
Cross-Domain User Similarity without Overlapping
Attributes via Optimal Transport Theory
Genki Kusano1, Masafumi Oyamada1

1NEC Corporation, Japan

Abstract
Discovering similar users from different perspectives plays an essential role in marketing activities
regarding understanding customers. In particular, user similarity based on attributes (e.g., preferences and
behavioral tendencies) effectively captures user needs. However, such attributes are defined differently
depending on the dataset, making comparing users accurately in a cross-domain setting challenging.
Previous methods have focused on unifying attributes to calculate user similarity across multiple datasets.
However, applicability is limited because they assume the existence of users or attributes that overlap
in two datasets. In this paper, we propose Attribute TransPortation (ATP), a novel method based on
optimal transport theory for calculating cross-domain user similarity without imposing the assumption
of overlapping. In numerical experiments on six real-world datasets, ATP performed quantitatively better
than related methods in two tasks, one for finding the same user to evaluate the similarity itself and the
other for a cross-domain recommendation task to evaluate the effectiveness of utilizing the similarity.
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1. Introduction

One-to-one marketing, which analyzes a single customer in detail, is becoming a powerful
strategy for delivering better products and services. Then, it is essential to understand what
customers are interested in outside the company in addition to the information obtained from
the internal data that marketers own. For this reason, user data is increasingly being analyzed
from the outside. However, it is generally difficult to identify target users in external data1.

When analyzing users across internal and external data, common attributes are required to
link users. A typical example of such attributes is a demographic attribute (e.g., age, gender, or
occupation); however, analyzing users only with demographic attributes can cause stereotyping
problems, leading to inappropriate marketing strategies. In this study, we focus on discovering
similar users based on psychographic attributes, such as a user’s preferences and behavioral
tendencies. While psychographic attributes are more effective than demographic attributes
in directly capturing user needs and avoiding stereotyping, internal and external data rarely
contain the same attributes. Therefore, discovering similar users across different datasets is
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Figure 1: Problem overview. To discover a similar user across different user datasets, we can use (a)
personal information, (b) demographic attributes, and (c) psychographic attributes, which typically
leads to problems with (a) privacy risks, (b) stereotyping, and (c) difficulties in handling un-unified
psychographic attributes. Our method ATP presents a solution for (c).

challenging because such psychographic attributes differ for both types of data (Fig. 1).
There have been various research in the context of cross-domain recommendation [1] which

extract user interests from multiple datasets as user attributes and then utilize them for recom-
mendation tasks. The methods in this vein [2, 3, 4] define cross-domain user similarity based
on attributes; however, they assume the existence of users or attributes that overlap in two
datasets, which makes them too restrictive for application to real-world situations2.

To resolve the overlapping problem, this paper proposes Attribute TransPortation (ATP), a
method for calculating cross-domain user similarity by connecting attributes. The core idea
of ATP is to connect attributes across different domains by adopting optimal transport (OT)
theory [5], a mathematical theory initially designed for solving the problem of transferring one
probabilistic distribution to another while minimizing the total moving cost and preserving the
total amount of each distribution. Regarding two sets of attributes of different domains as the
two distributions with which OT deals, ATP takes a target user who is described with attributes
in a target domain and re-describes him/her with attributes in the other domain. Since applying
OT to two sets of attributes is interpreted as distributing one attribute in one domain to one
attribute in another domain, it is possible to re-describe a user even if the two domains have no
overlapping attributes. In this way, ATP enables the calculation of cross-domain user similarity
by measuring the similarity between a user of the other domain and the re-described target
user in the same feature space.

We investigated the effectiveness of ATP by conducting two experiments on six situations
with real-world datasets containing millions of behavioral histories. In the first experiment, we
evaluated ATP’s effectiveness in matching accuracy for the same user. If the same users exist
across domains, the cross-domain user similarity should be high; thus, we evaluated thematching

2Even if we obtain external data (e.g., movie data crawled from review sites), there is no guarantee that users and
attributes in the external data will also appear in the internal data (e.g., music data that we already own).



Table 1
List of main symbols.

Notation Description
ℝ Set of real numbers

X ∈ ℝ𝑚×𝑛 Matrix
x ∈ ℝ𝑛 Vector

‖x‖𝑝 ∶= (∑𝑗 |x𝑗|𝑝)1/𝑝 𝐿𝑝-norm
𝑧 ∈ {𝑠, 𝑡} Domain

𝑈 𝑧 Set of users
𝐴𝑧 Set of attributes

𝑢𝑧 ∈ 𝑈 𝑧, 𝑎𝑧 ∈ 𝐴𝑧 user and attribute
𝜙𝑧 ∶ 𝑈 𝑧 → ℝ|𝐴𝑧| User feature map
𝜙𝑠→𝑡 ∶ 𝑈 𝑠 → ℝ|𝐴𝑡| Cross-domain user feature map
sim ∶ 𝑈 𝑠 × 𝑈 𝑡 → ℝ Cross-domain user similarity

accuracy of ATP for the same users. Comparing ATP with five other methods (including
modifications of ATP) showed that it achieved the highest and second-highest accuracies in
three and two situations, respectively. In the second experiment, we evaluated the effect of
using ATP in the context of a cross-domain recommendation task [1]. A recommendation task
involving users who do not behave at all (known as cold-start users) would be challenging
to recommend items to them properly because their preferences are unknown. However,
if their behaviors in another domain are available, existing methods [6, 3] can make better
recommendations by utilizing cross-domain user similarity. We confirmed that ATP achieved
the highest and second-highest improvement rates in five and one situations, respectively,
where the highest improvement rate was over 13%.

Our contributions in this paper are summarized as follows.

• We propose Attribute TransPortation (ATP), a method for calculating cross-domain user
similarity based on attributes.

• ATP is versatile because it requires no overlapping users or attributes.
• We conducted extensive experiments on six real-world situations and confirmed that ATP
performed quantitatively better than related methods.

2. Proposed Method

Throughout this paper, we denote two domains as 𝑠 and 𝑡 (source and target), and 𝑧 denotes either
unless otherwise stated. The sets of users and attributes in domain 𝑧 are denoted as 𝑈 𝑧 and 𝐴𝑧,
respectively. All attributes appearing in this paper are set to be written in a natural language,
e.g., 𝐴𝑧 = {dance, anime, ...}. A user 𝑢𝑧 is represented by a numerical vector 𝜙𝑧(𝑢𝑧) ∈ ℝ|𝐴

𝑧|,
where a value 𝜙𝑧(𝑢𝑧)[𝑎𝑧] ∈ ℝ means the degree of the user’s interest in the attribute 𝑎𝑧 ∈ 𝐴𝑧.
We assume all user’ features are given in this form throughout this paper (see Section 3 for how
this feature is obtained). Table 1 summarizes the symbols frequently used in this paper.

Our objective is to find users of domain 𝑠 who are similar to a target user of domain 𝑡 based
on attributes. Now that two users 𝑢𝑠 and 𝑢𝑡 of different domains are expressed as 𝜙𝑠(𝑢𝑠) ∈ ℝ|𝐴

𝑠|



and 𝜙𝑡(𝑢𝑡) ∈ ℝ|𝐴
𝑡|, respectively, the features belong to different feature spaces. Our approach

consists of transforming 𝜙𝑠(𝑢𝑠) to a new feature 𝜙𝑠→𝑡(𝑢𝑠) ∈ ℝ|𝐴
𝑡| in order to treat users of

different domains in the same feature space. The next subsection explains how to calculate the
transformed user feature 𝜙𝑠→𝑡(𝑢𝑠).

2.1. Observation of Semantic Similarity

When some matrix W ∈ ℝ|𝐴
𝑠|×|𝐴𝑡| is given, a transformed feature vector is implemented as

𝜙𝑠→𝑡(𝑢𝑠) = W𝑇𝜙𝑠(𝑢𝑠). Then, each element W[𝑎𝑠, 𝑎𝑡] is interpreted as a contributing score in
which an attribute 𝑎𝑠 is reworded as another attribute 𝑎𝑡. If 𝑎𝑠 and 𝑎𝑡 are “similar” words in
some sense, a user 𝑢𝑠 who is interested in attribute 𝑎𝑠 is likely to be interested in 𝑎𝑡 as well; thus,
W[𝑎𝑠, 𝑎𝑡] is desired to take a higher value. To implement such W, we use a semantic similarity
which is calculated by adopting a word embedding model (e.g., fastText [7]) to attributes. Let
e(𝑎𝑧) ∈ ℝ𝑑 be an embedding vector of an attribute 𝑎𝑧 and cos(x, y) ∶= ⟨x, y⟩/(‖x‖‖y‖) (x, y ∈ ℝ𝑑)
be cosine similarity for vectors. A candidate for such W is calculated by cosine similarity as
Wcos[𝑎𝑠, 𝑎𝑡] ∶= cos(e(𝑎𝑠), e(𝑎𝑡)).

The disadvantage of using Wcos is that the relationship between two attributes does not
reflect their domains. For example, the semantic similarity of “rap” and “musical” might be high
because both terms appear in many music-related sentences. However, if “rap” and “musical”
are attributes in the music and movie domains, respectively, they would represent different
genres. This gap stems from the difference between determining one word from among the
millions of words appearing in training data for the language model or from words appearing
only in the two domains.

To overcome this disadvantage, we reflect on the relationship between two domains and
propose our method on optimal transport (OT) theory [5] concerning the similarity of attributes
considering domains. In the following subsection, we first briefly explain OT and then explain
why it is suitable for reflecting the relationship between two domains as a transforming matrix.

2.2. Optimal Transport Theory

Let 𝑃 𝑠 = {(p𝑠𝑖 , 𝜇
𝑠
𝑖 )}

𝑚
𝑖=1 and 𝑃 𝑡 = {(p𝑡𝑗, 𝜇

𝑡
𝑗)}

𝑛
𝑗=1 be weighted point sets on ℝ𝑑. In OT, a matrix

W ∈ [0, 1]|𝑃
𝑠|×|𝑃 𝑡| is called a transportation plan when it determines the amount of the weight of

a point in 𝑃 𝑠 to another point in 𝑃 𝑡, and a set of transportation plans is denoted by

Π(𝑃 𝑠, 𝑃 𝑡) ∶= {W ≥ 0 | ∑𝑗W𝑖,𝑗 = 𝜇𝑠𝑖 , ∑𝑖W𝑖,𝑗 = 𝜇𝑡𝑗} . (1)

For example, when a point p𝑠𝑖 has a weight 𝜇𝑠𝑖 , a transportation plan transfers the amountW𝑖,𝑗 of
the weight of p𝑠𝑖 to p𝑡𝑗 (Fig. 2 and 3). When the cost of moving one point from p𝑠𝑖 to p𝑡𝑗 is C𝑖,𝑗 > 0,
the optimal transportation plan is defined as one minimizing the total moving cost ∑𝑖,𝑗W𝑖,𝑗C𝑖,𝑗.

Among the many available OT methods, we used word rotator’s distance (WRD) [8], OT
specialized for natural language processing. For an attribute set 𝐴𝑧, WRD transforms it into a
weighted point set 𝑃(𝐴𝑧) ∶= {(e(𝑎𝑧𝑘), 𝜇

𝑧
𝑘)}𝑎𝑧𝑘∈𝐴𝑧 whose weight is calculated in accordance with the

𝐿2-norm, as 𝜇𝑧𝑘 ∶= ‖e(𝑎𝑧𝑘)‖/∑𝑎∈𝐴𝑧 ‖e(𝑎𝑧)‖. The optimal transportation plan by WRD is defined



Figure 2: This figure shows that OT for 1-dimensional distributions transports a part of the green
distribution into the blue distribution.

Figure 3: This figure indicates the 2-dimensional PCA plot of {e(𝑎)} of music (blue dots) and movie (red
stars) attributes. When we consider distributing the “opera” attribute in the music domain to movie
attributes, OT proposes proportions to distribute the attributes.

as

WOT ∶= arg min
W∈Π(𝑃(𝐴𝑠),𝑃(𝐴𝑡))

∑
𝑖,𝑗

W𝑖,𝑗C𝑖,𝑗 + 𝜆Ω(W), (2)

where C𝑖,𝑗 ∶= 1 − cos(e(𝑎𝑠𝑖 ), e(𝑎
𝑡
𝑗)) is a cost defined by cosine similarity, 𝜆 > 0, and Ω(W) ∶=



Figure 4: Visualization of the pie charts of W∗[Opera, 𝑎movie] for ∗ ∈ {OT, cos} and each attribute
𝑎movie ∈ 𝐴movie. The “Opera” attribute is similar in cosine similarity to various movie attributes (right
figure). On the other hand, some movie attributes (e.g., “Broadway” and “Dance”) are more similar to
other music attributes than the “Opera” attribute. As the left figure shows, the transportation plan
modifies the similarity relevant to the two domains.

∑𝑖,𝑗W𝑖,𝑗 log(W𝑖,𝑗) 3. To solve it numerically, we added the regularization term Ω(W) from the
Sinkhorn algorithm [10] 4.

OT reflects the relationship of two domains to the semantic similarity as follows. Let 𝑎𝑡𝑗 be
the attribute most similar to 𝑎𝑠𝑖 , i.e., the moving cost from 𝑎𝑠𝑖 to 𝑎𝑡𝑗 is the minimum compared
to the other attributes in domain 𝑡. In this case, a transportation plan will typically transfer
most of the weights of 𝑎𝑠𝑖 to 𝑎𝑡𝑗, but if there is another attribute 𝑎𝑠𝑖′ that is most similar to 𝑎𝑡𝑗, it is
also going to transfer most of the weights of 𝑎𝑡𝑗 to 𝑎𝑠𝑖′ (Figure 3). OT balances this transferring
of weights by satisfying the summation assumption of Π(𝑃(𝐴𝑠), 𝑃(𝐴𝑡)) and then calculates an
attribute similarity for items that are not only semantic but also relevant to the two domains.

2.3. Cross-Domain User Similarity

Although the resulting matrix WOT re-describes a user feature 𝜙𝑠(𝑢𝑠) into that in domain 𝑡
as 𝜙𝑠→𝑡(𝑢𝑠) = (WOT)𝑇𝜙𝑠(𝑢𝑠), there remains a problem regarding the treatment of unrelated
attributes. For example, we assume that a user 𝑢𝑠 is intensely interested in the “instrumental”
attribute in the music domain, and there is no similar movie attribute to the music attribute.
Although the music attribute is unrelated to any movie attributes, the construction (WOT)𝑇𝜙𝑠(𝑢𝑠)
cannot avoid fully transferring the degree of this user’s preference for the unrelated music
attribute “instrumental” to the transformed feature.

To deal with this issue, we reduce the influence of the unrelated attribute by formulating

3As the original paper [8] discussed, WRD has significance compared to word mover’s distance [9], which is a
traditional method of introducing OT into word sets, by changing the cost matrix from the Euclidean distance
C𝑖,𝑗 = ‖e(𝑎𝑠𝑖 ) − e(𝑎𝑡𝑗)‖2 to the distance matrix from the cosine similarity and the mass on each word from a uniform
distribution 𝜇𝑧𝑘 ≡ 1/|𝐴𝑧| to a weighted distribution of which the mass is proportional to the norm of the embedding
vector.

4In experiments, we used Python Optimal Transport [11] and set 𝜆 = 0.01.



its degrees of influence for an attribute 𝑎𝑠 to the attribute set 𝐴𝑡 as attribute-domain similarity,
which is defined by

s𝐴𝑡[𝑎𝑠] ∶= 1
2
(1 +max

𝑎𝑡∈𝐴𝑡
cos(e(𝑎𝑠), e(𝑎𝑡))) . (3)

We can then define a cross-domain user feature of 𝑢𝑠 as

𝜙𝑠→𝑡(𝑢𝑠) ∶= (WOT)𝑇(s𝐴𝑡 ⊙ 𝜙𝑠(𝑢𝑠)) ∈ ℝ|𝐴
𝑡|, (4)

where ⊙ is the Hadamard (element-wise) product for vectors.
As a mathematical remark, users who are similar in terms of user features in the original

domain are also similar in terms of the transformed user features; in other words, the mapping
from 𝜙𝑠(𝑢𝑠) to 𝜙𝑠→𝑡(𝑢𝑠) is Lipschitz continuous. To be precise, for any 1 ≤ 𝑝 < ∞, there is a
constant 𝐶𝑝 > 0 such that

‖𝜙𝑠→𝑡(𝑢𝑠1) − 𝜙𝑠→𝑡(𝑢𝑠2)‖𝑝 ≤ 𝐶𝑝‖𝜙𝑠(𝑢𝑠1) − 𝜙𝑠(𝑢𝑠2)‖𝑝 (5)

for any users 𝑢𝑠1, 𝑢𝑠2 ∈ 𝑈 𝑠. This is proven as a consequence of the facts that (1) the operation of
the matrix product is a linear map, i.e., for any matrix M, there exists a constant 𝐶 > 0 such
that ‖Mx −My‖2 ≤ 𝐶‖x − y‖2 for any vectors x,y, (2) the Hadamard product can be seen as
a diagonal matrix with c ⊙ x = diag(c)x, and (3) the 2-norm and the 𝑝-norm (1 ≤ 𝑝 < ∞) are
equivalent norms, i.e., there exist constants 𝐶1, 𝐶2 > 0 such that 𝐶1‖x‖𝑝 ≤ ‖𝑥‖2 ≤ 𝐶2‖x‖𝑝 for any
vectors x.

Finally, we define the cross-domain user similarity in the same feature spaceℝ|𝐴
𝑡| by comparing

𝜙𝑠→𝑡(𝑢𝑠) and 𝜙𝑡(𝑢𝑡). Note that 𝜙𝑡(𝑢𝑡)[𝑎𝑡𝑗] can have a higher value for some attribute 𝑎𝑡𝑗, while none
of the transformed user features can have higher values for the attribute because s𝐴𝑠[𝑎𝑡𝑗] is low.
We also adjust the user feature 𝜙𝑡(𝑢𝑡) on the basis of attribute-domain similarity as

sim𝑡(𝑢𝑠, 𝑢𝑡) ∶= cos (𝜙𝑠→𝑡(𝑢𝑠), s𝐴𝑠 ⊙ 𝜙𝑡(𝑢𝑡)) . (6)

In addition, since 𝑢𝑠 and 𝑢𝑡 can also be compared in 𝐴𝑠 through 𝜙𝑡→𝑠(𝑢𝑡) and 𝜙𝑠(𝑢𝑠), we define
the cross-domain user similarity of ATP, as

simATP(𝑢𝑠, 𝑢𝑡) ∶=
1
2
(sim𝑡(𝑢𝑠, 𝑢𝑡) + sim𝑠(𝑢𝑡, 𝑢𝑠)) . (7)

3. Experiments

We applied ATP to real-world datasets and compared its performance to other methods in
defining cross-domain user similarities for linkage of the same users and cross-domain recom-
mendation tasks.

3.1. Dataset

We used the Amazon Review Dataset [12]5 for our experiments, which contain millions of
user evaluations on items of various domains along with attribute information. Regarding
5Data source: https://nijianmo.github.io/amazon/index.html. We regarded the Music (CDs_and_Vinyl), Movie
(Movies_and_TV), Book (Books), Kindle (Kindle_Store), and Clothes (Clothing_Shoes_and_Jewelry) datasets as
different domains.

https://nijianmo.github.io/amazon/index.html


Table 2
The number of all reviews, users, items, attributes, and sparsity of each domain.

|𝐷| |𝑈 | |𝐼 | |𝐴| |𝐷|/(|𝑈 ||𝐼 |)
Movie 581987 5172 52108 381 0.00216
Music 341089 2805 65083 216 0.00187
Kindle 751749 6830 88659 76 0.00124
Clothes 327417 4631 138971 917 0.00051
Book 7883742 62404 610031 472 0.00021

Table 3
The number of intersections of pairwise datasets, where each value inside the parentheses is the Jaccard
similarity.

𝑠 𝑡 |𝑈 𝑠 ∩ 𝑈 𝑡| |𝐴𝑠 ∩ 𝐴𝑡|
Case 1 Music Movie 516 (0.069) 38 (0.068)
Case 2 Book Music 495 (0.008) 50 (0.078)
Case 3 Clothes Movie 106 (0.011) 48 (0.038)
Case 4 Clothes Music 19 (0.003) 34 (0.031)
Case 5 Book Movie 1318 (0.02) 61 (0.077)
Case 6 Kindle Book 6313 (0.1) 59 (0.121)

users, we limited the user set 𝑈 𝑧 to those who had evaluated more than 50 items, as it would be
challenging to capture meaningful user features for users who gave evaluations on only a few
items. Regarding attributes, we separated all original attributes into words by morphological
analysis, cleaned them to their lemmata (canonical forms) because some shared common
components (e.g., “rock” in “classic rock”, “folk rock”, and “hard rock”)6, and set the separated
and cleaned words as the attribute set 𝐴𝑧. We also removed attributes that were not given to 5
or more items from 𝐴𝑧.

Let 𝐼 𝑧 and 𝐷𝑧 ⊂ 𝑈 𝑧 × 𝐼 𝑧 be sets of items and transaction logs that users reviewed items,
respectively. Tables 2 and 3 summarize the statistics for the datasets and intersections of the
pairwise datasets, respectively. We set the cross-domain situation by choosing pairwise datasets
so that common users appeared in both datasets, denoted as 𝑈linked ∶= 𝑈 𝑠 ∩ 𝑈 𝑡 ≠ ∅. For Table 3,
we omitted the item column because all pairs of item sets had no intersections, i.e., |𝐼 𝑠∩𝐼 𝑡| = 0. As
indicated by the lower number of intersections and the Jaccard similarity7, users and attributes
seldom overlapped across domains, even though each dataset had a large number of users and
attributes. This observation supports the necessity of this study, which aims to obtain new
insights from two datasets with slight overlapping.

6We used spaCy (https://spacy.io/) to obtain the canonical forms of words.
7Jaccard similarity of two sets 𝐴 and 𝐵 is defined as |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|.

https://spacy.io/)


Figure 5: The figure indicates the way to calculate user features from transaction data.

3.2. User Feature

We created a user feature 𝜙𝑧(𝑢𝑧) from user transactions. Let 𝐼 𝑧 be a set of items in domain 𝑧,
𝐼 𝑧[𝑢𝑧] ⊂ 𝐼 𝑧 be a set of items that user 𝑢𝑧 evaluated, and 𝑟(𝑢𝑧, 𝑖𝑧) be a rating score for 𝑖𝑧 by 𝑢𝑧. Let
A𝑧 be an item-attribute matrix of 𝐴𝑧, where each element is given by A𝑧[𝑖𝑧, 𝑎𝑧] = 1 if an item
attribute 𝑎𝑧 ∈ 𝐴𝑧 is attached to an item 𝑖𝑧 ∈ 𝐼 𝑧; otherwise, 0. A simple approach to obtaining
a user feature is just to take a weighted sum of the attribute vectors in which the user was
interested, that is,

𝜙𝑧simple(𝑢
𝑧) ∶= ∑

𝑖𝑧∈𝐼 𝑧[𝑢𝑧]
𝑟(𝑢𝑧, 𝑖𝑧)A𝑧[𝑖𝑧] ∈ ℝ|𝐴

𝑧|. (8)

To properly adjust the degree of an attribute following its domain, we change the item-
attribute matrix A𝑧 by its transformed matrix using BM25 [13], which is denoted by A𝑧

BM25
8. To

fairly compare all users in one domain, we also normalize a user feature so that the sum of all
elements of any user features is equal to 1. To sum up, the resulting user feature of 𝑢𝑧 (Figure 5)
is obtained as

𝜙𝑧(𝑢𝑧) ∶= 1
𝑍

∑
𝑖𝑧∈𝐼 𝑧[𝑢𝑧]

𝑟(𝑢𝑧, 𝑖𝑧)A𝑧
BM25[𝑖

𝑧] (9)

where 𝑍 is a normalization term to make ‖𝜙𝑧(𝑢𝑧)‖1 = 1. Then, each element in a user feature
can be interpreted as a percentage of the degree of the user’s interest.

3.3. Baselines

We compared our method with the following two baselines Agg and SCT for calculating cross-
domain user similarity. As an ablation study, we also compared Agg and SCT with ATP-cos
8For example, assume that a song has both “rap” and “young” attributes. If we describe this song with one attribute,
“rap” would be appropriate because it is more representative than “young” in the music domain. BM25 is known in
the information retrieval field as an appropriate method for adjusting the importance of each attribute in this way.



and ATP-ads, which are partially changed components of ATP.

ATP (Proposed approach) : The embedding model e to compute WRD was set as fastText
[7] because all attributes are words (not sentences). It can handle words that are not
registered to its corpus9.

ATP-cos : To determine the effectiveness of OT, we replaced the optimal transportation plan
WOT in Eq. (4) with Wcos.

ATP-ads : To determine the effectiveness of attribute-domain similarity, we cancelled it, that
is, we set s𝐴𝑡[𝑎𝑠] ≡ 1 and s𝐴𝑠[𝑎𝑡] ≡ 1 for all attributes.

Agg [6] : This method expresses a user feature by setting the aggregated attribute set 𝐴𝑠 ∪ 𝐴𝑡

and calculating BM25 for a user-attribute matrix on 𝐴𝑠 ∪ 𝐴𝑡. With our symbols, a user
feature with Agg can be written as

𝜙Agg(𝑢𝑧) ∶=
1
𝑍

∑
𝑖𝑧∈𝐼 𝑧[𝑢𝑧]

𝑟(𝑢𝑧, 𝑖𝑧)Aouter
BM25[𝑖

𝑧] (10)

where 𝑍 is a normalization term so as to make ‖𝜙Agg(𝑢𝑧)‖1 = 1, Aouter is the outer join of
A𝑠 and A𝑡, and Aouter

BM25 is the transformed matrix of Aouter by BM25.

SCT-𝐾 [3] : For a set {e(𝑎) ∣ 𝑎 ∈ 𝐴𝑠 ∪ 𝐴𝑡} of embedding vectors of all attributes, Semantic
Correlation in Tagging (SCT) first runs the 𝐾-means clustering algorithm, and then
expresses the user feature as

𝜙SCT(𝑢𝑧)[𝑐𝑘] =
𝑁 (𝑐𝑘|𝑢𝑧)

∑𝐾
ℓ=1 𝑁(𝑐ℓ|𝑢𝑧)

, (11)

where 𝑁(𝑐𝑘|𝑢𝑧) is the number of attributes on which the user 𝑢𝑧 evaluated that belong to
a cluster 𝑐𝑘. In the experiments, we investigated 𝐾 = 50 and 100.

On the basis of the above construction, 𝜙Agg(𝑢𝑧) and 𝜙SCT(𝑢𝑧) of either domain 𝑧 belong to the

same spaces ℝ|𝐴
𝑠∪𝐴𝑡| and ℝ𝐾, respectively. Here, we calculated the cross-domain user similarity

by cosine similarity, as sim∗(𝑢𝑠, 𝑢𝑡) ∶= cos(𝜙∗(𝑢𝑠), 𝜙∗(𝑢𝑡)), where ∗ ∈ {Agg, SCT}.

3.4. Matching Users

Since all overlapping users were active on both domains, any 𝑢 ∈ 𝑈linked = 𝑈 𝑠 ∩ 𝑈 𝑡 should show
a higher cross-domain user similarity sim(𝑢, 𝑢) than sim(𝑢, 𝑢𝑡) of the other users 𝑢𝑡 ∈ 𝑈 𝑡 ⧵ {𝑢}.
We, therefore, evaluated the effectiveness of ATP by matching accuracy for the same user.

9We used the fastText model released in https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz without
any fine-tuning to ensure a fair comparison.

https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz


Table 4
Results of experiments for matching users in terms of MRR (left) and top@10% (right, in percentage),
respectively, where bold and underlined values represent best and second-best methods in each column.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

ATP 0.014 25.8 0.005 38.4 0.006 22.6 0.0010 15.8 0.002 33.6 0.016 39.5
Agg 0.007 24.4 0.001 15.6 0.003 7.6 0.0009 10.5 0.004 30.8 0.026 46.1

SCT-50 0.004 15.1 0.001 15.4 0.005 22.6 0.0007 0.0 0.001 33.1 0.012 36.2
SCT-100 0.004 17.6 0.002 40.2 0.002 6.6 0.0006 0.0 0.001 30.5 0.016 38.0
ATP-cos 0.012 25.2 0.002 24.2 0.002 8.5 0.0008 10.5 0.002 25.0 0.015 39.2
ATP-ads 0.013 21.9 0.003 40.0 0.004 20.8 0.0014 10.5 0.002 34.8 0.015 38.8

3.4.1. Evaluation

We utilized the mean reciprocal rank (MRR) and top-𝑘 accuracy to evaluate the matching
accuracy. When we calculate {sim(𝑢, 𝑢𝑡) ∣ 𝑢𝑡 ∈ 𝑈 𝑡} for 𝑢 ∈ 𝑈linked, if the similarity of 𝑢 is located
at the top ℓ-th position, we denote the number ℓ by rank(𝑢). Then, the MRR is defined by the
mean of the inverse of the rank, i.e.,

MRR ∶= 1
|𝑈linked|

∑
𝑢∈𝑈linked

1
rank(𝑢)

, (12)

and top-𝑘 accuracy is defined by the probability that the rank is less than or equal to 𝑘, i.e.,

top@𝑘 ∶=
|{𝑢 ∈ 𝑈linked ∣ rank(𝑢) ≤ 𝑘}|

|𝑈linked|
. (13)

The higher MRR and top@𝑘 are, the better the cross-domain user similarity is.
Note that as the number of users to look for |𝑈 𝑡| increases, MRR and top@𝑘 deteriorate. For

example, it is more difficult to obtain a result for top@10 = 0.1 when |𝑈 𝑡| = 105 than when
|𝑈 𝑡| = 103. To reduce the effect from |𝑈 𝑡|, we determined whether the rank was in the top-10%
of 𝑈 𝑡 and wrote top@⌈0.1|𝑈 𝑡|⌉ as top@10%, where ⌈⋅⌉ is the ceiling function.

3.4.2. Results

The results shown in Table 4 indicate that ATP exhibited the highest MRR or top@10% in Cases
1–4 and the second-highest scores in Cases 5 and 6. One of the reasons ATP was defeated by
Agg in these latter two is that there were many common attributes across domains (please refer
to Table 3) andAgg utilized them to match users. We observed that the ratios of simAgg(𝑢, 𝑢) = 0
for 𝑢 ∈ 𝑈linked, which indicates that 𝑢 did not show any interest in common attributes across
domains, were less than 0.5% in Cases 5 and 6, and over 3%; otherwise. In other words, in
Cases 1–4, where many overlapping users did not show interest in common attributes, ATP
successfully found the same users with higher accuracy. SCT-𝐾, which also essentially utilizes
common attributes in clusters, showed the highest top@10% in Case 2 by 𝐾 = 50; however, the
results depended on the selections of 𝐾, and there remains the difficulty in determining the
proper 𝐾. As an ablation study, we confirmed the necessity of OT compared to the results by
ATP-cos. While ATP-ads outperformed ATP for Case 4 and 5, the differences were slight, and



ATP-ads was defeated in the other situations; hence, we also confirmed the necessity of using
attribute-domain similarity.

3.5. Cross-Domain Recommendation

In this section, we evaluated the effect of using ATP in the context of a recommendation task
that predicts which rating score a user will give to an item based on his past rating history.
However, if a user did not evaluate at all (i.e., a cold-start user), it would be difficult to make a
better recommendation because his preferences are unknown. If a cold-start user in domain 𝑡
behaved in another domain 𝑠, methods of cross-domain recommendation [1] could then make an
appropriate recommendation by utilizing information from the other domain. Existing methods
[2, 3, 14] have been able to predict the rating scores of cold-start users by using cross-domain
user similarity, and here, we investigated the effectiveness of ATP in comparison with these
methods.

3.5.1. Evaluation

Let R𝑧 ∈ ℝ|𝑈
𝑧|×|𝐼 𝑧| be a rating matrix in which R𝑧[𝑢𝑧, 𝑖𝑧] is the rating score for an item 𝑖𝑧 by a user

𝑢𝑧, where R𝑧[𝑢𝑧, 𝑖𝑧] = 0 if 𝑢𝑧 did not rate 𝑖𝑧. We divided R𝑡 into R𝑡
∗ ∈ ℝ|𝑈

𝑡
∗|×|𝐼 𝑡| (∗ ∈ {train, test})

where 𝑈 𝑡
test ∶= 𝑈linked and 𝑈 𝑡

train ∶= 𝑈 𝑡 ⧵ 𝑈linked, and set the recommendation task to predicting
the rating scores of 𝑈 𝑡

test. Each result is evaluated by the mean absolute error (MAE). Specifically,
a predicted rating score for 𝑖𝑡 ∈ 𝐼 𝑡 by 𝑢 ∈ 𝑈 𝑡

test is denoted by ̂𝑟 (𝑢, 𝑖𝑡), and the MAE is then defined
by

MAE ∶= 1
|R𝑡

test|0
∑

(𝑢,𝑖𝑡)∶R𝑡
test[𝑢,𝑖𝑡]≠0

|R𝑡
test[𝑢, 𝑖𝑡] − ̂𝑟(𝑢, 𝑖𝑡)|, (14)

where |R|0 counts the number of nonzero elements of a matrix R.
Note that methods of single-domain recommendation (e.g., matrix factorization (MF)) cannot

be applied to this task because such methods learn user representations only from R𝑡
train, which

does not contain any information of cold-start users 𝑈 𝑡
test (Figure 6).

The methods in [2, 3, 14] were proposed for dealing with this situation by minimizing the
following loss function with the regularizer of cross-domain user similarity:

loss = 1
|R𝑠|0

‖R𝑠 − P𝑠(Q𝑠)𝑇‖2 (15)

+ 1
|R𝑡

train|0
‖R𝑡

train − P𝑡train(Q
𝑡)𝑇‖2 (16)

+ 𝜆
|𝑈train|2

∑
𝑢,𝑢′∈𝑈train

sim(𝑢, 𝑢′)‖P[𝑢] − P[𝑢′]‖2, (17)

whereQ𝑧 ∈ ℝ|𝐼
𝑧|×𝑘, P𝑠 ∈ ℝ|𝑈

𝑠|×𝑘, P𝑡train ∈ ℝ|𝑈
𝑡
train|×𝑘, 𝑘 is a positive integer, 𝜆 > 0, 𝑈train ∶= 𝑈 𝑠∪𝑈 𝑡

train,
and P = [P𝑠,P𝑡train]

10. In contrast to the original loss function used in [2, 3, 14], we divided
each term by the number of elements to reduce adverse effects of imbalanced data. Indeed,

10In experiments, we chose 𝑘 = 50 and 𝜆 = 1 by 5-fold cross validation.



Figure 6: By removingR𝑡
test fromR𝑡, both user and item sets ofR𝑠 andR𝑡

train do not have any overlapping
during the training stage, i.e., 𝑈 𝑠 ∩ 𝑈 𝑡

train = ∅ and 𝐼 𝑠 ∩ 𝐼 𝑡 = ∅. For this challenging situation, we address
predicting ratings of cold-start users.

we observed that |R𝑠|0 ≈ 7 ⋅ 106 and |R𝑡
train|0 ≈ 3 ⋅ 105 in Case 2. For ATP, we set sim(𝑢, 𝑢′) =

cos(𝜙𝑧(𝑢), 𝜙𝑧(𝑢′)) when 𝑢 and 𝑢′ belong to the same domain 𝑈 𝑧; simATP(𝑢, 𝑢′), otherwise. After
obtaining the trained embedding vectors, we predict a rating score as ̂𝑟 (𝑢, 𝑖𝑡) = ⟨P𝑠[𝑢],Q𝑡[𝑖𝑡]⟩ for
an item 𝑖𝑡 ∈ 𝐼 𝑡 by a cold-start user 𝑢 ∈ 𝑈 𝑡

test.
As stated above, single-domain recommendation methods do not work for cold-start users,

but we can apply a method that utilizes average ratings, called AVE, to this situation. AVE
calculates the average of the rating scores attached to the item in the training dataset as
𝑚𝑖𝑡 = mean{R𝑡

train[𝑢
𝑡, 𝑖𝑡] ∣ 𝑢𝑡 ∈ 𝑈 𝑡

train} and predicts a rating score for an item 𝑖𝑡 by any user
𝑢 ∈ 𝑈 𝑡 as ̂𝑟 (𝑢, 𝑖𝑡) = 𝑚𝑖𝑡 . Since AVE was introduced as the minimum baseline, we calculate the
improvement rate from AVE as

Improvement rate (%) ∶= 100 ×
MAEAVE −MAE∗

MAEAVE
(18)

where ∗ ∈ {ATP,Agg, SCT} and MAEAVE is the MAE of AVE.

3.5.2. Results

The results shown in Table 5 indicate that ATP exhibited the highest MAE improvement rates
for all cases except Case 4. Even for Case 4, ATP achieved the second-highest improvement rate
and was only slightly worse than SCT-50. Unlike the results for Cases 5 and 6 in Section 3.4,
Agg did not outperform ATP. One reason is that Agg could not give the degree of dissimilarity.
Even if two users showed interest in similar (but not common) attributes, Agg uniformly treated
them as entirely dissimilar users because their similarity score was zero. In contrast, ATP gives



Table 5
Results of our experiments for cross-domain recommendation in terms of MAE (left) and improvement
rate compared with AVE (right, in percentage), where bold and underlined values represent the best
and second-best methods in each column, respectively.

Case 1 Case 2 Case 3

ATP (Ours) 0.759 (+8.36%) 0.726 (+1.4%) 0.731 (+3.09%)
aggBM25 0.81 (+2.21%) 0.731 (+0.7%) 0.801 (< 0)
SCT-50 0.769 (+7.1%) 0.727 (+1.35%) 0.741 (+1.83%)
SCT-100 0.774 (+6.53%) 0.727 (+1.25%) 0.738 (+2.29%)

MAE of AVE 0.828 0.736 0.754

Case 4 Case 5 Case 6

ATP (Ours) 0.62 (+9.68%) 0.789 (+6.72%) 0.573 (+13.14%)
aggBM25 3.271 (< 0) 0.793 (+6.22%) 0.641 (+2.73%)
SCT-50 0.618 (+9.96%) 0.789 (+6.68%) 0.578 (+12.29%)
SCT-100 0.623 (+9.3%) 0.79 (+6.62%) 0.601 (+8.89%)

MAE of AVE 0.686 0.845 0.659

the degree of dissimilarity with a particular value, which is why it worked better than Agg and
SCT in the recommendation task with cross-domain user similarity.

4. Related Work

Methods for calculating cross-domain user similarity and discovering the same user are known
as methods of user identity linkage (UIL) [15, 16, 17, 18, 19, 20, 21, 6]. If users’ real names are
available in two datasets, the UIL problem can be solved using methods of named-entity linkage.
Even if users’ real names are unavailable, several UIL methods [16, 17] for social media have
utilized users’ screen names (e.g., Twitter ID and Instagram ID). Methods that do not use screen
names use user behavior, such as a user’s trajectory history [18, 19, 20, 21] or tag posting history
[6]. However, most UIL methods focusing on trajectories are domain-specific, relying on the
geographic coordinate system (latitude and longitude), grids, and zip codes. The UIL method
proposed by Iofciu et al., [6] for a tagging system is the most relevant to this study in terms
of focusing on a user’s interests that are related to psychographic attributes. As mentioned in
the experimental section (Section 3), their method relies on tags that appear in two domains as
domain-bridging information.

From the viewpoint of user similarity, recommendation systems can be regarded as trying
to extract user features that summarize their degrees of interest in items from their behaviors
(e.g., purchase and evaluation histories for items). When users or items are registered to
multiple datasets, standard (single-domain) recommendation methods provide each dataset’s
corresponding user features in different dimensions. To provide user features in a common
dimension, methods in cross-domain recommendation (CDR) [1] have been developed; however,
many impose the assumption that there are common users or items, i.e., 𝑈 𝑠∩𝑈 𝑡 ≠ ∅ or 𝐼 𝑠∩𝐼 𝑡 ≠ ∅,



to connect heterogeneous datasets. If 𝑈 𝑠 ∩ 𝑈 𝑡 ≠ ∅, a method by Man et al., [22], trains the
relationship between two user features of the same user in 𝑈 𝑠 ∩ 𝑈 𝑡 with supervised machine
learning to obtain a feature for a user who has not yet been registered in one dataset from his/her
feature in another dataset via a regression model. However, as with the UIL problem setting,
we address a situation where user sets have no intersection. CDR methods [23, 24] handle
situations in which neither user sets nor item sets have intersections to express user features of
different domains in a common dimension. However, their resulting features are embedding
vectors due to the matrix decomposition; hence, it is difficult to interpret and understand the
features.

Tag-based CDR methods [14, 2, 3] utilizing additional information for bridging domains have
been proposed. Methods of using tags differ in terms of whether tag sets have non-empty
intersections. Several methods [14, 2] rely on tags that appear in both datasets, but this is only
sometimes the case, and the number of such overlapping tags can be the method by Zhang et
al., [3] handles the situation in which sets of users, items, and tags do not have intersections,
which is the same as ATP. As mentioned in the experimental section (Section 3), however, their
method cannot reflect tags in one domain that are not related to another, which is considered to
harm calculating cross-domain user similarity. ATP overcomes this problem by introducing
optimal transport theory.

5. Conclusion

In this paper, we proposed Attribute TransPortation (ATP), a novel method for calculating cross-
domain user similarity without requiring assumptions for overlapping users or attributes. The
core idea of ATP is to use optimal transport theory to provide attribute similarity for items that
are not only semantic but also relevant to the two domains on which we focus. ATP transforms
a target user into a feature vector of the other domain and then enables cross-domain user
similarity in the same feature space to be calculated. The results of experiments using linkage
of the same users and cross-domain recommendation tasks demonstrated the effectiveness of
ATP compared to related methods.
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