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Abstract 
A network with critical data streams, where the timing of incoming and outgoing data is a necessity, is 
called a deterministic network. These networks are mostly used in association with real-time systems 
that use periodic hard-real-time data which need to be scheduled. The algorithm proposed in this paper 
is focused on achieving the lowest possible latency within the specified network topology depending on 
the physical parameters of the network and the periodic requirements of the communicating nodes. The 
algorithm allows to add priorities to the data flow between nodes and also the option to specify if 
preemption is allowed within the network, since not all devices support it. The result is a schedule of 
hard-real-time data communication within a specified network topology where all requirements of 
communicating nodes are met if such a solution is possible. 
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1. Introduction 

Every day more and more devices get connected to the Internet and other networks. These 
devices all have different requirements, regarding quality and timing of data transmission. Some 
of them need to transfer time-sensitive data, which means that not only does it matter that the 
data was received, it also matters when it was received by the destination. While we are perfectly 
fine if a video, we stream is lagging a bit, may that be a bit troublesome, but if data about e.g., an 
overheating component of a machine gets delayed, that may have some more serious 
consequences [1-5]. Time critical data can be categorized into soft and hard real time data, the 
difference lies in the abiding of the deadline, in which a task must be completed. In hard real-time 
systems, missing a deadline is considered a failure of the whole real-time system. In large 
networks with many endpoints scheduling time sensitive traffic can be problematic, because of 
conflicts that can arise if more than one endpoint wants to send data over the same path. To solve 
these conflicts and create a schedule for communicating endpoints the need for an algorithm has 
arisen. In this paper we will discuss communication planning procedures and propose a solution 
for scheduling data in a deterministic network. 

2. Related work 

Publicly available tools for planning deterministic communication do not exist at the time of 
writing this paper. However, there is a large number of communication planning and shaping 
procedures that we will introduce in this section [6]. 

 
SQAMIA 2023: Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, September 10--13, 
2023, Bratislava, Slovakia 

 jan.mach@stuba.sk (J. Mach); valeria.taskova@stuba.sk (V. Tašková); lukas.kohutka@stuba.sk (L. Kohútka)  
 0000-0003-4810-1655 (J. Mach); 0009-0008-2622579 (V. Tašková); 0000-0002-5679-6250 (L. Kohútka) 

 
© 2023 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

92
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



2.1. Quality of Service and priorities 

The definition of Quality of Service (QoS) is not entirely unambiguous, as each technology or 
service defines it according to its needs. The most widely known standards in this area are the 
IEEE 802.1p and 802.1Q standards and their definition of QoS and their assignment of priorities 
[7, 8]. According to these standards IEEE proposed eight priority levels where 0 is the lowest 
priority and 7 is the highest. A recommended type of traffic was also assigned to these priorities. 

Zero priority traffic is recommended to be Best Effort traffic and the highest priority should 
be assigned to Network control traffic. Using these priorities, traffic can be shaped. The priority 
information is in the four-byte 802.1Q header, which is inserted into the Ethernet frame between 
the source MAC address and Ethertype fields [9]. 

2.2. Strict priorities 

The algorithm for strict priorities is supported by CISCO routers. These routers support priorities. 
Each interface supports multiple streams which correspond to these priorities. According to the 
strict priority algorithm the higher priority packets get transmitted first. Packages from lower 
priority streams are not processed until packages from a higher priority stream are sent [10]. 
 

 
Figure 1: Example of streams with strict priorities. Source: [11]. 

2.3. Weighted fair queuing 

There is a number of variations of round-robin scheduling algorithms for data streams, which 
allow each stream to have a fair share of resources. It is possible to fairly distribute transmissions 
from all streams, however, fairness does not mean that all streams can send the same number of 
packages [12]. This depends on what the algorithm deems as the weight (e.g. earliest finish time 
of processing). Priorities could be added to ensure that higher priority streams get to send more, 
in which case these higher priority streams will be served for longer than lower priority streams 
[13]. 

2.4. Hierarchical scheduling 

Hierarchical scheduling is a framework that is supported and described by CISCO. It allows 
service providers to manage their QoS at three or four levels of the hierarchy. Instead of allocating 
an implicit resource guarantee to each queue, the three-level scheduling parameter uses the ratio 
of the remaining resources to allocate unused resources (such as bandwidth) to each logical 
queue [14]. 

The three-level hierarchy would look like this [14]: 
• Physical Layer - Used to shape a physical interface, such as an OC-3 port. 
• Logical Layer - Used to schedule child interfaces, such as VLAN or PPP sessions. 
• Class layer - Used for series classes defined by QoS policy. 
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Figure 2: Example of streams with strict priorities.  Source: [11]. 

2.5. Credit-based scheduling 

Credit-Based Traffic Shaping is used primarily for forwarding audio and video frames. The 
individual frames are organized into streams according to their priorities. Each stream is then 
assigned with a specific credit score. Frames are only sent if this credit is greater than or equal to 
zero. This traffic shaping is a great solution for achieving smooth video and audio transmissions. 
It adds flexibility as new data can be dynamically added to streams [15]. 

2.6. Time aware scheduling and preemption 

Time aware scheduling is used primarily in industrial networks, where we can specify the 
reference time (defined according to IEEE 802.1AS) and the list of events. The event list consists 
of a time interval and the event itself. The event may be, for example, opening a port [16]. Of 
course, there may be a situation where a lower priority frame is still transmitted at the time of 
the event. For this case, a so-called guard zone is introduced. This guard zone is as large as the 
largest possible frame that could be transmitted and interfere with the planned communication. 
In case this band is too large, preemption is going to be used on the frame with lower priority. It 
is going to be divided into smaller fragments and the guard zone must therefore only be the size 
of the largest possible fragment [17, 18]. 
 

 
Figure 3: Visualization of Time aware scheduling. Source: [17]. 
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3. Proposed solution 

The previously mentioned methods focused primarily on prioritizing and scheduling data, in a 
way that they could determine, if the scheduling is possible. However, they would be either not 
suitable for larger networks or they did not guarantee that all data, even the lowest priorities, 
would get transmitted in time. 
The input for the algorithm contains data about the allowance of preemption, the topology of the 
network, such as the throughput, and latency as well as data about the communication pairs 
(period in which data is being sent, the data size and the priority of it). 
The program then creates a weighted graph, where the weight of the edges is equal to the latency 
between nodes. For each communication pair the shortest path is then found and saved. Taking 
into consideration these shortest paths, the number of conflicts on the edges is then computed. If 
two or more communication pairs have the same edge in their shortest path, a schedule has to be 
made [19]. 

 
 

Figure 4: Visualization of a path with conflict where node 1 and 2, want to send data to node 4. 
Source: author’s contributions. 
 
The algorithm labels all edges with conflicts on them as unresolved. It then starts with the edge 
that has the most communication pairs wanting to send data through them. At first a period has 
to be set, which is the lowest common multiple of all the periods of communication pairs that use 
that edge. Next the algorithm calculated the time that is needed to send all the data from all of the 
communication pairs. If this time is lower than the calculated period, then offsets for each 
communication pair that uses the edge are calculated, starting with the ones that have the highest 
priority. 

If the time is greater than the calculated period, then a different route than the shortest has to 
be found, with emphasis on the lowest possible overall latency of the network. The algorithm uses 
hill-climbing to search for this solution. 

In case that while solving a collision edge where one of the communication pairs already has 
an offset that has been set in earlier iterations, the option of preemption plays a role. If 
preemption is allowed in the topology, then data can be split into more packets to accommodate 
the already set offset. If preemption is not an option, then the already set offset is altered to be 
the last offset on the collision edge and a “backwards check” is triggered. This is to see if the 
change has had impact on any previously solved conflict edges. If yes, then the offset is once again 
set anew to be the last offset on that already set edge and the control is triggered anew. This 
control is running until either an offset is found that does not interfere with any other data offsets, 
or until a solution is found. The proposed offset plus the time to send data has to be greater than 
the period on that conflict edge in which case a new path using hill-climbing has to be found. The 
algorithm either finds a schedule solution, where all communication pair prerequisites have been 
met with the lowest possible network latency, or informs the user that no solution is possible. 
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Figure 5: Activity diagram of the proposed solution. Source: author’s contribution. 

3.1. Schedule example 

To demonstrate the algorithm on an example, lets propose a simple topology as illustrated in 
Figure 6. Both node 1 and node 2 want to send data to node 4 and node 3 wants to send data to 
node 5. The size of the data and period of the communication are displayed in the table. 
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Figure 6: Topology example with data about communication pairs. Source: author’s 
contribution. 
 
The algorithm then creates a weighted graph of the topology as shown in Figure 7. It then 
calculates the shortest paths from the source to the destination using Dijkstra’s algorithm, where 
the weight of the edges is equal to the latency on that edge. In the next step it looks for conflicts 
on the edges. In this example both communication pairs 1-6 and 4-6 have the edge C5 7 in their 
shortest path. This means that this edge is marked as unresolved, and the algorithm tries to create 
a schedule based on the period of both communication pairs. 

 
Figure 7: Weighted graph of the topology. Source: author’s contribution. 
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Since the communication pair 1−4 wants to send a big amount of data in a short time frame, it 
is not possible to also schedule the other communication pair. The pair 2−4 would still be 
transmitting data and a conflict would arise (Figure 8). Since the communication pair 1−4 has a 
higher priority, the algorithm tries to reschedule the pair 2−4. 

 
Figure 8: Example of schedule with conflicts on two different links. Source: author’s 

contribution. 

 
Figure 9: Example of schedule without conflicts for two different links. Source: author’s 
contribution. 

 
The algorithm finds a new path for the communication pair 2−4, if such a path exists, with 
emphasis on the lowest possible latency. This time the new path would create a conflict on the 
edge between node 6 and node 5. This new edge is then marked as unresolved, and a schedule 
based on the period of both communication pairs is calculated. In this example both pairs could 
fit into the period (Figure 9). If a schedule is possible, the algorithm will notify the user of the 
offsets of this schedule otherwise it would inform the user that a solution does not exist. 

To demonstrate the algorithm further, we present the results for the topology depicted in 
Figure 10. The blue numbers are identification numbers of nodes, be it a network switch or 
endpoint node. The black numbers on lines represent the transmission delays of individual links 
between a pair of two nodes. 

We created a communication pair with a higher priority that would take the whole period to 
transmit. This way, the other communication pairs would have to be transferred through a 
different route. The algorithm is able to find new paths that ensure that the latency as a whole is 
the lowest possible and creates an output schedule, where there are no collisions (Figure 11). 
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Figure 10: Example of topology without collisions after finding a new path. Source: author’s 
contribution. 

 
Figure 11: Scheduler output for topology displayed in Figure 9. Source: author’s contribution. 
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3.2. Comparison to other approaches 

The algorithms and approaches mentioned in Section 2 also support non-scheduled traffic, which 
our solution does not support. In order to properly compare our proposed solution, we also 
needed a topology that has throughput and latency described. Chen et al. [20] described their 
credit-based low latency packet scheduler (CBLLPS) on the bottleneck topology shown in Figure 

12. Nodes marked S are source nodes, D are destination nodes and Rs and Rd are nodes that 
represent routers. Figure 13 illustrates queuing delays in their CBLLPS compared to other 
approaches (LLEPS = Low Latency and Efficient Packet Scheduling, SFQ = Start-time Fair Queuing, 
WF2Q+ = Worst-case fair weighted fair queueing, SCFQ = Self-clocked fair queueing, NDRR = 
Nested deficit round robin). Using three 1Mbps flows CBLLPS is capable of sharing bandwidth. 

We recreated the topology where nodes 1-10 are source nodes, 11-20 are destination nodes 
and nodes 21-22 represent the routers. For our solution to create a schedule, the bottleneck 
resource needs to be evenly distributed between all communication pairs. This means that if we 
were to transmit 1 MB data from all sources to all destinations a schedule would not be possible. 
The credit-based scheduler on the other hand is capable of scheduling all the data, but there 
would be delays, which is not allowed for hard-real time data. To send all more data, either the 
allowed period should be greater, or a cable with a bigger throughput should be used. 

 
Figure 12: Topology used for comparison. Source: [20]. 

 
Figure 13: Queuing delays on the conflict edge using different approaches. Source: [20]. 
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Figure 14: Schedule generated by proposed scheduling tool. Source: author’s contribution. 
 
In Table 1. we both solutions are compared. Our first point of comparison is the time to create a 
schedule for the data, in the given topology. For the given topology, our algorithm was able to 
create an output in less than a second. The credit-based scheduler does not create any schedule, 
it just assigns credits to every communication pair. The second point of comparison was the time 
in which data is transmitted. Our solution creates a predictable schedule, where every 
communication pair is given an offset and every period data is sent at time of the given offset. The 
Credit-based scheduler sends data of the communication pairs when there are credits available 
to the pair, this means data transmission time cannot be predicted at all. We also measured the 
success rate of the data transmission schedule. If every communication pair wants to send more 
than 0,1MB/s our solution is not able to create a schedule, while the credit-based scheduler sends 
data even with a delay. If the data to send for every communication pair is 0,1 MB/s or less, the 
proposed solution is able to schedule all pairs. The credit-based scheduler is also able to send all 
data, but the periods of the communication pair are not fulfilled. Regarding the delay, the 
proposed solution is an all-or-nothing approach, it either can schedule everything without a delay 
or is not able to create a schedule. The credit-based scheduler has an average of 7s of delay. The 
next point of comparison is predictability or the ability to send data periodically. As mentioned 
above, the proposed solution supports this kind of data while the credit-based scheduler does 
not. The credit-based scheduler also does not take any network latency into consideration, while 
the proposed solution would search for the lowest latency path for every communication pair. 

Table 1 
Comparison of proposed solution with credit-based scheduling for given topology. 

Comparison in: Proposed solution Credit-based scheduling 
Time to create schedule less than 1s none 
Data transmission time based on offsets and 

periods 
when there are credits 

Success rate 1Mb/s per pair could not create schedule transmission with delay 
Success rate 0.1Mb/s per 

pair 
scheduled all pairs transmission not 

predictable 
Delay none if schedule is possible 7ms in average 

Periodicity/predictability according to schedule not possible to plan 
Network latency the lowest possible not considered 

4. Future work 

Scheduling of communication between endpoints over Ethernet in the domain of real-time 
distributed systems is closely linked to task scheduling in individual endpoints and therefore it 
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should be seen as one complex distributed real-time system where there are coordinated task 
plans in individual endpoints as also communication between these points using this solution. 
The aim for the future is to combine this proposed solution with real-time distributed systems. 

5. Conclusion 

In this paper we proposed a new scheduling tool for deterministic networks that creates a 
schedule with emphasis on the overall lowest latency of the network. In general, our proposed 
solution is not suitable for systems with best effort traffic, or with non-periodical data. Our 
proposed scheduling tool would not be able to create a schedule at all in the example of topology 
we used even if one communication pair wants to send more data.  

For these cases, other solutions such as the abovementioned credit-based scheduler is more 
suitable. On the other hand, for real-time networks or for systems with hard-real time behavior 
where no delays of data transmission over network is allowed, our proposed solution is more 
suitable, since it creates hard offsets that do not allow any delays and all data are guaranteed to 
be sent on time, and no queuing is needed. 
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