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Abstract
Finding bugs in software using automated tools has enjoyed generous attention for as long as humans
wrote software. With the increase in computing capacity and advancement in compiler theory, static
analyzer tools like the Clang Static Analyzer have been an unexpandable part of several software
development projects. The Clang Static Analyzer, like many other tools of its kind, employs heuristics,
which may lead to reports on correct code – so-called false positives. The evaluation and the potential
fixing of the reports cannot be automated, requiring valuable time from the most expensive and least
available resource during development, a human expert. While the finding of bugs stands in the focus of
academic research, the intelligible presentation of those findings to the user was less frequently discussed.
In our paper, we survey several reports emitted by the Clang Static Analyzer to understand what makes
a bug report hard to understand. Our study aims to pave the way for further research to fix the problems
discussed here.

Keywords
static analysis, C, C++, Clang, LLVM, bug report quality

1. Introduction

Maintenance costs take a considerable chunk out of the budget of any development team. Most
of these expenses are spent fixing bugs. The earlier a bug is detected, the lower the cost of the
fix [1]; therefore, alongside traditional methods of testing, it is worth pursuing automated tools,
such as static analyzers.

Static analyzers provide early feedback on the quality of software by design. It is a popular
method for finding bugs and code smells, and various tools implement it [2]. Many of the
applied techniques are fast and cheap enough to be integrated into the Continuous Integration
(CI) loops, therefore, they have a positive impact on the speeding up of development.

Most static analysis methods apply heuristics, meaning they may often underestimate or over-
estimate program behaviour [3]; in other words, static analysis trades precision for coverage. This
means that after the analysis, all reports must be inspected by a professional who has to decide
manually whether the report stands or is a false positive. This further strains what is usually the
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most expensive and the least available resources. It has the utmost importance to maximize the
effectiveness of the step where humans are involved [4]. As such, the communication between
the automated analysis tool and the user must be as smooth as possible.

In this paper, we survey bug reports generated by the Clang Static Analyzer, inspect various
selected examples, and discuss where communication with the user is lacking. Alongside an
evaluation of how many reports are intelligible from the complete report set, we highlight two
specific faults observed in several reports.

2. Measurement methodology

In this section, we discuss the way we approached surveying the Clang Static Analyzer’s reports.

2.1. Briefly on how the analyzer works

A decent simplified explanation of how symbolic execution [5, 6] works, which is the technique
used by the Clang Static Analyzer, would be the following. Suppose we have a C++ interpreter.
The interpreter’s input is the source code (written in one of the C family of languages). Starting
from the primary function, it reads and executes each statement one by one, sometimes by
jumping to another function. It keeps track of the values of variables (using symbolic [7], as
opposed to concrete values) and the call stack. If it encounters a condition, it splits the analysis
in two – one where the condition is assumed true and one where it is assumed false [8]. Before
executing a statement, it allows various modules, or so-called “checkers”, to check preconditions,
and after the execution, it applies postconditions. If any of these conditions are violated, it emits
a warning for the user.

The Clang Static Analyzer [9, 10, 11, 12] is an open-source tool that implements symbolic
execution on the C family of languages. Clang [13], which encompasses the static analyzer, is
the primary compiler frontend for LLVM and has now enjoyed more than 15 years as one of
the leading static analyzers for C/C++. For the remainder of the paper, we refer to the Clang
Static Analyzer under the term analyzer.

2.2. Our focus on the measurements

Following the above analogy, the interpreter is the analyzer’s engine, and checkers define
pre- and postconditions. For instance, core.DivByZero defines that the denominator must
not be 0. If the engine can prove that the denominator is 0, a warning is emitted; otherwise,
it is assumed that it is non-zero. Some checkers implement more sophisticated semantics
– unix.MismatchedDeallocator keeps track of whether malloc() or operator new was
allocated some memory and whether the corresponding deallocator was used to release it.

The former example is a checker that relies strongly on the correct operation of the engine.
While the latter example relies on the engine as well, its own bookkeeping is a large component
of its logic. For this reason, we chose to limit our investigations to core.DivByZero, because
we are more interested in the general mechanics and faults of bug report generation and less so
in reports on specific domains.
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Total reports Acceptable Not enough info Incomprehensible

Acid 1 1 0 0
ffmpeg 6 5 1 0
LLVM + Clang 11 8 2 1
OpenSSL 1 1 0 0
postgres 2 1 0 1
QTBase 7 2 1 4
Vim 2 2 0 0
Xerces 1 0 1 0
Total 31 20 5 6

Table 1
A partial summary of our findings. Each row contains how many bug reports surveyed for the given
project, and their intelligbility.

3. Results & Discussion

We tested the latest version of the analyzer1 on the following open-source C and C++ projects:
Acid [14], ffmpeg [15], LLVM and Clang [16], OpenSSL [17], postgres [18], QTBase [19], vim [20]
and Xerces [21]. Combined, these projects cover a wide variety of coding techniques, codebase
sizes, and different versions of the languages’ standards.

Table 1. partially summarizes our findings. We sorted the results we surveyed into the 3
categories:

• Acceptable: It is possible to understand the report, and whether it stands, even if it could
be improved.

• Not enough info: It is not possible understand the report, but it is possible to say which
function calls / value changes the analyzer neglected to explain, and a domain expert may
possess the missing information and judge whether the report stands.

• Incomprehensible: The entire bug report is incomprehensible, and its doubtful that even a
domain expert can judge the report.

Overall, we found that out of 31 reports, 11 division by zero reports were not acceptable. Of
that, 6 reports were incomprehensible; 4 was reported in QTBase, and concerned code where
numerous integers and floating point numbers were used in a hard-to-follow manner. An
example is shown on Figure 1. For the other reports, it was more apparent that the analyzer
was at fault for failing to generate a proper report, rather than the source code being messy. We
feel that the analyzer was also the tool to blame for the reports that lacked more information.
An example for this case can be seen in Figure 2.

Out of 31 reports, only 20 reports were at all acceptable. That is not to say that extracting the
necessary information was easy but at the very least possible. We identified a pattern of indirect
reasoning, shown in Figure 3. The example shows that i’s value is 0 when we assume it to be
equal to NumElts, which is why the division-by-zero warning occurs at the remainder operator.

1The latest version of Clang at of time of writing is 16.0.6.
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While the example is only a few lines, we found that this indirect reasoning in other reports
is often spread over several function calls, several hundred lines of code, and several logical
statements that wear on the memory of the user. It would be easier to understand this report if
the warning stated “NumElts is known to be 0 because it is equal to i, which has a value of 0.”.

Supporting findings of a previous research [22], we also identified that many of the leading
notes in the reports are superfluous. Of the acceptable reports, 6 reports had fewer than 10
notes, 8 had 10 to 19 notes, 6 had 20 or more notes. We measured how many notes we could
omit in sequence from the first note – we found that only the last few are usually important. Of
the acceptable reports, 11 reports had less than 10 meaningful notes, and the rest had fewer
than 20.

Figure 1: Example of a report that is incomprehensible from qdistancefield.cpp in QTBase. The
number of small variables make it hard to understand how the values of variables change.

Figure 2: Example of a report that has missing information in vf_palettegen.c from ffmpeg. div’s
value depends on n, which in turn got its value from box->len, that got its value from s->nb_refs.
However, the analyzer never explained why it thinks it is entitled to assume that this value can be 0.

77



Figure 3: Example of a report where it is only indirectly proved that the denominator is 0 in
AutoUpgrade.cpp from LLVM. i’s value is 0 when we assume it to be equal to NumElts, which
is why the division of zero occurs at the remainder operator.

4. Conclusion

Symbolic execution, a static analysis technique, is a powerful tool to find deeply rooted pro-
gramming errors. Despite its strengths, it often emits bug reports that leave much to be desired,
demanding even more of the most expensive resource and least available in a software develop-
ment project: human experts.

We surveyed a a popular static analyzer tool, the Clang Static Analyzer, that checks code of
the C family of languages with a complex technique called symbolic execution. We discussed
that it consists of an engine that interprets the code and several checkers defining programming
semantics. We took measurements of a checker that does relatively little modelling and relies
mainly on the engine and generalized bug reporting techniques.

We found that out of 31 reports, 6 are incomprehensible, 5 do not contain enough information
to understand the finding, and 20 are acceptable, even if poor. We identified two specific
classes of problems: one where chains of logical statements need to be deciphered by the user
to understand the report, and one where only the last few notes of the report were actually
important.
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