
Data and Process Mediation Support for B2B
Integration

Maciej Zaremba1, Maximilian Herold1, Raluca Zaharia1, and Tomas Vitvar2

1 Digital Enterprise Research Institute
National University of Ireland in Galway, Ireland

firstname.lastname@deri.org
2 Semantic Technology Institute (STI2)

University of Innsbruck, Austria
tomas.vitvar@sti2.at

Abstract In this paper we present how Semantic Web Service technol-
ogy can be used to overcome process and data heterogeneity in a B2B
integration scenario. While one partner uses standards like RosettaNet
for product purchase and UNIFI ISO 20022 for electronic payments in its
message exchange process and message definition, the other one operates
on non-standard proprietary solution based on a combination of WSDL
and XML Schema. For this scenario we show the benefits of semantic
descriptions which are used within the integration process to enable rule-
based data and process mediation of services. We illustrate this dynamic
integration process on the WSMX – a middleware platform conforming
to the principles of a Semantic Service Oriented Architecture.

1 Introduction

Inter-enterprise integration is the essential requirement for today’s successful
business. While technologies around RosettaNet, EDI or ebXML certainly brought
new value to inter-enterprise integration, its rigid and hard-wired configuration
makes it still difficult to reconfigure, reuse and maintain. In addition, cooperat-
ing partners often use different Business-to-Business (B2B) standards thus either
adoption of a standard used by a “stronger” partner or maintaining more than
one B2B standards within one B2B integration is required.

Semantic technologies offer promising potential to enable B2B integration
that is more flexible and adaptive to changes that occur over a software sys-
tem’s lifetime [8]. Semantic Web services (SWS), by augmenting services with
semantic descriptions, is one of the candidate technology for more automated
and dynamic service integration and discovery. Semantically annotated services
promote the integration process by enabling runtime data and process media-
tion. The scenario used in this paper is based on the requirements for the SWS
Challenge3, and in particular on a scenario for data and process mediation. In

3 http://sws-challenge.org

comparison to the previously developed mediation solution [3,4] we have pro-
vided a support for a new electronic payment scenario and our solution has been
extended with a fully-fledged rule-based data mediation [6].

In order to address the SWS challenge requirements, we base our solution on
the specifications of WSMO[9], WSML[9] and WSMX[12] providing a concep-
tual framework, ontology language and architecture for Semantic Web Services.
The overall contribution of our work is to show: (1) how flat XML schema of
RosettaNet, UNIFI ISO 20022, and other messaging schema used by different
partners can be semantically enriched using the WSML ontology language, (2)
how services provided by partners could be semantically described as WSMO
services and built on top of existing systems, (3) how conversation between part-
ners and their services can be facilitated by the WSMX integration middleware
enabling semantic integration, and (4) how generic, rule-based data and process
mediation can be applied between heterogeneous services within the integration
process.

2 Solution Architecture

In SWS-Challenge mediation scenario there are two business partners (Moon and
Blue) involved that need to have their systems integrated using semantically-
enabled technology. The scenario describes how Moon has signed agreements to
exchange purchase order messages with its client company called Blue using the
RosettaNet PIP 3A4 specification. Details of our solution to RosettaNet scenario
has been previously described in [3].

In this paper we provide a support for the new payment scenario4 and we
extend our previous solution with a support for fully-fledged rule-based data me-
diation. We have resolved technical problems with integrating rule-based Data
Mediation component and we showcase a generic data mediation solution. We
build our solutions on the SWS framework based on the WSMO (Web Ser-
vice Modeling Ontology [9]) conceptual model, WSML (Web Service Model-
ing Language [9]) language for service modeling, WSMX (Web Service Execu-
tion Environment[12]) middleware system , and WSMT (Web Service Modelling
Toolkit[5]) modelling framework . In order to model the scenario, we use WSMO
for modeling of services and goals (i.e. required and offered capabilities) as well
as ontologies (i.e. information models on which services and goals are defined)
all expressed in the WSML-Flight ontology language. WSML-Flight provides a
Datalog expressivity extended with inequality and stratified negation that is suf-
ficient for addressing requirements of SWS Challenge scenarios. We use KAON2
reasoner5 and IRIS6 for the inference over WSML-Flight ontologies.

4 http://sws-challenge.org/wiki/index.php/Scenario:_Payment_Problem
5 http://kaon2.semanticweb.org
6 http://iris-reasoner.org

2.1 Payment Scenario

In Figure 1, the global architecture of our solution for the case scenario is de-
picted. The whole integration process of the Blue and Moon companies happens
in two phases: (1) integration setup phase and (2) integration runtime phase.
During the setup phase, the integration ontologies are designed including the
models used in UNIFI ISO 20022 payment information and the models used by
Moon’s financial systems. The design and implementation of adapters, creation
of WSMO ontologies and services, rules for lifting/lowering, mapping statements
between used ontologies and registration of ontologies, services and mapping
statements with WSMX are also carried out. During the runtime phase, inter-
actions between Blue and Moon systems are executed.

In order to address integration of Blue and Moon companies, our goal is to use
Semantic Web service technology to facilitate conversation between all systems,
to mediate between the data used by Moon, as well as to ensure that the message
exchange between all parties is correctly choreographed. Data Mediation was
not necessary in payment scenario as most of the integration process was carried
out on the Blue side where homogenous ontology of UNIFI ISO 20022 electronic
payment information has been used. Due to the simplicity of Moon’s data in this
scenario there was no need to provide data mediation support and bank account
details provided by Blue service has been directly utilized in integration process.
Process mediation is involved in mapping of message exchanges defined by UNIFI
ISO 20022 process to those defined in the WSDL of the Moon back-end systems.
Conversation between systems including data and process mediation operates
on semantic descriptions of messages, thus transformation from messages used
by existing systems to ontological level is first performed.

WSMX middleware

C
om

m
un

ic
at

io
n

M
an

ag
er

Pa
rs

er

D
is

co
ve

ry

D
at

a
M

ed
ia

to
r

C
ho

re
og

ra
ph

y
En

gi
ne

In
vo

ke
r

Execution Semantics

Persistence Layer

Services Ontologies Mediators

Adapter

M
oo

n-
W

SM
X

A
da

pt
er Financial

Information
Provider

(FIP)

Blue Company

U
N

IF
I I

SO
 2

00
22

-W
SM

X
A

da
pt

er

Adapter Moon back-end
systems

Moon Company

Accounting
Department

System
(ADS)

Management
Department

System
(MDS)

Blue back-end
systems

ask for
approval
(optional

>2000EUR)

Payment
Entrypoint

(implemented
by participant)

get bank
account
detailspayment

request

initialize
payment

ok or
appr. req

Figure 1. Global Integration Architecture

In our solution, we built the integration between the Blue and Moon systems
on the WSMX platform which resides between Moon and Blue infrastructure al-

lowing the seamless integration of all involved systems. XML messages between
the partners are lifted to semantically-enabled WSML level. Blue’s message initi-
ating B2B interaction is translated into WSMO Goal what allows for goal-driven
discovery, service execution and mediation that is provided by WSMX environ-
ment. Goals describe requirements over the service to be discovered and are
specified independently from the actual service. The following basic blocks are
involved in our solution to SWS-Challenge B2B integration:

– Existing Systems. The existing systems are Moon’s back-end service Fi-
nancial Information Provider as well as Blue’s UNIFI ISO 20022 payment
system with Accounting Department System and Management Department
System. Each system communicates using different formats, e.g. Blue’s sys-
tems communicates according to the UNIFI ISO 20022 messages (Payment
Information), whereas communication with the Moon’s system is more pro-
prietary - specified in their WSDL descriptions. Detail descriptions of these
WSDL interfaces can be found at SWS challenge web site.

– Adapters. In order to connect existing systems with WSMX, adapters are
used to mediate between the different communication protocols and lan-
guages. Since WSMX internally operates on the semantic level handling
messages in WSML, adapters facilitate lifting and lowering operations al-
lowing message to be transformed from XML to WSML and vice-versa. The
adapter also handles the application logic of identifying a valid Goal to be
sent to the WSMX for the incoming message and subsequently sending the
lifted form (WSML) of the purchase order message. Goal-based invocation
is the basis for advanced semantic discovery and mediation. In Figure 1, the
UNIFI ISO 20022-WSMX and Moon-WSMX adapters are used for connec-
tion to the Blue and the Moon system.

– WSMX. WSMX is the integration platform which facilitates the integration
process between different systems. The integration process is defined by the
execution semantics describing interactions of middleware services including
discovery, mediation, invocation, choreography, repository services, etc. De-
tail descriptions of execution semantics and middleware services for our use
case is given later in this section.

A payment request is sent from the client in XML to the entry point of
UNIFI ISO 20022-WSMX adapter. In the UNIFI ISO 20022-WSMX adapter, the
message captured in XML is lifted to WSML according to the UNIFI ISO 20022
ontology and rules for lifting. The abstract WSMO goal7 is created including
definitions of requested capabilities and a choreography. Requested capabilities
describe the desired capability of the requester (Blue company) used during the
discovery process whereas goal choreography describes how the requester wishes
to interact with the environment. Since a WSMO service is, from the WSMX
point of view, represented by an adapter (the adapter can be understood as a
wrapper around existing application – in our case Blue’s RosettaNet system),
the choreography here reflects the communication pattern of the adapter (hence
7 We refer to the abstract goal as a goal which contains no instance data (input values)

it does not include interactions regarding acknowledgments of messages). After
the goal is created, it is sent as a WSML message to the WSMX environment
through the AchieveGoal entrypoint.

The WSML message is passed through the Communication Manager to the
execution semantics which again first parses the data into the memory object by
invoking the WSMX Parser. In general, more independent conversations can be
running inside WSMX, thus information carried by the context is used to identify
the execution semantics associated with the conversation from the context. The
execution semantics then passes obtained data to the WSMX Process Mediator.

The role of the WSMX Process Mediator is to decide, which data will be
added to which choreography, i.e. requester’s or provider’s choreography. Please
note that choreographies of WSMO services are modeled as Abstract State Ma-
chines [1] and are processed using standard algorithms during runtime. Memory
of the choreography contains available instance data of ontological concepts. A
choreography rule which antecedent matches available data in the memory is se-
lected from the rule base and by execution of the rule’s consequent, the memory
is modified (data in the memory is updated, deleted of removed). This decision
is based on analysis of both choreographies and concepts used by these chore-
ographies and is in detail described in [2]. In our scenario, Process Mediator first
updates the memory of the requester’s choreography with the information that
the Payment Request has been sent. The Process Mediator then evaluates that
data should be added to the memory of the provider’s choreography.

Choreography Process. Figure 2 depicts Blue’s Payment choreography in-
cluding rules that are elaborated further on listings provided in this section.
First, a controlled instance is initialized during the execution and can be modi-
fied only by the choreography execution. Its value attribute belongs to a finite set
of states that are used to control the execution. Each rule checks in its condition
the controlled instance and is fired only when controlled instance permits.

The rules in Moon Payment choreography specify: a set of variables, a rule
conditions for the variable binding and a set of actions operating on the data
provided in the variable bindings when rule conditions are satisfied.

The following notation is used in Moon Payment choreography pseudocode:
keywords in WSML are marked with bold; ”?” followed by an identifier represents
a variable; ontology concept names are written in camel case.

Moon’s Financial Information. During the execution, when the first con-
dition is met (i.e. PaymentInitiation has been sent with the goal), the actions
of the rule 1 can be executed. The new BankingInformationRequest instance is
an input to the Moon’s Financial Information Provider service, the invocation
of which results in banking information (Moon’s bank account details) response
message.

Listing 1.1 shows rule 1 in full WSML syntax. However, for the brevity we
present the rest of the rules in more concise, pseudocode form as shown on
Listing 1.2.

Financial Information
Provider (Moon)

Accounting Department
System (Blue)

code

Management Department
System (Blue)

Accounting Department
System (Blue)

code

PROCESSED AUTHREQUIRED

DENIED ACCEPTED

FAILED

PaymentStatus
PI_ACCEPTED

PaymentStatus
PI_ACCEPTED

PaymentStatus
PI_REFUSED_AUTH_FAILED

PaymentInitiation

(1)

(2)

(3)

(4)

(5)

PaymentStatus

Legend

provided web
services
Blue’s integrator
(implemented
service)

(1) .. (5)
choreography
rules

Figure 2. Blue’s Payment Scenario Choreography

� �
forall {?controlled, ?request} with (
?controlled[oasm#value hasValue oasm#InitialState] memberOf oasm#ControlState and
?request memberOf pay#PaymentInitiation)
do
add(#[moon#hasRequestId hasValue ”token id”] memberOf moon#BankingInformationRequest)
delete(?controlled[oasm#value hasValue oasm#InitialState])
add(?controlled[oasm#value hasValue oasm#State1])

endForall� �
Listing 1.1. Rule Creating BankingInformationReq in WSML Syntax (Rule 1)� �

forall PaymentInitiation ?request do
create BankingInformationRequest instance� �

Listing 1.2. Rule Creating BankingInformationReq in Pseudocode (Rule 1)

Blue’s Accounting Department System Payment Initiation. The new
PaymentInitiationFDRequest instance is an input for the Blue’s Financial In-
formation Department System service and after the invocation the payment ini-
tiation response is received. The rule that triggers Blue’s Financial Department
System invocation is presented on Listing 1.3.� �

forall PaymentInitiation ?request, BankingInformationResponse ?variable do
create PaymentInitiationFDRequest instance� �
Listing 1.3. Rule Creating PaymentInitiationFDRequest (Rule 2)

If the initial amount is small, the Accounting Department will accept the
payment directly and there will be sufficient information to create the final
response for the customer and final rule 5 can be fired finishing the choreography
execution.

Blue’s Management Department System First Authorization Re-
quest. If Blue’s Accounting Department requires as authorization code then the
authority’s name will have to be determined for the payment approval via Blue’s
Management Department System service. It might be required to ask more than
once for the authorisation, thus there might be many authorisation responses
(some rejecting and some accepting the payment). In order to avoid checking
the same data again, the service response instance is flagged as not processed
(by setting the attribute to true). Also, if an authorisation request is created,
the value attribute of the controlled instance is set to identify the authority that
was asked to accept the payment. For example, if the payment amount is more
than 10.000 Euro and less than 50.000 Euro, the third authority (Arnold Black)
will be asked first and the state will be set to ”Authorised3”.� �

forall PaymentInitiationFDResponse ?variable with response ?code attribute and ?controlled instance do
if (?code = ”PROCESSED”) then

create PaymentStatus instance with code ”PI ACCEPTED”
if (?code = ”AUTHREQUIRED”) then

if(?amount > 1999.99 and ?amount < 3000) then
create PaymentAuthorizationMDRequest instance with the first authority’s name
add(?controlled[value = ”Authorised1”])
...

if (?amount > 49999.99) then
create PaymentAuthorizationMDRequest instance with the last authority’s name
add(?controlled[value = ”Authorised4”])
add notProcessed attribute to the response of the service with the value ”true”� �

Listing 1.4. Rule Determining Authority Required for MDS Payment
Authorization (Rule 3)

Blue’s Management Department System Subsequent Authoriza-
tion Requests. The rule selects the response instances from the Management
Department System service that were not checked yet. If the Management De-
partment System accepts the payment, it will provide an authorisation code,
which is used to create a request to the Blue Accounting Department Sys-
tem. Otherwise the request for payment authorisation has to be repeated with
higher-rank authority. We can determine which authority was previously asked
by looking at the value attribute of the controlled instance. For example, if the

state was ”Authorised3”, it means that the request to the Management Depart-
ment System service will be formulated with the forth authority’s name and the
state will be changed to ”Authorised4”. Processed response is flagged as ”false”
(by changing the notProcessed attribute) and (as in rule 3) the latest Manage-
ment Department System response is marked as not processed. If the previously
asked authority was the forth, there is no authority left to ask for payment ap-
proval, therefore the final PaymentStatus response is created with the status
”PI REFUSED AUTH FAILED” and the execution ends. The same situation
applies if the Management Department System service fails to authorise the
request.� �

forall PaymentAuthorizationMDResponse ?response with attributes ?code and notProcessed=”true” do
if (?code = ”ACCEPTED”) then

create PaymentInitiationFDRequest instance with the authorisation code of the ?response
if (?code = ”DENIED”) then

add(?response[notProcessed = ”false”])
if (?controlled[value = ”Authorised1”]) then

create PaymentAuthorizationMDRequest instance with the second authority’s name
add notProcessed attribute to the response of the service with the value ”true”
add(?controlled[value = ”Authorised2”])

...
if (?controlled[value = ”Authorised4”]) then

create PaymentStatus instance with code ”PI REFUSED AUTH FAILED”
if (?code = ”FAILED”) then

create PaymentStatus instance with code ”PI REFUSED AUTH FAILED”� �
Listing 1.5. Loop over Blue’s MDS Authorization (Rule 4)

Final Payment Status Response. This rule will be executed if the au-
thorisation response in rule 4 was ”ACCEPTED”. There is another PaymentIni-
tiationFDResponse instance in the state ontology as a result of executing rule
1, but its code is ”AUTHREQUIRED” (otherwise the execution would have al-
ready ended) and it does not have sufficient information to create final response
for the Blue client. PaymentInitiationFDResponse instance is selected since it
contains header and originalGroupInfoAndStatus attributes in order to create
and send the payment status response to the client.� �

forall PaymentInitiationFDResponse ?variable do
create PaymentStatus instance with code ”PI ACCEPTED”� �

Listing 1.6. Final Payment Status Response (Rule 5)

2.2 Purchase Order Mediation Scenario - Data Mediation

Although we chose not to use the functionality of the WSMX Data Mediator in
the payment SWS Challenge scenario, we see the recent integration into WSMX
as a noteworthy improvement of our system compared to the previous SWS
Challenge. SWS Challenge Purchase Order Mediation scenario8 is more suited
to show the added value resulting from descriptive mappings between ontologies

8 http://sws-challenge.org/wiki/index.php/Scenario: Purchase Order Mediation
(previous solution described in [3])

(compared to hard-coded message transformations in adapters). We have suc-
cessfully used the WSMX Data Mediator for this scenario and thus present the
data mediation based on that example in the following paragraphs.

WSMO conceptually takes into account that there may be different imple-
mentations for data mediation. WSMO specifies OO-Mediators, which are used
as descriptions that define a mediation service between two ontologies (indepen-
dent of the implementation). An OO-Mediator has an ID, references to source
and target ontology, and a mediationService property that points to the ser-
vice or component that actually implements the data mediation between the
given ontologies9. Before the choreography execution, the ontologies used in the
respective choreographies of goal and web service are inspected. For each pair
of goal and web service ontologies (GOi, WOj) with GOi 6= WOj , it is checked
whether there is an OO-Mediator registered. If this is the case, the specified data
mediation service is requested using the input data. Any mediation results are
then combined and forwarded to choreography execution (if no data mediation
was necessary or possible, the unmediated data is used).

Figure 3. Data Mediation Moon Scenario

To illustrate the example scenario, Figure 3 shows the relevant parts of the
RosettaNet expected input instances as well as all of the instances that need
to be created during runtime in order to communicate with the Moon legacy

9 note that OO-Mediators can also be used in other ways, which will be omitted here
since it is not relevant to this example

systems. The hierarchy shown depicts instances with their respective attributes,
whereas an attribute is member of a concept with the same name except denoted
otherwise. The creation of the instances and attributes marked with an asterisk
(*) is not the responsibility of data mediation but of choreography execution,
since some of the attributes do not have any correspondence in the input data.

The WSMX Data Mediator itself uses mapping descriptions to implement
the data mediation. The mappings between the RosettaNet PIP 3A4 Purchase
Order Request and Moon ontologies are created during the integration setup
phase. They are represented in an abstract, ontology mapping language. The
creation of those mappings is a semi-automatic process (due to the requirement
of accuracy). The domain expert is aided in this step by a graphical mapping
tool10. Utilizing different perspectives on source and target ontologies allows for
the creation of complex mappings using only a simple operation, map. A con-
textualization strategy as well as lexical and structural suggestion algorithms
provide further support for the domain expert. The model is formally described
and linked to the Abstract Mapping Language (described in [10] and elabo-
rated in [11]). Statements in the Abstract Mapping Language include, amongst
others, classMappings, attributeMappings, classAttributeMappings and various
conditional statements.

The mappings for this use case can be created using only the PartOf perspec-
tive of the mapping tool, which focuses on concepts, attributes and attributes’
type hierarchies. The generated mapping statements between the RosettaNet
BusinessDescription and the Moon SearchCustomerRequest are shown in List-
ing 1.7 using the Abstract Mapping Language.� �

classMapping(BusinessDescription, SearchCustomerRequest)
attributeMapping([(BusinessDescription) businessName => string], [(SearchCustomerRequest)

searchString => string])
classMapping(string, string)� �

Listing 1.7. Data Mediation Mapping Rules (simplified)

During the integration runtime phase, the Abstract Mapping Language state-
ments are converted to WSML rules which specify the conditional creation of
instances of the target ontology. The input instances and the rules are regis-
tered with a reasoner, along with the source and target ontologies. By querying
the knowledge base for instances of the target ontology, the rules fire and thus
generate the respective instances of the target ontology. For the given example,
the knowledge base is shown in Listing 1.8 (rules and input instances only), the
queries and the resulting mediated instances in Listings 1.9 and 1.10. All of these
listings are in WSML.� �

axiom m#ccMappingRule4 definedBy
m#mappedConcepts(rosettacore#BusinessDescription,moon#SearchCustomerRequest,?X3)
and m#mediated1(?X3,moon#SearchCustomerRequest) memberOf moon#SearchCustomerRequest

:−
?X3 memberOf rosettacore#BusinessDescription.

10 Available as part of the Web Service Modeling Toolkit, http://wsmt.sourceforge.
net/

axiom m#aaMappingRule8 definedBy
m#mediated1(?X5,moon#SearchCustomerRequest)[moon#searchString hasValue ?Y6] memberOf

moon#SearchCustomerRequest
:−

?X5[rosettacore#businessName hasValue ?Y6] memberOf rosettacore#BusinessDescription
and ?X5 memberOf ?SC7
and m#mappedConcepts(?SC7,moon#SearchCustomerRequest,?X5).

axiom m#ccMappingRule2 definedBy
m#mappedConcepts(string, string,?X1)

:−
?X1 memberOf string.

instance in#input BusinessDescriptionFromRolePartDe memberOf rosettacore#BusinessDescription
rosettacore#businessName hasValue ”Blue Company”� �

Listing 1.8. Data Mediation Knowledge Base� �
// Query 1:

?x memberOf moon#SearchCustomerRequest
// 1 result:

?x=m#mediated1(in#input BusinessDescriptionFromRolePartDe,moon#SearchCustomerRequest)

// Query 2 (created based on the result of Query 1):
m#mediated1(in#input BusinessDescriptionFromRolePartDe, moon#SearchCustomerRequest)[?y

hasValue ?z] memberOf moon#SearchCustomerRequest and ?z memberOf ?avC.
// 1 result:

?y=moon#searchString, ?z=”Blue Company”, ?avC= ”http://www.wsmo.org/wsml/wsml−syntax#
string”� �

Listing 1.9. Data Mediation Queries� �
instance m#mediated1(’in/input BusinessDescriptionFromRolePartDe, moon/SearchCustomerRequest’)

memberOf moon#SearchCustomerRequest
moon#searchString hasValue ”Blue Company”� �

Listing 1.10. Data Mediation Final Result

During choreography execution, the additionally required instances and at-
tributes not generated by data mediation are added. Listing 1.11 shows the
respective transition rule adding an authToken attribute to the Moon Search-
CustomerRequest and CreateOrderRequest.� �

forall {?controlstate, ?searchCustReq, ?createOrdReq} with (
?controlstate[oasm#value hasValue oasm#InitialState] memberOf oasm#ControlState and
?searchCustReq memberOf moon#SearchCustomerRequest and
?createOrdReq memberOf moon#CreateOrderRequest

) do
add(?searchCustReq[moon#authToken hasValue ”MaciejZaremba”]) // add authToken
add(?createOrdReq[moon#authToken hasValue ”MaciejZaremba”]) // add authToken
add(?controlstate[oasm#value hasValue moonc#CreateOrder])
delete(?controlstate[oasm#value hasValue oasm#InitialState])

endForall� �
Listing 1.11. Choreography Example

More information on the WSMX Data Mediator can be found in [6] and [7].

3 Conclusion

In this paper we presented our approach to dynamic B2B integration based
on the Semantic Web Services technology in particular we have addressed an

extended mediation scenario and provided a generic, rule-based data and process
mediation of heterogeneous services. Our solution is a contribution to the SWS
Challenge and further, will be part of an evaluation within this initiative.

Acknowledgments

This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/I131,
and the EU projects SUPER (FP6-026850), and SemanticGov (FP-027517).

References

1. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

2. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies.
In Business Process Management Workshops. 2005.

3. T. Haselwanter, et al. Dynamic B2B Integration on the Semantic Web Services. In
Proceedings of the Semantic Web Service Challenge Workshop - Phase II, Work-
shop at 3rd European Semantic Web Confererence (ESWC). 2006.

4. T. Haselwanter, et al. WSMX: A Semantic Service Oriented Middleware for B2B
Integration. In Proceedings of the 4th International Conference on Service Oriented
Computing (ICSOC), Springer-Verlag LNCS. 2006.

5. M. Kerrigan, A. Mocan, M. Tanler, and D. Fensel. The Web Service Modeling
Toolkit - An Integrated Development Environment for Semantic Web Services
(System Description). In Proceedings of the 4th European Semantic Web Confer-
ence (ESWC). 2007.

6. A. Mocan and E. Cimpian. An ontology-based data mediation framework for
semantic environments. International Journal on Semantic Web and Information
Systems (IJSWIS), 3(2):66–95, April-June 2007.

7. A. Mocan, M. Kerrigan, and E. Cimpian. Applying reasoning to instance trans-
formation. In Proceedings of the International Workshop on Ontologies: Reasoning
and Modularity (WORM-08). June 2008. To appear.

8. C. Preist, et al. Automated Business-to-Business Integration of a Logistics Supply
Chain using Semantic Web Services Technology. In Proc. of 4th Int. Semantic Web
Conference. 2005.

9. D. Roman, et al. Web Service Modeling Ontology. Applied Ontologies, 1(1):77 –
106, 2005.

10. F. Scharffe and J. de Bruijn. A language to specify mappings between ontologies.
In Proceedings of the Internet Based Systems IEEE Conference (SITIS05). 2005.

11. F. Scharffe, J. Euzenat, and L. Serafini. Specification of delivery alignment format.
Knowledge web deliverable d2.2.6, Knowledge Web Consortium, 2006.

12. T. Vitvar, et al. Semantically-enabled service oriented architecture: Concepts, tech-
nology and application. Service Oriented Computing and Applications, Springer
London, 1(2), 2007.

