
Don’t Lose Your Head(s): Model Pre-Training and
Exploitation for Personalization
Pablo Zivic1, Jorge Sanchez1 and Rafael Carrascosa1

1MercadoLibre, Inc., Buenos Aires, Argentina

Abstract
Many tasks in e-commerce involve providing users with relevant and personalized information that
reflects their particular interests and affinities. Although tasks such as search and recommendation are
commonplace in most large-scale e-commerce platforms nowadays, there is a growing need in providing
new features and capabilities, most of which would benefit from personalized user-centric strategies.
However, designing custom solutions takes a considerable amount of time and effort, so the availability of
generic behavioral representations that can be used in a variety of tasks, is of great practical importance

In this work, we propose a generic feature extraction model that effectively reduces the time and
costs of building personalized solutions by leveraging a diverse and general set of tasks suitable to e-
commerce. During pre-training, the model predicts attribute embeddings of the next and purchased items
in a navigation session. At run-time, instead of discarding the output prediction heads, we use them to
build a novel item representation that incorporates user preferences observed in the navigation session.

Equipped with these representations, we perform experiments on two different datasets, demonstrating
competing performance and a high degree of complementary with other approaches.

1. Introduction

Being able to generate personalized responses is key for e-commerce, as it improves the overall
user experience by presenting results that align with their interests and affinities. Applications of
personalization range from generating customized product recommendations [1, 2] and showing
personalized responses to search queries [3, 4], to the prediction of size and fit of fashion [5].
These applications require a way to encode user behavior and preference dynamics concisely.
These are variables that are difficult to grasp, and can not be captured from historical data only,
e.g. user purchase and/or recommendation history. They are modulated by external factors such
as trends, social and seasonal events, etc. [2, 6]. This makes session-based personalization
[7] appealing, as sessions account for all these variables implicitly by looking at the actual
interaction behavior of users in a continuous period of time [6]. Session-based methods have
several advantages over more traditional ones [8], namely: they do not assume the availability of
user preference data, they can be readily applied to new and/or anonymous users, and reflect the
dynamics of user preferences over time.

Besides the modeling capabilities of these designs, another important factor is scale, espe-
cially in high-traffic scenarios like large auction platforms/marketplaces, and streaming service

eCom’23: ACM SIGIR Workshop on eCommerce, July 27, 2023, Taipei, Taiwan
$ pablo.rzivic@mercadolibre.com (P. Zivic); jorge.sanchez@mercadolibre.com (J. Sanchez);
rafael.carrascosa@mercadolibre.com (R. Carrascosa)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pablo.rzivic@mercadolibre.com
mailto:jorge.sanchez@mercadolibre.com
mailto:rafael.carrascosa@mercadolibre.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

providers. In these cases, the large number of items that change over time (items being constantly
added or removed) or the real-time nature of the interactions (low latency response), make the
actual design face constraints that go beyond downstream performance. Furthermore, given the
variety of problems that involve deciding what to present to a specific user in a given context,
there is a practical need for developing generic approaches that reduce the effort required by
designing custom solutions.

In this work, we tackle these problems and propose a generic learning framework that leverages
user navigation data to learn a generic model that allows us to compute session-based representa-
tions that perform well on various tasks. We learn the model by leveraging supervision signals
well suited for e-commerce applications. Importantly, generating such signals does not require
any additional effort since they can be inferred automatically from historic navigation logs.

Our contributions can be summarized in the following:

• We propose a multi-task self-supervised pre-training approach from user activity logs. Our
approach is designed to be independent of the size of the product catalog.

• A feature extraction mechanism that leverages the trained sequential model and enables its
use across multiple applications. This mechanism can be easily integrated into existing
solutions and incorporate problem-specific features in a straightforward manner.

• We show that the model and the new representation can be computed incrementally with a
minimum effort, making them suitable for online personalization settings.

• We report experiments on two different e-commerce datasets and show consistent improve-
ments w.r.t a variety of models. We also provide a disaggregate analysis of the session data
that provide new insights into the particularities of the problem.

2. Related Work

In this section, we review relevant work on personalization and representation learning in the
context of e-commerce. We refer the interested reader to [6] for a thorough survey of the subject.

In [9], the authors propose a user representation learned across multiple tasks. The model
consists of an LSTM network and an attention mechanism trained on user sequences that include
a variety of interaction events (clicks, bookmarks, purchases). The model is learned over five
different tasks. Some tasks are specific to Taobao (shop preference prediction, fashion icon
following prediction) while others are relevant to any e-commerce platform (click-through
rate prediction, ranking, and price preference prediction). Although the authors demonstrate a
gain from fine-tuning to a new task, it is not clear how a machine learning practitioner should
incorporate problem-specific features such as placement for ads, or contextual information for
push notifications.

Instead of fine-tuning the model for each downstream task, [10] proposes to "patch" the learned
model in order to use it downstream. The approach is based on pre-training a convolutional
architecture on a large set of user navigation sequences, using a context-based masked item
prediction objective (single task). During fine-tuning, the authors propose to insert small sub-
networks across the architecture in order to reduce the number of parameters needed to be

fine-tuned for a given new task. Note, however, that the convolutional nature of the model makes
it difficult to apply to an online/streaming scenario, where incremental computation capabilities
are desirable.

[11] use a contrastive learning strategy and different data augmentations to train a transformer
architecture from sequence data. In this model, input sequences are transformed by two randomly
sampled augmentations and the model has to predict if a pair correspond to the same underlying
sequence or not. The negative pairs correspond to other randomly sampled sequences from the
training dataset. The authors focus exclusively on the recommendations, and it is not clear how
could be applied to other e-commerce tasks.

[12] adapts the BERT model [13] to e-commerce data by self-supervision. The model adopts
an architecture that explicitly differentiates between short- and long-term interactions. This
bidirectional transformer model is trained using self-supervision on different masked-language
modeling tasks specially formulated for e-commerce.

[14] trains a recurrent model by applying two different augmentation strategies, namely: con-
sidering all prefix sequences with a training instance as new samples and applying random item
deletions across training sequences. The use of recurrent models for session-based recommenda-
tion allows for incremental data processing. This is an important aspect in online and streaming
scenarios [6].

A particularity of most of the models described above is that they are trained on some variation
of the "next-item prediction" task. This task is usually formulated as a classification problem over
the items in the catalog. In an e-commerce setting, this number can be too large from a practical
standpoint (number of parameters in the last layer of the model). Moreover, with new items
being added and removed constantly, the effectiveness and traceability of such a system over time
becomes an issue. An alternative formulation, proposed by [14] is to reformulate the problem as
an embedding regression task. In this way, the output of the model becomes independent of the
number of entries in the catalog. We take this approach and extend it across different tasks in a
unified manner.

Lastly, none of the described models provide a mechanism to incorporate problem-specific
features when using them for new downstream tasks. That means that all downstream tasks
must rely solely on the user session and not on other features that may be relevant to the specific
problem [15, 6, 16].

3. Problem Setting

Let 𝒵 be the set of items1 available to the user. An item 𝑧 ∈ 𝒵 can be described by a collection
of 𝑀 different attributes 𝑎(𝑧) = {𝑎𝑖(𝑧)}𝑀𝑖=1, e.g. its price, title, product description, etc. Let 𝒬
be the set of events that capture the different ways a user can interact with an element in 𝒵 , e.g.
viewing it, buying it, marking it as a favorite, etc. A user session can be modelled as a sequence
𝑆 = {(𝑧𝑖, 𝑞𝑖)}𝑁𝑖=1, with (𝑧, 𝑞) ∈ 𝒵 ×𝒬 of item-event pairs. We use (𝑧, 𝑞) or 𝑞(𝑧) instinctively
to denote the event 𝑞 acting on item 𝑧.

1While a product represents a manufactured object or commodity, an item depicts something being sold at a given
price and conditions.

Figure 1: Schematic view of the auxiliary tasks for a session that ends in a purchase (left) and
a session that does not (right): next item attributes (upper arrows), purchased item attributes
(bottom arrows), an item being purchased (✓) or not (✗), the session ends in a purchase or not.
We say a session is a purchase if the last event in the session is a purchase.

In our work, we aim at learning a representation that is efficient (can be computed incrementally)
and generic (exhibits good off-the-shelf performance on a variety of tasks), and which encodes
information about the behavior of users exploring 𝒵 based on their preferences.

We focus on two types of events that are particularly relevant in our setting: viewing an item
and/or buying it. In what follows, we present a model and learning formulation that account for
these goals.

4. Multi-Task Pre-Training over User Navigation Data

Let us assume the availability of a large set of user session data 𝒮 = {𝑆𝑖}𝑛𝑖=1. As mentioned
above, we restrict the event set to 𝒬 = {𝑞𝑣𝑖𝑒𝑤, 𝑞𝑏𝑢𝑦}. Let us further assume an item 𝑧 ∈ 𝒵 can
be encoded based on any given attribute by a mapping 𝜑𝑎 : 𝒵 → R𝑑, 𝑎 ∈ {𝑎1, . . . , 𝑎𝑀}, i.e.
embeddings for the publication title, price and/or product description. These representations are
item-centered and capture generic knowledge about the type of data (modality) being represented.
They do not account for anything related to user behavior during navigation. We propose to train
a model on top of these representations in order to capture the dynamics induced by the user
during a navigation/shopping session.

We choose a recurrent network (GRU) [17] as our base model. This choice is motivated by the
following. First, predictions have to be carried out on-the-fly (as the user interacts with the system)
and fast (low latency). In this context, a representation that can be computed incrementally is
thus desirable. Second, user sessions can be arbitrarily long and spread over time. Having to
store the whole data for each user and session becomes impractical.

To train our model we define a series of tasks tailored to the type of events we mentioned above.
Concretely, given a large collection of user session data, we train a model to predict if an item is
being viewed and/or purchased. At a given time step, the query item can be the current, the next,
or the last one along the sequence. If the last element in the sequence is being purchased, we say
the whole session corresponds to a purchase event. Identifying these types of sessions early is
important from a business perspective. Sessions and events types are shown schematically in
Fig. 1.

Regarding view events, instead of trying to predict the id of the following item in a navigation
session, we seek to predict each of its attributes. The rationale behind this approach over the

more usual of casting the problem as a classification task is as follows. First, many items in
e-commerce correspond to the same product being sold by different users, each of which has
a different identifier. Casting the problem as a classification over the set of item ids not only
makes the number of free parameters grow but also makes training such a model difficult due
to the long-tailed distribution of item interactions, i.e. most items in the catalog would not have
enough samples to properly train the classification layer. Our formulation, on the other hand, is
independent of the catalog size and it can be easily adapted to accommodate new attributes and
tasks.

The set of pre-training tasks and associated losses our model is trained on will be discussed in
the sections below. The tasks correspond to predicting whether the current item is purchased or
not, whether the session ends in a purchase or not, the attributes of the next item viewed by the
user, and, if applicable, the attributes of the item being purchased.

In what follows, we use ℎ𝑖 = 𝑔(𝜑(𝑧𝑖)) to denote the hidden state of the recurrent network 𝑔 at
the 𝑖-th step of the sequence.

4.1. (This) Item Purchase

Given an item 𝑧 we would like to predict if the associated event is a purchase or not. This task is
posed as a binary classification problem with the loss:

ℒ𝑏𝑢𝑦 𝑖𝑡𝑒𝑚 =
∑︁
S∈𝒮

|S|∑︁
𝑖=1

ℓ𝑐𝑒(𝑓1(ℎ𝑖), 𝑞𝑖) (1)

where 𝑓1 : R𝑑 → 𝒬 is a classifier and ℓ𝑐𝑒(·, ·) the cross entropy loss.

4.2. Session Purchase

This is similar to the above but instead of predicting if the current item is being purchased, we
try to anticipate if the session will end on a purchase based on the navigation history up to the
current step.

ℒ𝑏𝑢𝑦 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 =
∑︁
S∈𝒮

|S|∑︁
𝑖=1

ℓ𝑐𝑒(𝑓2(ℎ𝑖), 𝑞|S|). (2)

Here, 𝑞|𝑆| denotes the event associated with the last item in S and 𝑓2 a classifier as before.

4.3. Next Item Attributes

Given an item 𝑧, we aim at predicting the attributes (their embeddings) of the next item in the
sequence. The loss term associated with attribute 𝑎𝑚 can be written as:

ℒ𝑎𝑚 =
∑︁
S∈𝒮

|𝑆|−1∑︁
𝑖=1

ℓ𝑎(𝑓𝑎𝑚(ℎ𝑖), 𝑎𝑚(𝑧𝑖+1)). (3)

where 𝑎𝑚(𝑧𝑖+1) is the 𝑚-th attribute of the (𝑖+ 1)-th item.
The overall loss for this task, ℒ𝑣𝑖𝑒𝑤 𝑛𝑒𝑥𝑡, is the combination of the following partial terms:

• Item title, ℒ𝑡𝑖𝑡𝑙𝑒: regression to the average word embedding of the next item publication title.
We use the cosine loss, i.e. one minus the cosine similarity between the attribute embedding
and its prediction, as the regression loss for this task.

• Product ID, ℒ𝑖𝑑: same as before, but regressing towards an embedding of the product ID. Note
that different items can be mapped to the same ID, e.g. same product offered by different sellers.
By regressing towards (an embedding of) the product ID, we make the model independent of
the number of products in the catalog [17], a number that can be rather large and change over
time.

• Item price, ℒ𝑝𝑟𝑖𝑐𝑒: regression towards the log of the item price using a mean square error loss.
We also explore a variation of this term based on the classification of the "price bucket" in
which the product falls. In this case, the size and number of buckets can be set from statistics
computed over the training set or guided by the application, e.g. pre-defined price ranges.

4.4. Purchased Item Attributes

This task is the same as the above but instead of predicting the attributes of the next item in the
sequence, we try to predict those of the one being purchased. In this case, we consider only
sequences that end in a purchase. Eq. (3) can be modified as follows:

ℒ′
𝑎𝑚 =

∑︁
S∈𝒮

1𝑞|𝑆|=𝑞𝑏𝑢𝑦

|𝑆|−1∑︁
𝑖=1

ℓ𝑎(𝑓
′
𝑎𝑚(ℎ𝑖), 𝑎𝑚(𝑧|S|)). (4)

where 1𝑝 is an indicator variable that takes the value one if 𝑝 y true and zero otherwise. As before,
the overall loss for this task, ℒ𝑏𝑢𝑦 𝑙𝑎𝑠𝑡, will be the sum of the ℒ′

𝑎𝑚s corresponding to the attributes
of the purchased item.

There are many ways in which we can aggregate Eqs. (1)–(4) into a single loss to be optimized.
Aggregation methods vary both in their technical details as well in the intuitions they rely on. For
linear aggregation, losses can be weighted by considering each task uncertainty, learning speed,
or per-task performance [18]. Other methods balance losses by modifying gradients by imposing
constraints, doing re-normalization, or performing gradient surgery to avoid interference between
tasks [19]. However, results are mixed and while some of these techniques lead to improvements
in the final performance, results depend not only on the task but also on the specifics of the
architecture and model design [20, 21].

In light of these results, we opt for the following strategy. We combine losses linearly. We first
balance each term by multiplying it by a constant value so that all loss terms have roughly the
same magnitude. During training, we follow [22] and learn importance weights along with the
parameters of the model. In preliminary experiments, we observed this automated approach leads
to a very similar pre-training performance compared to the case of setting these values manually
using cross-validation.

5. Towards Personalized Item Representations

Training a model on the tasks described above allows us to capture important yet generic user
behavior patterns from data. We can think of these representations as user-generic as they originate
from learning from a large collection of real user interactions within an e-commerce context.
Some applications, however, would benefit from building a more personalized characterization
of the user, based on their particular interests.Examples are search personalization, where we
have to reorder search results in relation to the recent navigation behavior, or push notification
selection, where we have to select a set of candidates, dates, and times to send a push notification
to a user.

To build such representations, first note that most prediction heads in our model correspond to
regression heads, i.e. their output account for the model’s best guess for the attribute embeddings
of the next/purchased item in a navigation sequence. We leverage such predictions and build a
representation that contrasts the predicted embeddings with those of the attributes of each item in
a (short) list of candidates. Formally, let 𝑓𝑚,𝑖 = 𝑓𝑎𝑚(ℎ𝑖) denote the embedding predicted by the
model for attribute 𝑎𝑚 at the 𝑖-th step. Let 𝑧𝑘 denote the 𝑘-th product in a list of candidates (e.g.
items returned by an initial search query) and consider the following set of descriptive statistics:

max
𝑖=1,...,𝑛

𝑠(𝑓𝑚,𝑖, 𝜑𝑚,𝑘) (5)

1

𝑛

𝑛∑︁
𝑖=1

𝑠(𝑓𝑚,𝑖, 𝜑𝑚,𝑘) (6)

𝑠(𝑓𝑚,𝑛, 𝜑𝑚,𝑘) (7)

where 𝜑𝑚,𝑘 = 𝜑𝑚(𝑝𝑘) is the representation for attribute 𝑚 of product 𝑧𝑘 and 𝑠(𝐴,𝐵) denotes a
similarity measure between 𝐴 and 𝐵, e.g. cosine similarity for vector embeddings or 1 minus a
distance for scalar attributes (e.g. price).

Eq. (5)–(7) compute simple descriptive statistics that seek to capture generic patterns from the
items the user has recently interacted with, in relation to a candidate item. Eq. (5) computes the
maximum similarity of the current model prediction with all the items in the navigation history.
Eq. (6) aims at capturing 𝑧𝑘’s average relevance to the current session. Finally, (7) computes the
similarity between 𝑧𝑘 and the prediction for the last item visited by the user.

In this context, the computation of 𝑠(𝑓𝑚,𝑖, 𝜑𝑚,𝑘) can be thought of as a simple attention mech-
anism with item-to-item similarity at its core, and can retrieve properties about the relationship
between a given candidate and all past interactions. This formulation can be extended with more
problem-dependant statistics as long as the final vector has a fixed size.

All these coefficients can be computed efficiently with a minimum of caching, i.e. by maintain-
ing a running max and running average of the similarities. Using the regression heads presented
in Sec. 4 we compute a total of 18 coefficients: 9 correspond to heads predicting the next event,
and 9 to session purchases. In both cases, we extract 3 features for each of the 3 attributes of
the item. This is a compact representation that can be computed for any new item given a user
session.

We term this representation session conditioned item descriptor (SCID). Figure 2 illustrates
the processes to compute the SCID coefficients for a given attribute and a session of length 𝑛. In

Figure 2: Computing SCID features. We take advantage of the prediction heads for pre-training
and compute similarity statistics with (the attributes of) a candidate item (in blue). Each attribute
provides us with a set of coefficients (in red) that we stack into a vector to form a personalized
representation for that item.

the experiments, we also consider replacing the GRU with a simple moving average model, while
pre-training using the same heads and tasks configurations. The computation of this SCID variant
remains the same.

6. Experimental Setup

In this section, we present our experimental setup, show results on different datasets, and discuss
our findings.

6.1. Datasets and Tasks

We run experiments on two different datasets: Coveo Data Challenge (CDC) [15] and MeLi-
Sessions.

CDC is a publicly available session-level dataset reflecting 10M interactions over 57K different
products in an e-commerce website. It accounts for more than 4M user sessions. Interactions
in this dataset include add to cart, remove from cart, view, purchase, and search events. The
associated challenge considered two different sets of tasks: session-based recommendation and
cart abandonment. We focus on the former, i.e. given the first 𝑛 elements of a session, the task
is to predict future interactions. We consider the following problems: next item prediction and
search personalization. For the first, we set the target as the last item in each sample sequence.
For the second, we use the available annotations and ask the model to predict the item clicked
by the user from the list shown after a search query. In both cases, we use mean reciprocal rank

Property CDC MeLi-Sessions

of unique items 57483 4036255
of sessions 4934699 1019704
of interactions 10431611 14924167
of purchases 77848 78235
25/50/75 pct. of session length 2/3/8 7/12/21
Language English Spanish

Table 1
Statistics for the training set of the CDC and MeLi-Sessions datasets.

(MRR) as the performance metric. Preliminary results showed that other ranking metrics such as
NDCG, precision, and recall at k were highly correlated with MRR, thus we decided to report
only MRR for simplicity.

MeLi-Sessions is an in-house dataset that we use to evaluate different scenarios relevant to
our application domain. It consists of 1M user sessions over more than 4M items. Interactions
include view and purchase events. Samples in the dataset were collected between April 2021 and
July 2021. Sessions in this dataset are longer than CDC, with a median of 12 interactions (vs. 3
for CDC). For evaluation, we consider the following tasks: search personalization, session-based
recommendation, and product ads. The recommendation task is similar to search personalization
with the difference that the trigger is an item instead of a search query. The list of candidates, in
this case, is obtained from co-occurrence statistics w.r.t the item we use as trigger. As before, we
use the MRR as our metric. The product ads task corresponds to estimating the conversion rate
of a sponsored item. In this case, we use the area under the ROC curve as our metric.

Table 1 shows summary statistics computed on the training set of both CDC and MeLi-Sessions.
From the table, we see that although the number of session samples in MeLi-Sessions is four
times smaller than CDC, sessions are longer and the number of unique items is considerably
larger. Also, an important aspect of MeLi-Sessions is that it accounts for e-commerce tasks in
Spanish.

6.2. Architecture and Training Details

We split the datasets chronologically into two disjoint subsets. For CDC, we use sessions
occurring before May 20th for pre-training (∼80% of the total) and those after this date for
evaluation, unless specifically stated otherwise. We follow similar criteria for the MeLi-Sessions
dataset. We use data from April to July for pre-training and the subsequent month for evaluation.
In both cases, there is no overlap between train and test subsets, and the test sets are posterior to
the training sets in each case.

We pre-train a GRU network (single layer, 256-dimensional hidden state) using the losses
described in Sec. 4. Prediction heads consist of two-layer MLPs with ReLU non-linearities for
CDC and single-layer MLPs for MeLi-Sessions. (Pre-)training is run using a learning rate of
0.001 and the Adam optimizer. We use an early stopping heuristic with a patience parameter of 4.
As mentioned before, we follow [22] and combine Eqs. 4.1–4.4 linearly and learn the importance

weights along with the model parameters. During preliminary experiments, we observed no
significant difference from setting these weights manually by cross-validation.

7. Experiments

In the following, we present and discuss the results for the different downstream tasks for both
datasets.

7.1. Experiments On CDC

In this section, we show experimental results and discussions on the CDC dataset.

7.1.1. Item and Attribute Encoders

We build a representation using the embeddings provided with the dataset. We concatenate the
description and category embeddings, adding the normalized price range as an additional scalar
feature. Description embeddings correspond to the ones provided with the dataset for textual
meta-data. We compute category embeddings as the average description embedding for the items
in each category.

7.1.2. Model Pre-Training

We adapt the attribute prediction tasks in Sec. 4.3-4.4 to those available in the dataset. Price
estimation is approached as a 10-way classification problem using the provided annotations.
Instead of title embeddings, we use embeddings of the item description provided by the authors
of the dataset. Finally, instead of category IDs, we regress towards an embedding of the product
category computed as the average of the description embeddings for the items of each category.
We pre-train our model as described above and use the trained model to extract the features that
feed a downstream predictor. We do not perform any task-specific fine-tuning, i.e. we freeze the
model weights and use it as a simple feature extractor.

7.1.3. Next Item Prediction

For this task, we train a gradient boosting model as implemented in LightGBM [23] on top of
different feature combinations. The use of LightGBM offers numerous advantages in a production
environment such as avoiding the need for feature normalization, outlier handling, and explicit
treatment of missing values and categorical feature encoding. We consider the following features:
a baseline (BL) consisting of the concatenation of the item description embedding provided by
the authors of the dataset and an additional feature that encodes the expected click-through rate,
given the ranking position within a list of candidates derived from co-counts, a simple sequential
model consisting of a moving average (MA) of input embeddings, using the hidden state of the
GRU network (GRU), and two variations of the SCID features computed using either a moving
average or GRU network as the base sequential model (SCID). Feature combinations consist of
simple concatenations, without any normalization or pre-processing. We show disaggregated

results for cases in which the target item was already seen by the user during navigation and cases
in which it has not. These two cases reflect different expected behaviors. In the first case, the
model should provide a confirmation of the user interests as shown during navigation (e.g. by
revisiting the same item multiple times) while in the second, the model should bring to the user’s
attention a more diverse set of items that match hers/his immediate interests. We report MRR
scores for each case. For these experiments, we report results in the challenge test set2. We use
the last item of each sequence as the target item for that session. Although the evaluation setup
might differ from that used during the competition, it provides us with a sensible reference.

When reporting results using SCID features (first block in the table), we show two different
scores. The first corresponds to the case of SCID features computed using GRU embeddings, and
the second to SCID features computed based on moving average embeddings.

Results are shown in Table 2. From the table, we see that combining either MA or GRU with
the BL features gives a slight but consistent improvement. If we consider the combination of
BL with either of the SCID features (based on MA or GRU models), we observe an additional
improvement mostly coming from sessions in which the target item was already seen. The
improvement brought by adding SCID is higher for the GRU-based model. If we compare the
effect of adding the GRU-based SCID to the BL baseline, the relative improvement for the "Seen"
case is 9.6% while for the "Not Seen" case is only 1.2%. This can be attributed to the fact that
when the target item was seen during navigation, its similarity with the items in the navigation
session is a strong indicator of user interest, i.e. the max similarity statistic is a maximum (for a
cosine similarity) and the average similarity increases with the number of times the user visited
the target item during navigation. From the table, we also observe little improvement for the
combination of more than 2 descriptors.

As a reference, we show results obtained by the top-performing teams during the competition.
Teams DeepBlueAI and NVIDIA Merlin [24] obtained almost the same results. The first
relied on complex heuristics and the former used a transformer-based solution. The tsotfsk
team [25] relied on a graph-based approach and learned node embeddings over interaction
graphs. Although the results are not strictly comparable, we observe that our approach is highly
competitive on average.

7.1.4. Search Personalization

We leverage the data provided with the CDC dataset and evaluate the performance of our model
in search personalization. We use the data before May 20th for training and validation and the
rest for testing. We consider only sessions containing search events and crop them so that they
are the last in the sequence. For each such entry, we are also provided with a list of candidates
and the item being clicked. We approach this problem as a binary classification problem and use
the classifier’s score to rank the items in the candidate list. Table 3 show the results for different
combinations of input embeddings. Since all entries in this dataset are already processed and
embedded, methods such as TF-IDF or BM25 [26] cannot be applied. However, we observed that
shortlists in the dataset are already sorted by their relevance w.r.t the query. If we compute the
MRR score of the data as is, we observe a score of 0.469. This score drops to 0.350 if we shuffle
2Challenge organizers kindly provided us with the test data. Since target labels were not available, we followed their
recommendation and used the last item in each session as the prediction target.

BL MA GRU SCID
Next Item Prediction

All Seen Not Seen

✓ 0.279 0.490 0.234
✓ ✓ 0.281 0.493 0.235
✓ ✓ 0.281 0.495 0.235
✓ ✓ 0.286/0.288 0.534/0.537 0.233/0.235

✓ ✓ ✓ 0.287 0.534 0.234
✓ ✓ ✓ 0.289 0.540 0.235

DeepBlueAI / NVIDIA 0.277 - -
tsotfsk 0.271 - -
scitator 0.228 - -

Table 2
Results for the next item prediction task on the CDC dataset, as measured by the MRR metric.
For SCID, we show results for the descriptors built on top of MA/GRU models. Results were
computed on the challenge test data using the last item as the target. We also show results
obtained by the top-performing teams during the challenge. These results are not disaggregated
within the seen/not seen categories since these were obtained from the challenge leaderboard.

the list of candidates for each query. We include this default CDC baseline for reference. We
also include a custom baseline model built from the concatenation of the description and query
embeddings along with the price of the query item. As before, we show disaggregate results for
sessions in which the item clicked by the user was previously seen or not.

From the table, we see that GRU performs on par with MA, showing an improvement for
sessions where the target item has already been seen. All feature combinations perform better
than the baseline model alone. The performance of MA and GRU models gets surpassed by a
large margin by either of the corresponding SCID. In this case, the model that uses a GRU as the
base sequential model shows the best performance overall. It brings relative improvements of
63.9% and 8% for the "Seen" and "Not Seen" cases, respectively, over the GRU-only counterpart.
In this case, in contrast to the next item prediction task, we see an increase in performance for
sessions that do not include the target item. When combined, either MA+SCID or GRU+SCID
seems to saturate over their SCID variants alone, showing the expressiveness of the SCID on
this task. Also, besides the large gain brought by the SCID, we observe that CDC default is a
competitive baseline compared to both our sequential variants (MA and GRU).

7.2. Experiments on MeLi-Sessions

In this section, we show experimental results and discussions on the MeLi-Sessions dataset.

7.2.1. Item and Attribute Encoders

We use a concatenation of FastText [27] and Meta-Prod2Vec [28] embeddings as input to our
model for pre-training. They encode the item’s title and product, respectively. These embeddings

MA GRU SCID
Search

All Seen Not Seen

✓ 0.456 0.478 0.443
✓ 0.463 0.488 0.447

✓ 0.576/0.605 0.734/0.800 0.477/0.483

✓ ✓ 0.570 0.730 0.470
✓ ✓ 0.602 0.798 0.480

Baseline (CDC default) 0.469 0.494 0.452
Baseline (ours custom) 0.449 0.465 0.439

Table 3
Search personalization results on the CDC dataset. Results are shown for a baseline model,
moving average, and GRU-based models, both variants of SCID, and their combination.

BL MA GRU SCID Search Recommendation

All Seen Not Seen All Seen Not Seen

✓ 0.400 0.485 0.306 0.397 0.401 0.375
✓ 0.403 0.489 0.307 0.389 0.392 0.366

✓ 0.403 0.489 0.307 0.389 0.392 0.366
✓ 0.507/0.559 0.730/0.826 0.260/0.264 0.433/0.476 0.455/0.500 0.297/0.321

✓ ✓ 0.402 0.486 0.310 0.397 0.401 0.374
✓ ✓ 0.402 0.487 0.307 0.397 0.401 0.376

✓ ✓ ✓ 0.523 (+30.0) 0.710 (+47.9) 0.315 (+1.6) 0.455 (+14.6) 0.465 (+16.1) 0.391 (+4.5)
✓ ✓ ✓ 0.565 (+40.5) 0.783 (+62.5) 0.324 (+5.5) 0.482 (+21.2) 0.496 (+23.8) 0.392 (+4.1)

Table 4
Search personalization and session-based recommendations results on the MeLi-Sessions
dataset. Results are shown for a baseline model, moving average, and GRU-based sequential
models, both variants of SCID, and their combination. Relative improvements after incorporating
the SCID descriptors to the combination of baseline and MA/GRU are shown between paren-
theses. We use the MRR metric for the search and recommendation tasks and ROC-AUC for
product ads.

were trained internally on historical data collected previous to the construction of the dataset.
Once we have a pre-trained model on session data, we use it as a monolithic feature extractor as
before, i.e. without performing any task-specific fine-tuning.

7.2.2. Search Personalization and Session-based Recommendation

We approach both of these problems by training a binary classifier to predict the item clicked
by the user from the list of candidates shown after a search query (Search) or retrieved using
co-occurrence statistics with the last item the user interacted with (Recommendation). We
use the classification score as a relevance measure to rank the items in this list. This model
is trained on top of different feature combinations, and results are shown in the "Search" and
"Recommendation" groups of Table 4. We consider a set of problem-specific features (BL) used

Figure 3: Qualitative example on the search personalization task for the queries "bts kpop" (top)
and "camperas de abrigo dama" (lady coat jackets) (bottom). The figure shows the navigation
history (top), the results shown by the baseline system (middle), and the results of our approach
(bottom). The clicked (target) item is highlighted in green.

internally for each task (concatenation of the embeddings for the search query / last item, and the
item being ranked in the candidate list) and MA, GRU, and SCID features as before. We also
consider different combinations by concatenation and show disaggregate results for the search
and recommendation tasks.

When comparing the performances of individual models, we see the problem-specific strategy

without personalization performs on par (search) or better (recommendation) than the sequential
models alone. Although there seems to be no difference between MA and GRU when considered
alone, the SCID descriptors computed from them observe a clear improvement, with the GRU-
based model performing better than the MA-based one. For the SCID features, if we consider the
overall metrics ("All"), we observe a marked improvement for both descriptor variants in search
and recommendation. The performance gain observed on these tasks is due mainly to a large
gain in sessions for which the target has already been seen. For sessions in which the target was
not previously seen, there is a noticeable decrease in performance, possibly due to the intrinsic
difficulty of the task. The good complementarity between SCID and the other representations
allows us to recover and boost this loss by a margin. We observe that, when combining the BL
features with either MA or GRU, there is no gain in the overall performance. It is only after
combining these models with the SCID that we observe a large increase on all sides, especially
for the GRU-based SCID. These improvements are more noticeable for sessions in which the
target item has already been seen. For instance, in the search personalization task, while there
is a 21% relative improvement after adding the SCID features to the BL+MA combination,
the improvement is 30% for sessions in which the target has been seen and 1.6% for those in
which has not. For session-based recommendation, the overall/seen/not seen improvements
are 14.6%/16.1%/4.5%, respectively. For the combination of BL+GRU, the improvements
after adding the SCID features are even more noticeable: 28.8%/45.2%/4.4% for search and
21.2%/23.8%/4.1% for recommendations.

7.2.3. Product Ads

This task is similar to session-based recommendation, but where the candidates originate from
a list of advertised products. The goal here is to predict if an item within this list was finally
bought or not. Table 5 shows the results using the ROC-AUC metric. As before, we consider a
baseline model using problem-specific features describing the placement and past performance of
the ad, and two models that combine session embeddings with the SCID features from Sec. 5.
We observe similar trends as before but with lower relative improvements overall. In this case,
we do not show disaggregated results since we observed very similar behavior in both cases.
Interestingly, although there is a switch in the best-performing SCID model when considered
alone, the GRU-based SCID seems to exhibit better complementarity compared to the one based
on a moving average, showing a 2.7% relative improvement compared to BL alone or combined
with either of the sequential models.

7.3. Qualitative Analysis

Figure 3 show qualitative examples of the effect of our model on search personalization for the
query "bts kpop" (left) and "camperas de abrigo dama" (lady coat jackets, right) in the MeLi-
Sessions dataset. The top row shows the last 5 items the user interacted with, with the most
recently viewed on the right. The middle and bottom rows show the top-5 results as ranked
(ordered in decreasing order from left to right) by the baseline model and our BL+GRU+SCID,
respectively. The item clicked by the user is highlighted in green. In both cases, we can
observe that the results provided by our model are more consistent with the user navigation

BL MA GRU SCID Product Ads
All

✓ 0.724
✓ 0.647

✓ 0.649
✓ 0.646/0.634

✓ ✓ 0.724
✓ ✓ 0.724

✓ ✓ ✓ 0.738 (+1.9)
✓ ✓ ✓ 0.743 (+2.7)

Table 5
Product ads results on the MeLi-Sessions dataset. Results are shown for a baseline model,
moving average, and GRU-based sequential models, both variants of SCID, and their combination.
Relative improvements after incorporating the SCID descriptors to the combination of baseline
and MA/GRU are shown between parentheses. We use the MRR metric for the search and
recommendation tasks and ROC-AUC for product ads.

history, regarding both product type and price range. In the first example, results shown by the
baseline, although relevant to the search query, ignore the user intent as reflected in hers/his recent
navigation history. In the second, the price range of the top-ranked results by the baseline is one
order of magnitude higher than what the user actually searched for.

8. Conclusions

In this paper, we proposed a multi-task feature learning and extraction model in the context of
e-commerce. Our approach is based on the pre-training of a sequential model using a set of
auxiliary tasks relevant to our application domain, for which supervision is easily obtained from
user navigation logs.

Instead of training a set of prediction heads that are subsequently discarded, we leverage them
and for each new item, we compute a discriminative descriptor that shows consistent performance
improvements w.r.t other alternatives on a variety of tasks. The presented approach allows its
application on a broad set of e-commerce problems using standard modeling techniques, thus
lowering the difficulty of deploying session-based solutions.

Our analysis considers two different scenarios that account for two different user naviga-
tion/shopping behaviors, i.e. sessions for which the target item was already seen by the user and
sessions for which it has not. We observe that the second is the more challenging case, as it calls
for a greater degree of diversity of the model responses, as there is no proxy (item revisits) that
helps the model to succeed on the final predictions. However, the former option is relatively
easier, which raises the question of whether it may introduce a bias in the training procedure
towards simpler solutions.

The findings and insights gained from this work can serve as a foundation for further advance-
ments in the following directions: a) parametrizing SCID statistics, results have demonstrated

the importance of SCID in session-based recommendation systems. Moving forward, future
research can focus on parametrizing SCID, enabling its learning instead of relying on heuristics;
b) comparing with efficiency-optimized transformer architectures, in this study, we examined
our GRU model’s performance in session-based recommendation. Future research can explore
different optimized transformer architectures like Block-Recurrent transformer [29], Linformer
[30], and Sinkhorn Transformers [31] for assessing computational complexity and predictive
performance trade-offs; and c) incorporating long-range signals and user context, the integration
of long-range signals, such as a user’s purchase history, can further improve accuracy beyond
users’ immediate interests.

We thank the authors of the CDC dataset for providing us with the data and guidelines for the
experiments of Sec. 7.1.

References

[1] G. Hadash, O. S. Shalom, R. Osadchy, Rank and rate: multi-task learning for recommender
systems, in: Proc. of the 12th ACM conf. on Recommender Systems, 2018, pp. 451–454.

[2] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, B. Ding, B. Cui, Contrastive learning for sequential
recommendation, arXiv preprint arXiv:2010.14395 (2020).

[3] Q. Ai, D. N. Hill, S. Vishwanathan, W. B. Croft, A zero attention model for personalized
product search, in: Proc. of the 28th ACM intl. conf. on Information and Knowledge
Management, 2019, pp. 379–388.

[4] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi, Personalizing session-based
recommendations with hierarchical recurrent neural networks, in: Proc. of the Eleventh
ACM conf. on Recommender Systems, 2017, pp. 130–137.

[5] A.-S. Sheikh, R. Guigourès, E. Koriagin, Y. K. Ho, R. Shirvany, R. Vollgraf, U. Bergmann,
A deep learning system for predicting size and fit in fashion e-commerce, in: Proceedings
of the 13th ACM conference on recommender systems, 2019, pp. 110–118.

[6] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, D. Lian, A survey on session-based
recommender systems, ACM Computing Surveys (CSUR) 54 (2021) 1–38.

[7] J. B. Schafer, J. Konstan, J. Riedl, Recommender systems in e-commerce, in: Proc. of the
1st ACM conf. on Electronic commerce, 1999, pp. 158–166.

[8] M. Ludewig, N. Mauro, S. Latifi, D. Jannach, Empirical analysis of session-based recom-
mendation algorithms, User Modeling and User-Adapted Interaction 31 (2021) 149–181.

[9] Y. Ni, D. Ou, S. Liu, X. Li, W. Ou, A. Zeng, L. Si, Perceive your users in depth: Learning
universal user representations from multiple e-commerce tasks, in: Proc. of the 24th ACM
SIGKDD intl. conf. on Knowledge Discovery & Data Mining, 2018, pp. 596–605.

[10] F. Yuan, X. He, A. Karatzoglou, L. Zhang, Parameter-efficient transfer from sequential
behaviors for user modeling and recommendation, in: Proc. of the 43rd intl. ACM SIGIR
conf. on research and development in Information Retrieval, 2020, pp. 1469–1478.

[11] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, B. Cui, Contrastive learning for
sequential recommendation, in: 2022 IEEE 38th intl. conf. on data engineering (ICDE),
IEEE, 2022, pp. 1259–1273.

[12] T. Li, A. Cevahir, D. Cho, H. Gong, D. Nguyen, B. Stenger, Userbert: Modeling long-and
short-term user preferences via self-supervision, arXiv preprint arXiv:2202.07605 (2022).

[13] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[14] Y. K. Tan, X. Xu, Y. Liu, Improved recurrent neural networks for session-based recommen-
dations, in: Proc. of the 1st workshop on deep learning for recommender systems, 2016, pp.
17–22.

[15] J. Tagliabue, C. Greco, J.-F. Roy, B. Yu, P. J. Chia, F. Bianchi, G. Cassani, SIGIR 2021
e-commerce workshop data challenge, arXiv preprint arXiv:2104.09423 (2021).

[16] M. Salampasis, A. Katsalis, T. Siomos, M. Delianidi, D. Tektonidis, K. Christantonis, P. Ka-
planoglou, I. Karaveli, C. Bourlis, K. Diamantaras, A flexible session-based recommender
system for e-commerce, Applied Sciences 13 (2023) 3347.

[17] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the properties of neural machine
translation: Encoder–decoder approaches, in: Proc. of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, 2014, pp. 103–111.

[18] M. Crawshaw, Multi-task learning with deep neural networks: A survey, arXiv preprint
arXiv:2009.09796 (2020).

[19] Y. Zhang, Q. Yang, A survey on multi-task learning, IEEE Transactions on Knowledge and
Data Engineering 34 (2021) 5586–5609.

[20] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, L. Van Gool,
Multi-task learning for dense prediction tasks: A survey, IEEE transactions on pattern
analysis and machine intelligence 44 (2021) 3614–3633.

[21] Y. Zhang, C. Wang, X. Wang, W. Zeng, W. Liu, Fairmot: On the fairness of detection and
re-identification in multiple object tracking, International Journal of Computer Vision 129
(2021) 3069–3087.

[22] A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics, in: Proc. of the IEEE conf. on computer vision and pattern
recognition, 2018, pp. 7482–7491.

[23] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Lightgbm: A
highly efficient gradient boosting decision tree, Advances in neural information processing
systems 30 (2017).

[24] G. d. S. P. Moreira, S. Rabhi, R. Ak, M. Y. Kabir, E. Oldridge, Transformers with multi-
modal features and post-fusion context for e-commerce session-based recommendation,
arXiv preprint arXiv:2107.05124 (2021).

[25] K. Li, P. Wang, L. Xia, A session-aware deepwalk model for session-based recommendation,
SIGIR Workshop On eCommerce (2021).

[26] S. Robertson, H. Zaragoza, et al., The probabilistic relevance framework: Bm25 and beyond,
Foundations and Trends® in Information Retrieval 3 (2009) 333–389.

[27] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword
information, arXiv preprint arXiv:1607.04606 (2016).

[28] F. Vasile, E. Smirnova, A. Conneau, Meta-prod2vec: Product embeddings using side-
information for recommendation, in: Proc. of the 10th ACM conf. on recommender systems,
2016, pp. 225–232.

[29] D. Hutchins, I. Schlag, Y. Wu, E. Dyer, B. Neyshabur, Block-recurrent transformers, arXiv

preprint arXiv:2203.07852 (2022).
[30] S. Wang, B. Z. Li, M. Khabsa, H. Fang, H. Ma, Linformer: Self-attention with linear

complexity, arXiv preprint arXiv:2006.04768 (2020).
[31] Y. Tay, D. Bahri, L. Yang, D. Metzler, D.-C. Juan, Sparse sinkhorn attention, in: International

Conference on Machine Learning, PMLR, 2020, pp. 9438–9447.

	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Multi-Task Pre-Training over User Navigation Data
	4.1 (This) Item Purchase
	4.2 Session Purchase
	4.3 Next Item Attributes
	4.4 Purchased Item Attributes

	5 Towards Personalized Item Representations
	6 Experimental Setup
	6.1 Datasets and Tasks
	6.2 Architecture and Training Details

	7 Experiments
	7.1 Experiments On CDC
	7.1.1 Item and Attribute Encoders
	7.1.2 Model Pre-Training
	7.1.3 Next Item Prediction
	7.1.4 Search Personalization

	7.2 Experiments on MeLi-Sessions
	7.2.1 Item and Attribute Encoders
	7.2.2 Search Personalization and Session-based Recommendation
	7.2.3 Product Ads

	7.3 Qualitative Analysis

	8 Conclusions

