face I 2 {

public int g e t _ i () ;
}
c l a s s C1 implements I1 , I 2 {

pr ivate int i ;
pr ivate C3 o b j ;
C1 () {

o b j = new C3 () ;
i = 0 ;

}
public int g e t _ i () {

return i ;
}
public void method () {

System . out . p r i n t l n (" C1 method ") ;
}

}
c l a s s C2 extends C1 implements I1 , I 2 {

in t i ;
C3 o b j ;

C2 (C3 o b j) {

o b j = o b j ;
}

public int g e t _ i () {
return i ;

}
public void method () {

System . out . p r i n t l n (" C2 method ") ;
}

}
c l a s s C3 implements I 1 {

public void method () {
System . out . p r i n t l n (" C3 method ") ;

}
}
c l a s s example {

public s t a t i c void main (S t r i n g [] a r g s)
{

C1 o b j = new C1 () ;
C3 o b j _ 2 = new C3 () ;
o b j = new C2 (o b j _ 2) ;
o b j . method () ;

}
}

55

4. Evaluation

The following example demonstrates many of the features mentioned in the previous section. It
is a dummy Java source code file that was inputted to the proposed application 2.

The content of the source code can be seen in the listing 1.
This gives results in the following output shown in figure 2.

-Hierarchies:
---Inheritance hierarchy 1---
C1

C2

---Interface hierarchy 1---
I1

C1
C2
C3

---Interface hierarchy 2---
I2

C1
C2

-Encapsulations:
"C1" class encapsulates the "obj" attribute.
"C1" class encapsulates the "i" attribute.
The "C2" class doesn’t encapsulate
all of its attributes!

-Associations:
The "C1" type composites the "C3" type.
The "C2" type aggregates the "C3" type.
The "example" type is associated with the "C1" type.
The "example" type is associated with the "C3" type.
The "example" type is associated with the "C2" type.

-Polymorphisms:
Class example:
The "obj" object implements polymorphism.

Figure 2: Detailed text output of the proposed application

The output at first shows which lines from the source code implement an interface or extend
a class. This is then followed by a visual representation of what kind of hierarchies those
lines of code lead to. In this example, there is a single inheritance hierarchy and two interface
hierarchies. Since a class can implement multiple interfaces, classes C1 and C2 can be seen in
both interface hierarchies.

The next information outputted is that the C1 class encapsulates the "obj" and "i" attributes.
That is because both of these attributes have private access modifiers. The reason why these
lines were printed however is that the "i" attribute has a getter method defined.

The next outputted line says that the C1 class composites the C3 class. This is because a C3
type object is defined in the C1 class’ constructor. The "outside world" does not have access to
this object, only the objects of C1 class type do.

The next line states that the C2 class aggregates the C3 class. This is similar to the previous
line, the C2 class’ constructor sets the value of a C3 type object attribute. This time the difference
is that the C3 type object gets received as a parameter of the constructor. This means that we
know that the "outside world" has access to this very object, which is what sets aggregation
and composition apart.

2The Python script’s source code, as well as the links to its compiled executable files and the user’s manual were last
visited at (24th of August 2023): https://github.com/KristianJablonicky/OopIdentification

56

After that, the output mentions that the C2 class does not encapsulate all of its attributes.
This is because the integer "i" attribute does not have an access modifier.

The following lines state that the example class is associated with the C1, C2, and C3 classes
since objects of such types are defined in this class’ "main" method.

Lastly, the output states that the "obj" object implements polymorphism. This is because at
first, its type is C1, but two lines later in the source code it gets upcast to the C2 class type.
Once it is upcast, it calls the "method" method, which is overridden from the C1 superclass,
thus this object implements polymorphism.

The following example will not have its source code shown due to its size, but it is available
for download here3. The example will be used to demonstrate the output on a larger scale
project and have its output compared with the output provided by similar tools. Selected part
of the output can be seen in 3.

-Hierarchies:
---Nested type hierarchy 1---
ATM

authenticate
Addcheck
Deletecheck
balancecheck
Depositcheck
Withdrawcheck
Exitcheck
Backcheck
BCheck
BClear
Nextcheck
Prevcheck

-Encapsulations:
"Account" class encapsulates the
"username" attribute.
The "ATM" class doesn’t encapsulate all
of its attributes!
-Associations:
"ATM" type composites the "Screen" type.
"ATM" type composites the "Keypad" type.
"ATM" type composites the "CashDispenser" type.
"ATM" type composites the "DepositSlot" type.

"ATM" type composites the "BankDatabase" type.
"ATM" type aggregates the "Iterator" type.
"ATM" type is associated with the "authenticate" type.
"ATM" type is associated with the "Addcheck" type.
"ATM" type is associated with the "Deletecheck" type.
"ATM" type is associated with the "balancecheck" type.
"ATM" type is associated with the "Depositcheck" type.
"ATM" type is associated with the "Withdrawcheck" type.
"ATM" type is associated with the "Exitcheck" type.
"ATM" type is associated with the "Account" type.
"ATM" type is associated with the "Transaction" type.
"ATM" type is associated with the "Backcheck" type.
"ATM" type is associated with the "BalanceInquiry" type.
"ATM" type is associated with the "Withdrawal" type.
"ATM" type is associated with the "Deposit" type.
"ATM" type is associated with the "Nextcheck" type.
"ATM" type is associated with the "Prevcheck" type.
"ATM" type is associated with the "BCheck" type.
"ATM" type is associated with the "BClear" type.
-Polymorphisms:
Class BankDatabase:
The "currentAccount" object implements polymorphism.
-Design patterns:
ATM’s method getinstance implements
the design pattern Singleton.

Figure 3: Chosen outputs of the application provided after inputting the ATM project’s source code

Note that this paper has not explained class nesting nor Singleton design principle, but their
detection is implemented and thus was outputted by the program.

First, hierarchies will be discussed. The Class Visualizer tool4 serves as a quick UML class
diagram generator, but it can also be used to evaluate class association and hierarchies. Figure 4

3Link to the ATM-Machine project’s GitHub page is(7th of April): https://github.com/DanH957/ATM-Machine
4Class Visualizer, made by Jonatan Kaźmierczak, last visited at (7th of May 2023): http://www.class-visualizer.net/
index.html

57

shows all the relations classes that formed with the "ATM" class that the tool was able to detect.

Figure 4: List of all the relations including the ATM class that the Class Visualizer tool was able to
detect

It can be noticed that the amount of nested classes is the same in both applications’ results.
Class Visualizer does not differentiate between aggregation and composition. Both of these
types of associations are labeled as "Associations (Uses)". The remaining associations detected
by the proposed application are also found in the "Associations Usages (Used By)" branch of
the "Browser" tab. All of these classes are detected in the proposed application’s outputs too,
however, the Class Visualizer tool has missed out on 5 class associations. The missed associated
classes are Account, Transaction, BalanceInquiry, Withdrawal, and Deposit.

When it comes to the encapsulation outputs, it can be seen that the "username" attribute’s
encapsulation is done with an almost textbook-like implementation. The code listing 2 shows
the relevant part of code that encapsulates the said attribute.

Listing 2: Encapsulation of an attribute
public c l a s s Account
{

pr ivate S t r i n g username ;

public S t r i n g getUsername () {
return username ;

}

public void se tUsername (S t r i n g username) {
th i s . username = username ;

}
/ / . . .

}

58

After a short inspection of the "ATM" class’ body, it can be noticed that the "Users" attribute
of "Iterator" type has no access modifier, and thus the class breaks the encapsulation principles.

Lastly, "polymorphism" part of the output will be discussed. Since none of the tools mentioned
in the second chapter detect polymorphism, it has to be evaluated by hand. After searching for
an instance of the "currentAccount" object in the "ATM" class’ body, the following lines that
implement polymorphism can be found 3.

Listing 3: Polymorphic object behaviour
public c l a s s Account
{

public int getAccountNumber ()
{

return accountNumber ;
}
/ / . . .

}

public c l a s s Ac co un tF ac to r y extends Account {
/ / . . .

}

public c l a s s BankDatabase
{

public Account ge tAccount (in t accountnumber)
{

for (Account c u r r e n t A c c o u n t : a c c o u n t s)
{

i f (c u r r e n t A c c o u n t . getAccountNumber () == accountnumber)
return c u r r e n t A c c o u n t ;

}
return null ;

}

/ / . . .
}

It can also be mentioned that the application has detected the implementation of the Singleton
design pattern. This design pattern could supposedly be detected by the tool proposed in [11],
however inputting the same ".class" files from the same folder that was inputted to the Class
Visualizer tool led to no output. After a quick search for the mentioned method, the following
code can be found 4. It shows a fairly standard way of the pattern’s implementation. Furthermore,
the method’s name greatly hints that such a pattern is put to use.

Listing 4: An ATM class method implementing the Singleton design pattern
public c l a s s ATM
{

pr ivate s t a t i c ATM u n i q u e i n s t a n c e ;

public s t a t i c ATM g e t i n s t a n c e () {
i f (u n i q u e i n s t a n c e == null) {

u n i q u e i n s t a n c e = new ATM() ;
}
return u n i q u e i n s t a n c e ;

}

/ / . . .
}

59

All the outputs have now been discussed and thus the results have been evaluated. The next
section wraps up what all these efforts led to.

5. Conclusions and further work

Getting a grasp on the utilization of object-oriented mechanisms in code is hard when a pro-
grammer has no experience writing code in object-oriented languages. General definitions with
real-life examples are a good way to get an idea of what these mechanisms represent, but assign-
ing a strict, code-based definition to them can be very helpful. The proposed solution attempts
to aid programmers further by providing them feedback on their usage of said mechanisms in
their code instantly. Some of these mechanisms have special keywords assigned to them and
thus are easy to spot in code, but the ones that do not require larger context. This often means
that a number of conditions have to be met for the mechanism to be implemented correctly.
Or that the user has to know about all the classes present in the source code for them to spot
these mechanisms. Even though this paper named all the conditions, spotting them in code can
still be challenging. The application aims to help with this, which should help its users be more
confident in their utilization of these mechanisms that lead to better-structured code.

The tool was evaluated with the use of code examples found online, open source-code projects
and projects made by the students of the Faculty of Informatics and Information Technologies
at Slovak Technical University. The students reported a number of issues which were all taken
care of in order to improve the tool.

The application has room to grow - detection of other, yet untouched design patterns could be
added, and already implemented features could be improved. Continuing in the set approach to
mechanism detection from different coding languages’ source codes would make the application
accessible to more programmers. Adding an option to read source code from an online repository
(for example GitHub) for analysis could also improve the user’s experience and convenience.
Rewriting the application in Java in order to have it distributed as a JAR platform-independent
tool is yet another way of making the application accessible to more users. Adding hints on
how to improve the read code based on information gathered by the application would also be
very helpful for the application’s users.

Recently the field of artificial intelligence has expanded greatly, and thus finding more AI-
driven tools and comparing their features to ours could prove to be beneficial. Comparing this
application’s accuracy with more tools and testing them on larger, more complex open-source
projects could lead further improvements of the application. Since the tool was tested on smaller
projects, mostly written by students, it is currently unclear how much time the application
takes to analyze much larger projects. Students’ projects were around 1 500 lines of code long
on average and could be analyzed in a couple of seconds at worst. Testing the application on
such projects could also lead to valuable information and metrics about the tool.

Acknowledgment

This article was written thanks to the generous support under the Operational Program Inte-
grated Infrastructure for the project: "Support of research activities of Excellence laboratories

60

STU in Bratislava", Project no. 313021BXZ1, co-financed by the European Regional Development
Fund and as part of the national project "Increasing Slovakia’s resistance to hybrid threats
by strengthening public administration capacities", project code ITMS2014+: 314011CDW7 -
this project is supported by the European Social Fund and the Operational Program Integrated
Infrastructure for the project: National infrastructure for supporting technology transfer in
Slovakia II – NITT SK II, co-financed by the European Regional Development Fund.

References

[1] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, K. A. Houston, Object-
oriented analysis and design with applications, ACM SIGSOFT software engineering notes
33 (2008) 29–29.

[2] V. Vranić, Objektovo-orientované programovanie: Objekty, java a aspekty, Vydavatel’stvo
STU (2008).

[3] B. Dathan, S. Ramnath, A. Approach, S. Edition, Object-Oriented Analysis, Design and
Implementation, Springer, 2015.

[4] B. P. Douglass, Real-time design patterns: robust scalable architecture for real-time systems,
Addison-Wesley Professional, 2003.

[5] N. Shi, R. A. Olsson, Reverse engineering of design patterns from java source code, in:
21st IEEE/ACM International Conference on Automated Software Engineering (ASE’06),
IEEE, 2006, pp. 123–134.

[6] M. Wyrich, J. Bogner, Towards an autonomous bot for automatic source code refactoring,
in: 2019 IEEE/ACM 1st international workshop on bots in software engineering (BotSE),
IEEE, 2019, pp. 24–28.

[7] Y. Gil, M. Orrù, The spartanizer: Massive automatic refactoring, in: 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
2017, pp. 477–481. doi:10.1109/SANER.2017.7884657.

[8] M. G. Al-Obeidallah, M. Petridis, S. Kapetanakis, A survey on design pattern detection
approaches, International Journal of Software Engineering (IJSE) 7 (2016) 41–59.

[9] R. MOREIRA, E. FERNANDES, E. FIGUEIREDO, based comparison of design pattern
detection tools (2022).

[10] R. S. Rao, A review on design pattern detection, Int J Eng Res Technol 8 (2019) 756–762.
[11] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, Design pattern detection

using similarity scoring, IEEE transactions on software engineering 32 (2006) 896–909.
[12] M. Fowler, Refactoring: Improving the design of existing code, in: 11th European

Conference. Jyväskylä, Finland, 1997.
[13] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, IEEE

Transactions on Software Engineering 38 (2011) 5–18.
[14] Z. Troníček, Refactoringng: A flexible java refactoring tool, in: Proceedings of the 27th

Annual ACM Symposium on Applied Computing, 2012, pp. 1165–1170.

61

