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Abstract
Explicit relationships included in textual description of patterns are insufficient to establish pattern
sequences. This article brings a new method of establishing pattern sequences using artificial neural
networks. The method is based on extracting implicit relationships between organizational patterns
using the softmax regression model by Zhang et al., which are learned by the artificial neural network and
encoded in its weights. The implementation of the method is based on the mini-batch stochastic gradient
descent method by Zhang et al. and the Keras application programming interface of the TensorFlow
framework. To evaluate the method, we conducted four experiments on selected organizational patterns
documented by Coplien and Harrison. Two pattern sequences were established in each experiment. For
each pattern sequence, a pattern story was created in order to check its meaningfulness.
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1. Introduction

The idea of patterns came to software development from the work of Alexander in building
architecture [1, 2]. There, they are not used only to design software, but also to build and main-
tain organizations of people who develop software. Such patterns are known as organizational
patterns of software development [3]. Patterns have been identified in many other areas, such
as teaching [4], drama [5, 6, 7, 8], or games [9].

Closely related patterns constitute pattern languages. While pattern languages must be
understood before the expected order of application of patterns in pattern sequences can be
determined [10], explicit relationships included in textual description of patterns are insufficient
to establish pattern sequences because the types of these relationships do not determine the
expected order of patterns [11]. Implicit relationships between patterns can be used to determine
the expected order of patterns in pattern sequences. These can be extracted from textual
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descriptions of patterns [12], and this can be done in an automated way using machine learning
methods and techniques [13].

This article brings a new method of establishing pattern sequences using artificial neural
networks. The method is based on computing the probability of occurrence of patterns in
pattern sequences. Consequently, the method results in expected (probable) pattern sequences.

The rest of this article is structured as follows. Section 2 presents existing approaches
to extracting implicit relationships between patterns, which can be used to establish pattern
sequences. Section 3 explains the core of our method of establishing pattern sequences. Section 4
explains the aspects of the artificial neural network used in our method. Section 5 explains the
implementation of the method. Section 6 presents the experiments. Section 7 discusses the
results. Section 8 relates this article to the work done by others. Section 9 concludes the article.

2. Extracting Implicit Relationships Between Patterns

Waseeb et al. [13] showed that the strength of the relationship between patterns can be calculated
from the co-occurrence of vocabulary among the patterns. Waseeb et al. [13] used textual
descriptions of thirty organizational patterns documented by Coplien and Harrison [3] as a
source for mining hidden relationships.

Kaliyar et al. [14] presents a language model based on the BERT language model, which can
be used to understand links to other patterns using the context in which these links occur, thus
shifting from lexical to syntax analysis.

Yu et al. [15] present another model based on the BERT language model, which can be used
to understand the semantic meaning of the text in a pattern story before or after applying the
pattern. After applying a particular pattern, the resulting context could be used to identify the
next applicable pattern.

The softmax regression model by Zhang et al. [16] can be used to compute the probability of
the event. If applied to organizational pattern descriptions, the sorted probabilities from the
output of the softmax regression model could be used to establish pattern sequences. According
to Zhang et al. [16], their softmax regression model can be implemented as an artificial neural
network.

One of the advantages of using artificial neural networks to calculate the probability that
a given sequence of terms describes an organizational pattern is that they can work well
with learned representations of organizational patterns. Learned representations are widely
considered more effective for efficiently applying deep learning methods.

An advantage of using this approach lies in its ability to producemeaningful pattern sequences
based on probabilities of use of patterns in them and the ability to establish sequences of patterns
from various pattern languages, possibly from different domains. Another advantage of using
this approach is massive use of patterns cannot be observed.

A disadvantage of using an artificial neural network to establish pattern sequences is that they
tend to overfit a training data set if less data is provided for training. To overcome model overfit
on the training dataset, a Bayesian neural network can be used as the specific architecture of the
artificial neural network. As discussed by Jospin [17] or Zhang et al. [16], at least 10 000–15 000
rows in training tables must be used to train a model to get a good generalization.

63



3. The Core of the Method

The softmax regression model by Zhang et al. is designed to produce soft predictions. In our
method, soft predictions mean probability fragments of textual descriptions of organizational
patterns can be ascribed to the names of the organizational patterns. According to Zhang et
al. [16], their softmax regression model can be implemented as a single-layer neural network.
Still, to strengthen the model, this does not inherently mean the neural network implementation
must consist of a single hidden layer. Because of this, nine hidden processing layers were used
in the neural network to work with bigrams. The neural network used to work with trigrams
consisted of four hidden processing layers.

Artificial neural networks can be used to compute probabilities of the use of patterns in
pattern sequences. The network used in this article was designed to classify term frequencies of
terms in textual descriptions of patterns to names of these patterns. Probabilities of classifying
term frequencies of terms to names of organizational patterns can be used to establish patterns
into sequences. Textual descriptions of patterns do not have to refer to each other because the
network tries to learn relationships between patterns by learning the content of their textual
descriptions.

The softmax regression model by Zhang et al. produces vectors of probabilities for each
pattern in the dataset. The vector of probabilities for each row of the dataset displayed in Table 1,
i.e., 𝑝𝑖 = (𝑝𝑟𝑜𝑏𝑖, … , 𝑝𝑟𝑜𝑏𝑛), predicts the probability that fragments of a textual description can
be ascribed to an organizational pattern. The index of the highest probability argmax𝑖 𝑝𝑟𝑜𝑏𝑖
points to the organizational pattern, which can be described by the first row of the frequency
table. The index of the probability in this vector points to the event that the sentence from the
first row of the table describes the problem solved by the pattern at the row number equal to
this index. Different vectors with probabilities are produced in each run of the artificial neural
network.

The output from the softmax regression model by Zhang et al. is computed by the softmax
operation, idea for which was originally introduced by Bridle [18]. Outputs from output layer
are inputs to the softmax activation function implementing Bridle’s softmax operation in an
artificial neural network. The softmax activation function was invented by Luce, who found that
the softmax operation ensures that the output from this function sums up to 1 and will always
be between 0 and 1 [16]. This way, the output from the softmax regression model conforms to
the axiomatic definition of probability.

Here, a new method of establishing pattern sequences from their descriptions based on the
softmax regression model by Zhang et al. is proposed. The input to the method is a set of
pattern descriptions. The output is a set of the expected pattern sequences. The method consists
of the following steps:

1. Split the pattern descriptions into vectors with two or more words. The number of vector
components depends on your estimate.

2. Calculate term frequencies of the terms in the vectors gained in step 1.
3. Create a table so its first column contains the pattern’s name (see Table 1 for an example).
4. Use the softmax regression model by Zhang et al. to compute the probability that a

sentence constructed by concatenating pairs and triplets of the terms in the first row of
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the table describes the problem that the pattern whose name is in the first column of this
table tries to solve.

5. Sort the probability values gained in step 4 in descending order.
6. Identify the highest probability in all vectors. It points to the first vector in the pattern

sequence. A pattern expected to be used as the first pattern in the pattern sequence is at
the row equal to the index of this probability.

7. The second highest probability points to the second pattern in the sequence. Any subse-
quent probability in the ordered list points to the next pattern expected to be used in the
sequence.

8. Verify that the pattern sequence established is meaningful. If this pattern sequence is
meaningful, this pattern sequence is expected.

4. Artificial Neural Network Aspects

In the artificial neural network used in our method, each artificial neuron is expected to
store information about the frequencies of words the organizational pattern was documented
with. Each artificial neuron is also expected to store more information about the actual value
of parameters, so that they could be later optimized with the gradient-descent optimization
method and objective functions.

Artificial neural networks consist of input, hidden, and output layers. The output layer used
in our method is a fully connected layer that produced probabilities of applying patterns in
sequences.

In our method, artificial neural networks learn the structure of textual descriptions of or-
ganizational patterns encoded with learned parameters (numerically encoded in weights) and
hyper-parameters. Hyper-parameters can also be represented in decisions to use various weight
optimization algorithms or regularization strategies. Batch normalization from Ioffe [19] was
used as a regularization strategy for experiments with bigrams and trigrams. Learned param-
eters are numerical weights and biases, which are always initialized randomly with weight
initializers and subsequently optimized by the processing of the artificial neural network. Weight
initializers of the Keras application programming interface of the TensorFlow platform were
used in experiments. For both experiments, the size of the batches and the number of epochs
were manipulated as hyper-parameters of networks used.

According to Zhang et al. [16], the parameterization cost of the output layer 𝑂(𝑜 ∗ 𝑥) can be
minimized with an additional constrain factor: O((o*x) / hyper_parameter).

No guarantee exists that outputs produced by the output layer conform to the axiomatic
definition of probability. The softmax activation function by Zhang et al. [16] was used to
transform output from output layer into the probability of applying patterns in pattern se-
quence. Although the activation function is nonlinear, artificial neurons are defined as linear
transformations, so the softmax regression model by Zhang et al. is implemented here as a
linear regression model. Biases 𝑏𝑖 in the definitions of the affine transformation from Table 1
are normally distributed, i.e., they follow the normal distribution with mean 0 and standard
deviation equal to 1 𝒩 (𝜇 = 0, 𝜎2 = 1) .
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Table 1
The dataset for the artificial neural network.

Output from the artificial neural network for each organizational pattern is a vec-
tor of conditional probabilities (𝑝𝑟𝑜𝑏𝑖, …, 𝑝𝑟𝑜𝑏𝑛). These probabilities are called con-
ditional because they are defined as probabilities of the events that fragments of tex-
tual descriptions can be ascribed to given organizational patterns, formally: 𝑃(𝑦 =
𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 | 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑒𝑟𝑚 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠). According to Zhang et al. [16], the proba-
bilities must be computed with minimum cross-entropy loss, thus minimizing surprises in
model output. The purpose of using the softmax regression model by Zhang et al. was to
find the best values of weights and biases such that they maximize the likelihood of observed
frequencies of words in textual descriptions of organizational patterns.

Modeling textual descriptions of organizational patterns comes with one important limitation:
multilayer perceptrons cannot learn global tendencies. Multilayer perceptrons can only be used
to encode local tendencies and do not embrace global relationships between the frequencies
of terms used to document organizational patterns in the sense of term frequency—inverse
document frequency (TF-IDF).

Because consecutively applying affine transformations in artificial neurons still leads only
to another affine transformation, activation functions of the rectified linear unit type from
Hinton [20] had to be used on top of hidden layers to produce the information exchanged
between hidden layers. A rectified linear unit is used as an activation function in exchange
for its counterpart sigmoid activation function. Using a rectified linear unit as an activation
function pays off when one cannot be sure that weights have been properly initialized at the
start of the learning process. This is its primary advantage against the use of the sigmoid
activation function. If the output from the sigmoid activation function comes close to 0 or 1,
its gradient is close to zero, and it stops the learning process. This situation is characterized
as a vanishing gradient that stops the learning process because the weights can no longer be
updated (the weights cannot be updated because their update is zero).
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5. Implementation

The mini-batch stochastic gradient descent method by Zhang et al. [16] was used in training
the neural network. Because it is a gradient-based method capable of performing automatic
differentiation, the Keras application programming interface of the TensorFlow platform was
chosen for model learning. The code of the artificial neural network was written in Python
programming language, which was subsequently translated into C programming language to
speed up arithmetic operations. This translation helps the TensorFlow framework to efficiently
self-manage computer memory.

The mini-batch stochastic gradient descent method was chosen as the most widely used
method to train artificial neural networks. The Adam optimizer [21] was applied to train and
enhance parameters by a multilayer perceptron. This algorithm allows a perceptron to optimize
even when some hidden layers in back-propagation produce no information to be learned
from. It was also shown that optimizers such as Adam with proven properties behave as if
batch normalization is applied. Model parameters were optimized in 100 epochs in trigrams,
finishing with a model with 2809 parameters. The number of epochs here is a hyper-parameter
of the model. These were the parameters needed for the model assumed to be capable of
computing probabilities that fragments of textual descriptions can be ascribed to the 19 selected
organizational patterns documented by Coplien and Harrison [3].

The model overfit can be ascribed to the fact it worked with a very tiny dataset where the
number of attributes was almost equal to the number of data instances. This dataset should be
extended in future work with frequencies for more than triplets of words for organizational
patterns documented in other sources. The created model was found to be sensitive to the
similarity of inverse frequencies of terms from textual descriptions of organizational patterns.
This means that if frequencies of these terms are similar, the model loses its ability to make
accurate predictions of terms to organizational patterns. According to Bishop [22], a simpler
model capable of generalizing well and achieving at least a bit lower error on the training dataset
than an error on the validation or test dataset is generally preferred. According to Bishop [22]
and Srivastava [23], dropout layers used in our experiments help multilayer perceptron be less
sensitive to changes and measurement errors in input data to the neural network.

The overfit of the softmax regression model by Zhang et al. on the training dataset was
partially solved by applying the 𝐿1 regularization technique with dropout layers. Using dropout
layers meant adding another type of hyper-parameter that determines the behavior of the
artificial neural network. The 𝐿1 regularization is a technique that adds a penalty term to
the loss of each of the predictions (e.g., by computing the Frobenius norm of weight matrices
presented by Zhang et al. [16]). Thus, the optimization algorithm helps the model minimize
overly high parameter values. One of the advantages of the 𝐿1 regularization is that, on average,
it primarily strives to pay attention to the most important attributes of organizational patterns
in the dataset, and those less important are learned less or with less-valued weights.
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6. Experiments

To evaluate the method proposed in previous sections, we conducted four experiments on
selected organizational patterns documented by Coplien and Harrison [3]. Two experiments
were conducted with pairs of words, i.e., bigrams, and two with triplets of words, i.e., trigrams.
The neural network architecture for the experiments with bigrams included more layers than
those with trigrams, together with specialized regularization layers to overcome model over-
fitting of the training data. Two pattern sequences were established in each experiment. For
each pattern sequence, a pattern story was created in order to check its meaningfulness. All
four experiments, along with established pattern sequences and corresponding patterns stories,
are available in a GitHub repository.1 Due to the lack of space, we present only selected results
here.

In the first experiment with trigrams, the Apprenticeship → Domain Expertise In Roles →
Stand Up Meeting pattern sequence was established by running the model on the validation set,
while the Architecture Team→ Few Roles→ Generics and Specifics was established by running
the model on the test set.

In the second experiment with trigrams, the Organization Follows Market → Developing
In Pairs → Architecture Team pattern sequence was established by running the model on the
validation set, while the Smoke Filled Room → Code Ownership → Lock Em Up Together
pattern sequence was established by running the model on the test set.

Only the first three highest probabilities in the model outputs were considered, so all pattern
sequences established in the experiments consist of three organizational patterns. The method
itself does not limit the length of pattern sequences. Because neural networks were trained on
different values of parameters in each run, it was possible to establish unique pattern sequences.

Although the model is a deep neural network and should be strong enough, it cannot classify
most organizational patterns based on the triplets of terms used to document them. The model
in the first experiment worked accurately with trigrams and identified the Apprenticeship
and Organization Follows Market organizational pattern in the validation set and Size the
Organization in the test set. The obvious incapability of the model to classify trigram frequencies
is probably a consequence of similar trigram frequencies in the dataset.

Let’s look at the Apprenticeship → Domain Expertise In Roles → Stand Up Meeting pattern
sequence. This is how it was established:

1. The probability of using Apprenticeship in the pattern sequence was 0.998081. This
organizational pattern is about having the senior mentor with a junior software developer
who teaches him the advanced skills needed for the job.

2. The probability of using Domain Expertise In Roles in the pattern sequence was 0.063485.
This organizational pattern is about concentrating developers around domain experts or
subject matter experts who lead the development and maintenance of the products.

3. The probability of using Stand Up Meeting in the pattern sequence was 0.061498. This
organizational pattern is about meeting the development team at frequent and stable
intervals, discussing problems, topics, and the next work plan.

1https://github.com/viktorFIIT/fiit-research-resources/tree/main/neural-network
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This pattern sequence documents the usual setting in development teams created by Size the
Organization organizational pattern from Coplien and Harrison [3]. Novice developers work
together with senior developers who are experts in their field. The development team usually
consists of the subteams responsible for particular products, and these subteams must meet to
discuss what’s going on and work plans for the future. As we can see, this pattern sequence
can be described in a pattern story, so we can consider it expected.

Let’s look at the Architecture Team → Few Roles → Generics and Specifics pattern sequence.
This is how it was established:

1. The probability of using the Architecture Team in the pattern sequence was 0.057077. This
organizational pattern involves creating a small team to define the initial architecture.

2. The probability of using Few Roles in the pattern sequence was 0.055865. This organiza-
tional pattern is about having only a small number of producer roles in the team.

3. The probability of using Generics and Specifics in the pattern sequence was 0.055788.
This organizational pattern is about letting experienced senior developers create the
framework, let novices use it, and include it in specific applications.

This pattern sequence documents the usual setting of working on the development project.
First, experienced senior developers choose the technology to work with, and then they design
the initial software product architecture. Some less experienced software developers are then
chosen to integrate and customize this framework in specific software products. Again, this
pattern sequence can be captured in a pattern story, so we can consider it expected.

7. Discussion

The method proposed in this article fails to handle situations when a pattern textual description
contains links to other patterns that should not or must not be used after this one. The first
experiment with the trigrams network achieved similar classification accuracy in training and
test datasets. In the first experiment, two organizational patterns were recognized in validation
and one organizational pattern in the test dataset. The classification accuracy of working with
the validation set fell from 0.111 to 0.11 after adding one duplicate record to the dataset. Adding
one duplicate did not impact the network’s ability to recognize 2 out of 18 organizational
patterns.

According to Sousa et al. [11], professionals should assess how likely pattern sequences will
be adopted. This means that the community must validate the value of expected sequences.

Documented patterns can be trusted to be true patterns no matter how often they occur.
Kohls et al. [24] count uses of patterns before evaluating the true existence of patterns.

Souse et al. [11] note that very few authors assess the implementation of patterns with
practitioners. This can lead to avoiding patterns that may be conditionally usable because their
use in sequences depends on the technology used for their implementation.

According to Zhang et al. [16], the asymptotic standard deviation of the empirical error of
the population error is √0.25/19. If there is a need to have 95% confidence and this difference is
in an interval ±0.01 using asymptotic analysis, then at least 10 000 rows like those in Table 1
must be collected in a dataset. Test sets must not be reused during repeated experiments, no
matter whether subsequent runs of the model provide new examples of pattern sequences.
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Because the number of produced pattern sequences Q can be dramatically higher than the
number of inputs (19 in the experiments conducted in this article), the computational cost
𝒪(19 ∗ 𝑄) can be prohibitively high using 10 000 rows in the dataset.

According to Zhang et al. [16], accuracy can be traded off for computational and storage cost of
the neural network and a quaternion-like decomposition can be used to decrease computational
cost 𝒪(19 ∗ 𝑄) by the factor of n into the computational cost of 𝒪((19 ∗ 𝑄)/𝑛).

8. Related Work

Waseeb et al. [13] proposed an automatic approach to discover relationships between patterns
using text mining and natural language processing techniques. A similar dataset is used in this
article, but the existence of n-grams in the descriptions of organizational patterns is replaced
with term frequencies of bigrams and trigrams. Mining relationships between patterns from
their textual descriptions needs to understand the meaning of the text, not just pattern names
mentioned within the pattern textual descriptions.

Zhang et al. [16] presents sequence models, which, if implemented as recurrent neural
networks, can be used to calculate the likelihood of use of pattern sequences, even if these
are outputs from language models. According to Zhang et al. [16], sequence models can be
optimized for producing the most likely used pattern sequences. The disadvantage of using
Markov models to model pattern sequences is that patterns used long ago in the past are not
considered in producing long pattern sequences.

Zanoni et al. [25] present an approach to predict the next design pattern to be used. Their
approach requires a system architecture because it is based on extracting its features. They use
a graph model to compare the structure of the existing system with a structure proposed by the
design pattern.

Wijerathna et al. [26] proposed the first automated approach to learn text features from a
corpus of 66 000 textual descriptions of software design problems from the Stack Overflow
website through neural embeddings to predict the most likely design pattern to use to solve them.
Compared to the method proposed in this article, they evaluated their method using accuracy,
precision metrics, and through different models with different sets of hyper-parameters. Unlike
the method proposed in this article, their approach is based on unsupervised learning. It requires
a small number of labels compared to the dataset size used in this article to achieve very high
accuracy (82%).

Building organizations with organizational patterns this article deals with is not unrelated to
common project management problems [27, 28, 29, 30, 31], but it tends to happen in a more
natural way.

9. Conclusions and Further Work

Explicit relationships included in textual description of patterns are insufficient to establish
pattern sequences. This article brings a new method of establishing pattern sequences using
artificial neural networks. The method is based on extracting implicit relationships between
organizational patterns using the softmax regression model by Zhang et al. [16], which are
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learned by the artificial neural network and encoded in its weights. The implementation of the
method is based on the mini-batch stochastic gradient descent method by Zhang et al. [16] and
the Keras application programming interface of the TensorFlow framework.

To evaluate the method, we conducted four experiments on selected organizational patterns
documented by Coplien and Harrison [3]. Two pattern sequences were established in each
experiment. For each pattern sequence, a pattern story was created in order to check its
meaningfulness.

We intend to experiment further with the method and to apply it to a recently published
catalog of security patterns [32].
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