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Abstract
Fashion attributes are key to many downstream tasks in e-commerce such as product recommendation,
fashion captioning, item matching, fashion image retrieval and generation. Generally, fashion attributes
are arranged in an ontology where one fashion attribute may be assigned one or more values. Most
state-of-the-art (SOTA) approaches model attribute extraction as a multi-label classification problem and
do not consider attribute-value relatedness information during training which leads to poor performance
on fine-grained attribute extraction. To address this issue, we propose Ontology Guided Supervised
Contrastive Learning For Fine-grained Fashion Attribute Extraction (OGSCL-FAE) where we leverage a
fashion ontology to create strong negative pairs, model attribute extraction as a matching problem, and
fine-tune a pre-trained CLIP on attribute extraction. The proposed approach outperforms existing SOTA
approaches on two public datasets DeepFashion and FashionAI by 11.65% top-5 recall rate and 0.93 mAP
respectively.
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1. Introduction

Extraction of appropriate fine-grained attributes from fashion images is a pre-requisite for
automation of multiple e-commerce tasks, including product copy generation [1], catalog search
[2], product recommendation [3], fashion image generation [4] and retrieval [5, 6]. Accurately
extracted attributes provide control for downstream tasks like product copy. Instead of directly
generating copy from an image, attribute extraction allows controlled generation, covering
selective attributes (depending on brand, product uniqueness) and reducing hallucination. As
depicted in Figure 1, fashion attributes are arranged in an ontology, readily available with every
retailer, where there are product category specific attribute types, which may take one or more
values. For example, the sleeve length attribute type for product category ‘blouse’ may have
values such as sleeveless, cup sleeves, short sleeves, etc. This makes, extraction of attributes
from fashion images non-trivial given its fine-granular nature. The chosen approach has to
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learn to focus on an appropriate part of the image which depicts the position of attribute type
such as Sleeve Length and then has to perform the hard-to-distinguish task of differentiating
between fine-grained attribute values for that attribute type.

Most off-the-shelf SOTA approaches [7, 8, 9, 10, 11, 12, 13, 14, 15] treat attribute recognition
as multi-stage, hierarchical, multi-label (or multi-class) classification task. Some of these
approaches use multi-task learning by using product category classification, landmark and/or
key-point detection as auxiliary task(s) to improve the performance. However, these approaches
do not leverage the relatedness of attribute values, embedded in the attribute ontology. For
example, an image representation (e.g. I1 in Figure 1) should be closer to the attribute value
representations with which it is labelled (e.g. text prompt T1 for attribute value ‘wrist length
Sleeves’). Thus, indirectly bringing the image representations of two images having the same
attribute value (e.g. ‘wrist length sleeves’) for an attribute type (e.g. ‘Sleeve Length’) closer and
image representations farther when the two images hold distinct values (e.g. ‘turtle neck’ and
‘Ruffle Semi-High Collar neck’) for an attribute type (e.g. ‘neck design’). More importantly, to
embed the attribute relatedness depicted by the ontology, the image representation should be
farther from the attribute values which are siblings (other values of the same attribute type) of
the attribute value the image is annotated with. For example, image representation I1 in figure
1 should be farther to the text prompt representation T2 for attribute value ‘log length sleeves’,
which is the sibling of (belongs to the same attribute type ‘sleeve length’) the attribute value
‘wrist length sleeves’, with which the I1 is labelled. Such attribute values belonging to same
attribute type are hard to distinguish.
In this work, we model attribute extraction as a matching problem [16]. We fine-tune

the pre-trained CLIP model, contrasting image-attribute representations. We address the
aforementioned limitation of the prior work by a novel supervised contrastive learning-based
training mechanism by leveraging fashion ontology to create hard negative pairs. [17] use
contrastive learning with object-level supervision to align pre-trained language and vision
model by increasing the difficulty of mini-batches over training epochs based on object level
ontology. On the other hand, our approach exploits ontology in-built for fashion domain for
more fine-grained task of fashion attribute extraction. The proposed approach outperforms
existing SOTA approaches on two public datasets, viz. DeepFashion [18] and FashionAI [19] by
11.65% top-5 recall rate and 0.93 mAP, respectively. The main contributions of this work are:

• We have modeled the fine-granular multi-label fashion attribute classification as a match-
ing problem to address the relatedness of attribute values embedded in the attribute
ontology.

• We propose a novel ontology-guided supervised contrastive learning approach for fashion
attribute extraction.

• The proposed approach outperforms existing baselines on two public datasets, viz. Deep-
Fashion and FashionAI.

2. Problem Description

Fashion ontology (𝒪) [18, 20, 19] consists of fashion-related concepts (e.g., Product Category
(PC), Attribute Type (AT), and Attribute Values (AV), etc.) which are arranged in the form of a



Figure 1: Motivation

hierarchy and are connected to each other via appropriate relationships. For e.g., ‘Blouse’ is
an instance of a product category with Neck, Sleeve, Print, etc., as attribute types and turtle,
draped collar, etc., are some of the attribute values of attribute type Neck (Figure 1). Fashion
images are annotated w.r.t an ontology 𝒪 by domain experts at all levels i.e., product category,
valid attribute types, and corresponding attribute values.

Given a fashion ontology 𝒪 and corresponding annotated dataset i.e., 𝒟 =
{(𝐼1, 𝐴1), ..., (𝐼𝑛, 𝐴𝑛)}, where 𝑖𝑡ℎ image (𝐼𝑖) is annotated with 𝐴𝑖 = {𝑃𝐶 𝑗𝑖 , 𝐴𝑇

𝑙
𝑗 , ..., 𝐴𝑇

𝑚
𝑗 }, product

category 𝑃𝐶 𝑗𝑖 , valid attribute types {𝐴𝑇 𝑙𝑗 , ..., 𝐴𝑇
𝑚
𝑗 } and corresponding valid attribute values

𝐴𝑇 𝑙𝑗 = {𝐴𝑉 1
𝑙 , ..., 𝐴𝑉

𝑘
𝑙 }, objective is to automatically annotate test image w.r.t 𝒪.



3. Proposed Approach

We model fine-grained fashion attribute extraction as a matching problem where we fine-tune
CLIP [21] via supervised contrastive loss (SupCon) [22] by minimizing the cosine-similarity
between the image and attribute representation. To handle the class imbalance we augment
SupCon with asymmetric contrastive focal loss [23] during the training. During inference, we
choose valid attribute types and values based on the cosine-similarity between the image and
attribute representations.

3.1. Training

3.1.1. Supervised Contrastive Language Image Pre-training Fine-tuning (SCLIP-F)

Similar to CLIP, we obtain themultimodal image representation by first passing it to CLIP’s image
encoder (𝑓 𝐼 𝐸𝐶𝐿𝐼𝑃) and then through a multimodal image projection layer (𝑊𝐼) i.e., 𝐼 𝑒 = 𝑊𝐼.𝑓 𝐼 𝐸𝐶𝐿𝐼𝑃(𝐼 ).
We use a textual prompt (𝑇) to verbalize the attribute value and get the correspondingmultimodal
representation via CLIP text encoder (𝑓 𝑇𝐸𝐶𝐿𝐼𝑃) and multimodal text projection layer (𝑊𝑇) i.e.,
𝑇 𝑒 = 𝑊𝑇.𝑓 𝑇𝐸𝐶𝐿𝐼𝑃(𝑇 ).
CLIP is pre-trained on (image, text) pairs by maximizing the cosine similarity between

representations of ℬ (image, text) pairs and minimizing the cosine similarity for ℬ2 − ℬ
invalid pairs in a batch of size ℬ, as shown in Eq. 1.

ℒ𝐶𝐿𝐼𝑃 = − 1
ℬ

ℬ
∑
𝑖=1

𝑙𝑜𝑔 [
𝑒𝑥𝑝(⟨𝐼 𝑒𝑖 , 𝑇
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]

− 1
ℬ
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𝑒
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] (1)

In a fashion domain, an image might share the attribute values with other images based on
the category to which they belong or due to visual similarity among them. For example, a
fashion image of shirt and blouse may both share attribute value ‘rib collar’ for attribute type
‘collar design’. Unlike CLIP, all (image, attribute) pairs in ℬ, which share the same attribute
values are referred to as positive pairs and others as negative. During the fine-tuning of CLIP,
we maximize the cosine similarity between representation of positive (image, attributes) and
minimize the cosine similarity between negative pairs, as shown in Eq. 2.

ℒ 𝑆𝑢𝑝𝐶𝑜𝑛+
𝐶𝐿𝐼𝑃 = −... + − 1

ℬ

ℬ
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𝑖=1

1
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∑
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𝑙𝑜𝑔 [
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𝑒
𝑖 , 𝑇 𝑒𝑎⟩/𝜏)

]

(2)

3.1.2. Ontology Guided Supervised Contrastive Learning

Class imbalance in a dataset makes it harder to learn good representation for rare classes via
supervised contrastive learning, due to absence of positive pairs for low frequency attribute
values in ℬ. To alleviate this issue, inspired by [23], we augment ℒ 𝑆𝑢𝑝𝐶𝑜𝑛

𝐶𝐿𝐼𝑃 with focal loss as



shown in Eq. 3 and directly minimize the cosine similarity among negative (image, attribute)
pairs (ℒ 𝑆𝑢𝑝𝐶𝑜𝑛−

𝐶𝐿𝐼𝑃 ) as shown in Eq. 4.
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It has been shown that hard-negatives are key to get better representations via contrastive
learning [24]. For selecting in-batch hard-negatives (image, attribute) pairs, for fine-grained
attribute classification, we use the fashion ontology. For a given (image, attribute) pair in batch
ℬ, we treat all those (image,attribute) pairs as hard-negatives, which are siblings of each other
in the fashion ontology. As shown in Fig 1, text prompt T1 from attribute value“wrist length
Sleeves” is a hard negative pair for image I2 with attribute value “Long length Sleeves”, if they
appear in the same batch ℬ.

ℒ𝑂𝐺𝑆𝐶𝐿 = ℒ 𝑆𝑢𝑝𝐶𝑜𝑛+
𝐶𝐿𝐼𝑃 + 𝜂ℒ 𝑆𝑢𝑝𝐶𝑜𝑛−

𝐶𝐿𝐼𝑃 (5)

To improve the robustness of 𝑂𝐺𝑆𝐶𝐿 − 𝐹𝐴𝐸, we also perform data augmentation by applying
attribute-invariant transformations [25] over images present in 𝒟.

3.1.3. Training

We fine-tune pre-trained CLIP on a feature extraction dataset𝒟 by minimizing ontology-guided
supervised contrastive focal loss as shown in Eq. 5.

3.2. Inference

Given a test image (𝐼𝑡𝑒𝑠𝑡), we obtain its multimodal representation (𝐼 𝑒𝑡𝑒𝑠𝑡) via fine-tuned image
encoder 𝑓 𝐼 𝐸𝑂𝐺𝑆𝐶𝐿 i.e., 𝐼

𝑒
𝑡𝑒𝑠𝑡 = 𝑊𝐼.𝑓 𝐼 𝐸𝑂𝐺𝑆𝐶𝐿

(𝐼𝑡𝑒𝑠𝑡). In order to predict the product category, we calculate the cosine similarity between 𝐼 𝑒𝑡𝑒𝑠𝑡
and the multimodal representation of the textual prompt corresponding to each product category
present in 𝒪 and choose the one (𝑃𝐶𝑖) with maximum cosine similarity, argmax

𝑖
⟨𝐼 𝑒𝑡𝑒𝑠𝑡, 𝑇 𝑒𝑖 ⟩. For



attribute prediction, we calculate cosine similarity between 𝐼 𝑒𝑡𝑒𝑠𝑡 and the multimodal representa-
tion of the textual prompt corresponding to each attribute value for an attribute type (applicable
to that product category) and choose the one (𝐴𝑉𝑖) with maximum cosine similarity, we repeat
this for all attribute types independently.

Table 1
Comparison of different approaches on DeepFashion for attribute classification using recall-rate@k.

Approach Attributes
Texture Fabric Shape Part Style

Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5
WTBI 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68
DARN 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.17 66.11 71.36

FashionNet 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16
BCRNN 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25

TS-FashionNet 58.52 68.19 46.44 57.02 61.86 70.81 49.82 60.36 34.40 43.44
HABP 60.87 70.54 49.40 59.88 61.97 70.80 51.39 61.82 38.61 46.99
MLC 53.81 61.76 42.61 52.59 39.82 49.62 25.43 38.14 47.60 48.31
CLIP-P 27.73 34.43 11.75 19.42 31.66 44.94 9.983 16.03 41.51 45.57
SCLIP-F 46.24 53.92 46.39 55.09 62.92 74.98 45.08 53.68 57.01 63.41

OGSCL-FAE 52.42 58.76 52.71 62.43 68.99 77.20 56.33 63.93 65.90 70.73

Table 2
Comparison of different approaches on DeepFashion for Overall Performance using recall-rate@k.

Approach Overall
Top-3 Top-5

DARN 42.35 51.95
FashionNet 45.52 54.61

TS-FashionNet 50.58 60.43
HABP 52.82 62.49

TwoStreamMN 59.83 77.91
MTL w/ RNN+VA 53.01 66.40

STL w/ HLS 66.19 73.73
MLC 65.57 71.22
CLIP-P 64.50 71.33
SCLIP-F 81.27 85.42

OGSCL-FAE 86.31 91.22

4. Experimental Setup

4.1. Dataset Details

DeepFashion [18]: It consists of 289,222 fashion images (Train: 209,222, Validation: 40,000 and
Test: 40,000), each belonging to one of 50 different categories and annotated w.r.t the ontology
consists of 5 attribute types and 1000 attribute values.
FashionAI [19]: It consists of 180,335 fashion images (Train: 144,335, Validation: 18,000 and
Test: 18,000) which belong to 6 different categories and are annotated w.r.t the ontology consists



Table 3
Performance of different approaches on FashionAI using mAP

Approach Length Design Overall
Skirt Sleeve Coat Pant Collar Lapel Neckline Neck

Triplet Network 48.38 28.14 29.82 54.56 62.58 38.31 26.64 40.02 38.52
CSN 61.97 45.06 47.30 62.85 69.83 54.14 46.56 54.47 53.52
ASEN 66.34 57.53 55.51 68.77 72.94 66.95 66.81 67.01 64.31

CAMNET 68.23 58.08 60.86 68.74 78.32 73.63 65.96 68.02 66.37
MLC 66.07 50.81 51.57 68.33 78.17 66.77 46.64 66.16 59.20
CLIP-P 19.45 14.71 13.46 23.43 24.68 20.40 12.10 20.51 17.52
SCLIP-F 63.36 54.72 57.34 64.65 64.75 61.48 60.84 56.98 60.20

OGSCL-FAE 66.30 63.48 63.86 69.25 72.34 71.29 67.55 69.26 67.30

Table 4
Ablation Study for effectiveness of OGSCL-FAE components on DeepFashion

Approach Overall
Top-3 Top-5

OGSCL-FAE 86.31 91.22
OGSCL-FAE w/o DA & OGSCL 80.24 84.50

OGSCL-FAE w/o OGSCL 82.83 87.75
OGSCL-FAE w/o DA 80.67 85.98
OGSCL-FAE w/o OG 83.36 88.06

of 8 design-specific attribute types and 54 attribute values.

4.2. Baselines

Approaches such as CSN[26], ASEN[27], DARN[28], CAMNet [29] are designed for fashion
image retrieval by learning fine-grained attribute specific embedding for fashion images with
metric learning. In our approach, instead we take attribute relatedness into consideration for
learning image representation by ontology guided training using contrastive setting. WTBI [30],
FashionNet [18], BCRNNs[31], TS-FashionNet[32], STL w/ HLS, MTL w/ (RNN + VA)[33] and
TwoStreamMN[8] treats the attribute extraction as a multi-class classification task and takes
help of auxiliary task(s) such as pose estimation, landmark prediction, category identification
and/or object type detection by either jointly learning the model or following a staged pipeline,
leading to improvement in the performance of the attribute extraction. As opposed to these
approaches, instead of multi-class classification, we treat the attribute extraction task as a
matching problem. HABP [34] addresses the problem of class imbalance for fashion attribute
extraction, by adaptively focusing on training hard data (attributes with very less tagged
samples) followed by a method to synthesize complementary samples for such hard attributes.
In our approach, we take care of the class imbalance by using focal loss, data augmentation and
ontology guided hard negative sampling.

Contrastive Language-Image Pre-Training- Pretrained (CLIP-P) [21] is our baseline, where we
use the pre-trained version of the CLIP model without any task specific fine-tuning. Whereas,
Supervised Contrastive Language-Image Pre-Training Finetuned (SCLIP-F) [21] is where we
perform task specific finetuning of CLIP for domain adaptation. Multilabel Classification (MLC)
is where we use the same base model, which is used as the image encoder in the CLIP setting
and fine-tune it for multi-label attribute classification.



4.3. Training Details

We use pre-trained ViT/B-16 as our CLIP image encoder implemented in Pytorch. For all of
our experiments, the models are trained on an Nvidia A-100, using batch size of 96 and the
learning rate of 3e-6. For the MLC baseline, we have appended linear layers of size 512, 1024
and the dimension of attribute classes to the end of the pre-trained image encoder, and fine-
tuned using asymmetric focal loss [35]. For Deepfashion we use a sigmoid activation layer
per attribute, while for FashionAI we use grouped (as per attribute type) softmax activation
distributed over attribute values. We use validation set assistance in training, in which for each
epoch, the negative pair sampling frequency is set in proportion to the non-diagonal validation
set confusion matrix values, for each attribute pair, helping in better distinguishing confusing
attribute pairs.

4.4. Evaluation

4.4.1. Top-k Recall

For a given attribute type, it refers to the fraction of test images for which the true attribute
value is present in the top-k predicted attribute values. Also, for a dataset, Top-k recall is the
mean of Top-K recall for each attribute type. To compute this metric We use the official code1

provided by authors of [18].

4.4.2. Mean Average Precision (mAP)

For a given attribute type, it refers to the fraction of test images for which predicted attribute
value matches with the ground truth. And for a dataset, mAP is the mean of mAP for each
attribute type.

5. Results And Discussion

Pre-training Vs Fine-tuning for fine-grained fashion attribution extraction: as shown
in Table 1, 2 and 3, for both the datasets, SCLIP-F outperforms CLIP by a significant margin,
suggesting the need for fine-tuning pre-trained CLIP for attribute extraction in fashion domain.

Multilabel classification vs Matching: As depicted in Table 1, 2 OGSCL-FAE outperforms
MLC on DeepFashion by 20.74% and 20% in terms of Top-3 and Top-5 recall, respectively.
Similarly, in Table 3, it also outperforms MLC on FashionAI by 8.1% in terms of mAP. This
suggests that fashion ontology is a key component to achieve better performance on fine-grained
attribute classification. During the training contrasting an attribute value with all its sibling
(OGSCL-FAE) is more important as compared to maximizing the likelihood of an attribute value
in isolation (MLC).
OGSCL-FAE vs. Baselines In terms of overall performance, OGSCL-FAE outperforms the

best baseline SCLIP-F by 5.04% (Top-3) and 5.8% (Top-5) on DeepFashion and baseline CAMNET
by 0.93% mAP on FashionAI. We use the best-performing variant of CAMNET as a baseline

1attr_predict_eval.py @ https://github.com/open-mmlab/mmfashion/



where HRNet [36] with two-step attention layers is used as the backbone as opposed to ViT-
B/16 [37] in the proposed approach. But still, OGSCL-FAE outperforms the best baseline i.e.
CAMNET on FashionAI, in terms of overall mAP (Table 3) for 5 out of 8 attribute types. Since
the code for CAMNET is not publicly available, it’s not possible to test CAMNET with ViT-B/16
as a backbone. For DeepFashion, except for Style and Texture, OGSCL-FAE outperforms all
baselines for all attribute types.
Discussion about ablations Data augmentations and ontology-guided supervised con-

trastive learning are key components of OGSCL-FAE because there is a drop in performance
of 6.07% (Top-3) and 6.72% (Top-5), as shown in Table 4 (OGSCL-FAE w/o DA & OGSCL).
CLIP fine-tuning with self-supervised contrastive loss and data augmentation performs very
poorly as compared to supervised contrastive loss with data augmentation (OGSCL-FAE w/o
OGSCL). Ontology guided negative sampling over random sampling improves performance of
OGSCL-FAE by 2.95% (Top-3) and 3.16% (Top-5) (OGSCL-FAEw/o OG). Data augmentation also
affects the overall performance of OGSCL-FAE by 5.64% (Top-3) and 5.24% (Top-5) (OGSCL-FAE
w/o DA).

6. Conclusion

This paper proposes a novel approach to fine-granular fashion attribute extraction by exploiting
an ontology-guided negative sampling strategy for supervised contrastive learning of pre-trained
CLIP. The proposed method outperforms existing state-of-the-art results on DeepFashion and
FashionAI datasets, achieving 11.65% top-5 recall rate and 0.93 mAP respectively. Future work
will include using the attribute extraction module for attribute-guided product copy generation.
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