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Abstract
While recommender systems have significantly benefited from implicit feedback, they have often missed the nuances of
multi-behavior interactions between users and items. Historically, these systems either amalgamated all behaviors, such as
impression (formerly view), add-to-cart, and buy, under a singular ’interaction’ label, or prioritized only the target behavior,
often the buy action, discarding valuable auxiliary signals. Although recent advancements tried addressing this simplification,
they primarily gravitated towards optimizing the target behavior alone, battling with data scarcity. Additionally, they tended
to bypass the nuanced hierarchy intrinsic to behaviors. To bridge these gaps, we introduce the Hierarchical Multi-behavior
Graph Attention Network (HMGN). This pioneering framework leverages attention mechanisms to discern information
from both inter and intra-behaviors while employing a multi-task Hierarchical Bayesian Personalized Ranking (HBPR) for
optimization. Recognizing the need for scalability, our approach integrates a specialized multi-behavior sub-graph sampling
technique. Moreover, the adaptability of HMGN allows for the seamless inclusion of knowledge metadata and time-series
data. Empirical results attest to our model’s prowess, registering a notable performance boost of up to 64% in NDCG@100
metrics over conventional graph neural network methods.
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1. Introduction
Recommender systems are widely employed in online
platforms to provide accurate and relevant content to
users. As explicit user preferences are often lacking [1],
implicit feedback has become widely adopted [1, 2, 3, 4,
5, 6, 7], where the user-item relationship is classified as
either interacted or unknown. However, modern online
shopping platforms involve various types of interactions,
such as clicks, add-to-cart actions, and buy. Relying solely
on binary implicit feedback information (interacted or
unknown) while overlooking this rich multi-behavior in-
formation can worsen the cold start problem and exacer-
bate data sparsity issues [8]. Furthermore, considering
the naturally existing multi-behavior information in the
modern e-commerce ecosystem, it becomes beneficial to
differentiate between various user behaviors and opti-
mize for target behaviors, such as buy, which align with
the ultimate goal of maximizing revenue for businesses.

Recent years have witnessed the rapid development of
multi-behavior recommender systems [9, 10, 11, 12, 13, 8,
14, 15], due to their ability to supplement and motivate
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sparse target behavior signals (buy) with auxiliary be-
haviors (view or what’s often termed ”impression”, favorite,
add-to-cart, etc). Despite these efforts, there exist draw-
backs that prohibit these works from fully exploiting the
power of multi-behavior information.
Failure to exhaustively utilize and predict auxil-

iary behaviors. [8] constructed a heterogeneous graph
convolutional neural network for the multi-behavior rec-
ommendation and apply Bayesian Personalized Ranking
(BPR), where positive and negative pairs are sampled
according to the target behavior. [12] utilized the graph
attention layer together with the item knowledge graph
and temporal encoding to empower the learned embed-
dings to be expressive. All these multi-behavior mod-
els [8, 14, 12] merely optimize for single-behavior (tar-
get behavior) despite utilizing multi-behavior informa-
tion during the model learning stage. Besides, these ap-
proaches are unable to predict other auxiliary behaviors
thus still suffering from sub-optimal performance and
label-sparsity issues. Overlooking the hierarchical
pattern ofmulti-behaviors. [16, 13] took the backbone
of heterogeneous graph convolutional neural network
and applied binary Mean Square Error to all behaviors
predictions. Despite its efficiency, we argue this method
is unable to exploit the inherent relationship between
different behaviors as it tries to optimize each behavior
to either 1 or 0. [17, 9] gave the behaviors different im-
portance and sample positive and negative items from
two different levels of behaviors. These methods did
not consider the case where an item would innocently
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Figure 1: An example illustrates the current (multi-behavior)
recommender system setting. (a) a multi-behavior example.
(b) considering only target behavior. (c) treating all behaviors
homogeneously. (d) case of 𝑢3. (e) hierarchical shopping pat-
tern.

serve as a negative sample while belonging to a higher
importance behavior group. More specifically, a user
views and buys an item directly (without add-to-cart),
would possibly serve as a negative sample when opti-
mizing for add-to-cart behavior, which is contrary to the
hierarchical pattern between multi-behaviors.

To tackle these issues, we aim to leverage the graph
attention neural network which enables us to learn and
represent individual interaction and optimize amulti-task
objective. The challenge is direct utilization of Bayesian
Personalized Ranking (BPR) for multi-behavior scenarios
can lead to some conflicts. We use an example in fig. 1 (d)
to clarify the situation. 𝑢3 add-to-cart the item 𝑖3 and buy
item 𝑖2. To optimize the behavior add-to-cart, the BPR
criterion would clarify 𝑖3 is positive and 𝑖2 is negative for
𝑢3. We argue that this is not practical since the buy be-
havior over 𝑖2 already demonstrates the user’s preference.
Highly inspired by [9, 17], we propose a Hierarchical
Bayesian Personalized Ranking (HBPR) optimization cri-
terion to deal with the multi-behavior case by taking the
hierarchical relations between behaviors into considera-
tion. We propose a multi-behavior ad-hoc graph atten-
tion network, aka Hierarchical Multi-behavior Graph
Attention Network (HMGN). We list the main contribu-
tions of this paper as below:

1. We explore and benchmark two light yet effective
graph attention neural network paradigms target-
ing on multi-behavior recommendation. Besides
target behavior, our model is also able to predict
auxiliary behaviors.

2. We propose HBPR loss criterion dedicated to multi-

behavior scenarios. This multi-task optimization
framework is crucial for the behavior prediction
task.

3. To scale our model, we extend sub-graph sampling
strategy to multi-behavior scenario, avoiding bias
in behavior sampling. The corresponding pair-
wise negative sampling for HBPR loss is refur-
bished in the sub-graph stage.

4. Extensive empirical experiments are conducted on
two practically processed e-commerce datasets
(Taobao and RetailRocket). The results show that
our framework achieves significant improvement
over state-of-the-art models (SOTA) (35% in Re-
tailRocket and 64% in Taobao) in terms of offline
metric (𝑁𝐷𝐶𝐺@100) on target-behavior predic-
tion task.

We organize the rest of this paper in the following way:
in section 2, we formalize the multi-behavior recommen-
dation problem; in section 3, we detailed clarify the pro-
posed frameworks including model architecture and op-
timization; in section 4.1, we introduce the sub-graph
sampling as well as incorporation of temporal and knowl-
edge information for multi-behavior recommendation; in
section 5, we conduct extensive empirical experiments;
in section 6, we briefly introduce the related works and
discuss the resemblance and discrepancy from ours and
in section 7, we summarize and conclude the paper.

2. Experiment Formulation
Ad Tech and Media customers always encounter label
sparsity for single-behavior recommendation systems de-
spite having rich auxiliary information. Incorportating
multiple behaviors can also help in the development of
a model that can predict a customer’s propensity across
different stages of purchase funnel. Additionally, our
customers express the need to create a robust decision-
making engine that can leverage side information, such
as item metadata, to enhance the recommendation pro-
cess. The work we present here represents a prelim-
inary step towards their long-term goal of building a
resilient pipeline for multi-behavior recommendation
systems based on Graph Neural Networks (GNNs).

We first introduce the concept of a multi-behavior rec-
ommender system in graph terminology. User-Item
Multi-Behavior (Temporal) Bipartite Graph: the
user-item interactions can be treated as a heterogeneous
bipartite graph 𝒢 = (ℰ,𝒱 ) = {(𝑢, 𝑏𝑢𝑖, 𝑖)|𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 , 𝑏𝑢𝑖 ∈
𝐵} where 𝑈 is the set of all user nodes, 𝐼 is the set of all
item nodes, 𝑏𝑢𝑖 indicates user 𝑢 interacted item 𝑖 with
behavior 𝑏𝑢𝑖. 𝐵 is the set of all multi-behavior interac-
tion edges between a user and an item (view, add-to-cart,



Figure 2: Illustration flow of HMGN. (a) shows the example of 𝑢3 node with its multi-behavior interacted neighborhood
items; (b) is the message propagating flow of HMGN-intra framework; (c) is the message propagating flow of HMGN-inter
framework.

favor, buy, etc for e-commerce datasets). If temporal in-
formation is to be considered, the dynamic graph can be
represented as: 𝒢𝑡 = {(𝑢, 𝑏𝑢𝑖, , 𝑡𝑢𝑖, 𝑖)|𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 , 𝑏𝑢𝑖 ∈ 𝐵}
where 𝑡𝑢𝑖 is the timestamp when 𝑢 interacted with 𝑖 under
𝑏𝑢𝑖. For each user-item node pair (𝑢, 𝑖), there can only
exist at most one edge per behavior type.

The goal of the multi-behavior recommender system
is to utilize all the interaction information (including
view (analogous to ”impression” in the context), add-to-
cart, favor, buy, etc) to predict the possible target behavior,
typically buy behavior.

3. HMGN: Hierarchical
Multi-Behavior Graph Attenion
Network

In this section, we elaborate on the details of our pro-
posed framework - Hierarchical Multi-Behavior Graph
Attention Network (HMGN) , the model illustration of
which is presented in Figure 2. As we formulated in
section 2, the multi-behavior recommendation data is or-
ganized as a heterogeneous bipartite graph. This leads to
a different order of information propagation and aggrega-
tion process in GNNs based on each behavior which we
explore in HMGN-intra and HMGN-inter. Mathemati-
cally, we denote e(0)𝑢 , e(0)𝑖 as the initialized embedding for
user 𝑢 and item 𝑖. After propagating through 𝑘 layers of
the graph attention network, the output of the last layer
e(𝑘)𝑢 and e(𝑘)𝑖 would be treated as the final representation
of user 𝑢 and item 𝑖.

3.1. HMGN-intra
3.1.1. Intra-behavior Phase

Figure 2(b) illustrates the message propagating and ag-
gregating procedure of the HMGN-intra model for user
𝑢3 whose interactions are shown in Figure 2(a). The het-
erogeneous user-item bipartite graph is first separated
into isolated single-behavior graphs and intra-behavior
(message propagating) phase is conducted on these them.
We exert the attention mechanism to learn the target
node oriented (personalized behavior-specific) represen-
tation. Following is the formula of information passing
from neighborhood item (source) nodes to its user (tar-
get) nodes. This formula is interchangeable between
user-to-item and item-to-user information propagation.

𝛼 (𝑙,𝑏)𝑢←𝑖 =
𝑒𝑥𝑝((𝑄(𝑏)e(𝑙)𝑢 )𝑇 ⋅ (𝐾 (𝑏)e(𝑙)𝑖 ) ⋅ √1/𝑑)

∑
𝑗∈𝑁 (𝑏)

𝑢

𝑒𝑥𝑝((𝑄(𝑏)e(𝑙)𝑢 )𝑇 ⋅ (𝐾 (𝑏)e(𝑙)𝑗 ) ⋅ √1/𝑑)

e(𝑙,𝑏)𝑢 = ∑
𝑗∈𝑁 (𝑏)

𝑢

𝛼 (𝑙,𝑏)𝑢←𝑗 ⋅ (𝑉 (𝑏)e(𝑙)𝑗 )

(1)

where 𝑑 is hidden dimension, 𝑁 (𝑏)
𝑢 is the set of neigh-

borhood item nodes connected to user 𝑢 in single-
behavior 𝑏 graph. 𝑄(𝑏), 𝐾 (𝑏), 𝑉 (𝑏) are the attention trans-
formation parameters [18] for behavior 𝑏 and for simpli-
fication consideration, we omit the superscripts of layer
𝑙 from different transformation parameters (𝑄, 𝐾, 𝑉). In-
tuitive explanation is: 𝑄(𝑏)𝑒(𝑙)𝑢 would be serve as a query
transformed from 𝑙-th layer user representation. Keys
({𝐾 (𝑏)e(𝑙)𝑗 }𝑗∈𝑁 (𝑏)

𝑢
) and values ({𝑉 (𝑏)e(𝑙)𝑗 }𝑗∈𝑁 (𝑏)

𝑢
) are trans-

formed from its neighborhood items. The cross-product
attention mechanism (eq. (1)) is applied to enable the
target-oriented representation (e(𝑙,𝑏)𝑢 ) learning. Since all
the procedure is operated and conducted in each isolated



single-behavior graph, the e(𝑙,𝑏)𝑢 is representative from
the perspective of each behavior 𝑏. The next step is to
aggregate each behavior representation.

3.1.2. Aggregation Phase

All behavior-specific information (for the target node)
would be put together to form a final personalized repre-
sentation. We are trying to keep the structure as light as
possible to maintain the most effective and efficient com-
ponents for the GNN as LightGCN [19] demonstrated.
To this end, we take a weighted aggregation approach:

e(𝑙+1)𝑢 = ∑
𝑏∈𝐵

𝑤𝑢,𝑏 ⋅ e
(𝑙,𝑏)
𝑢 (2)

In [13], 𝑤𝑢,𝑏 is set to be manually determined hyper-
parameters and is shared between each user and item
(as 𝑤𝑏). A drawback for this setting occurs when a node
doesn’t exhibit a specific behavior. It leads to an unstable
amplitude in e(𝑙+1)𝑢 with e(𝑙,𝑏)𝑢 being a zero vector. With
our personalized average aggregation, when a user does
not exhibit the specific behavior 𝑏, their weight 𝑤𝑢,𝑏 shall
be set as 0, and the aggregation operation is performed
over the remaining behaviors:

𝑤𝑢,𝑏 =
⎧

⎨
⎩

0, e(𝑙,𝑏)𝑢 = 0
1

𝐵
∑
𝑏
𝛿(e(𝑙,𝑏)𝑢 ≠0)

e(𝑙,𝑏)𝑢 ≠ 0 (3)

where 𝛿 is the indicator function, equal to 1 when input
is True and 0 for False.

3.2. HMGN-inter
In HMGN-inter framework, the message would first
pass and aggregate across all behaviors within each user-
item node pair. Wemotivate this from real-world patterns
where different user/item can exhibit varying levels of
multiple behaviors. For example, a particular user can
perform more add-to-cart actions compared to buy. Sim-
ilarly, a particular item could experience more page-view
than it has been marked as favorite. Thus learning user-
item behavior involves understanding these complex dy-
namics that are user/item centric.

3.2.1. Inter-behavior Phase

For each user-item pair, the cross attention attempts to
maximize the optimal behavior representation for the
target node (user 𝑢3 from fig. 2(a)).

𝛼 (𝑙,𝑏)𝑢←𝑖 =
𝑒𝑥𝑝((𝑄(𝑏)e(𝑙)𝑢 )𝑇 ⋅ (𝐾 (𝑏)e(𝑙)𝑖 ) ⋅ √1/𝑑)

∑
𝑏∈𝐵

𝑒𝑥𝑝((𝑄(𝑏)e(𝑙)𝑢 )𝑇 ⋅ (𝐾 (𝑏)e(𝑙)𝑖 ) ⋅ √1/𝑑)

e(𝑙)𝑢←𝑖 = ∑
𝑏∈𝐵

𝛼 (𝑙,𝑏)𝑢←𝑖 ⋅ (𝑉 (𝑏)e(𝑙)𝑖 )

(4)

𝑄(𝑏)e(𝑙)𝑢 is the personalized query in behavior 𝑏 space
and {𝐾 (𝑏)e(𝑙)𝑗 }𝐵𝑏 , {𝑉

(𝑏)e(𝑙)𝑗 }𝐵𝑏 are the corresponding keys and

values in each behavior space for item 𝑗. 𝛼 (𝑙,𝑏)𝑢←𝑖 tends to
scale the weight that how much information the target
node (𝑢) obtained from different behavior spaces of the
neighborhood 𝑖 node. And the obtained representation
e(𝑙)𝑢←𝑖 contains all the behavior information that passed
from node 𝑖 to node 𝑢. The next step is aggregating all
the information from its neighborhood nodes (belonging
to set 𝑁𝑢).

3.2.2. Aggregation Phase

Unlike GCN [13] architecture, we use an attention mecha-
nism to aggregate information from neighboring sources
nodes to target nodes [11].

𝛽(𝑙,𝑏)𝑢←𝑖 =
𝑒𝑥𝑝((𝑄e(𝑙)𝑢 )𝑇 ⋅ (𝐾e(𝑙)𝑢←𝑖) ⋅ √1/𝑑)

∑
𝑗∈𝑁𝑢

𝑒𝑥𝑝((𝑄e(𝑙)𝑢 )𝑇 ⋅ (𝐾e(𝑙)𝑢←𝑗) ⋅ √1/𝑑)

e(𝑙+1)𝑢 = ∑
𝑗∈𝑁𝑢

𝛽(𝑙,𝑏)𝑢←𝑗 ⋅ (𝑉e
(𝑙)
𝑢←𝑗)

(5)

It is worth noting that the attention parameters in eq. (5)
is different from those in eq. (4). e(𝑙+1)𝑢 would be the out-
put of 𝑙+1 layer after inter-behavior phase and aggregation
phase.

3.3. Behavior Preference Modeling
After information propagating through 𝐿 layers of GNN,
we obtain final representation e(𝐿)𝑢 and e(𝐿)𝑖 for user 𝑢 and
item 𝑖, respectively. In real-world multi-behavior recom-
mendation, a user would have a generalization impression
𝐺 over an item (like/dislike) and also the behavior special-
ization preference 𝑆, (view/add-to-cart-buy, etc). Inspired
by this joint relation:

ln 𝑃𝑟(𝑆, 𝐺) = ln 𝑃𝑟(𝑆|𝐺) + ln 𝑃𝑟(𝐺)

We propose the following formula that can capture both
user item generalization preference as well as behavior
specialization preference:

𝑓 (𝑢, 𝑏, 𝑖) = (e(𝐿)𝑢 )𝑇((1 − 𝛼)𝐵 + 𝛼𝐼)e(𝐿)𝑖 (6)

where 𝐼 is identity matrix and 𝐵 is diagonal matrix rep-
resenting a behavior type 𝑏. 𝛼 is a scalar hyperparameter
that balances the trade-off between generalization and
specialization. Noting that, if 𝛼 = 1, eq. (6) would be the
user-item inner product [3] - the most common strategy
to mimic user-item preference; if 𝛼 = 0, it would collapse
to the behavior specialization preference, similar to [13].



3.4. HBPR: Hierarchical Bayesian
Personalized Ranking

While recent works [8, 12, 11] utilize multi-behavior in-
formation in modeling phase, they solely optimize for
target behavior (treating only target behavior as positive
label) in their objective. We argue that this single-task
optimization framework won’t be sufficient to exploit
the power of auxiliary behavior information. And some
multi-task optimization [13] ignores the relationship be-
tween the behaviors. Thus, we propose a multi-task op-
timization criterion - Hierarchical Bayesian Personalized
Ranking (HBPR).

The behavior-specific personalized formalization is
an extension of [7] and is defined as >𝑢,𝑏⊂ 𝐼 2, where
𝑖 >𝑢,𝑏 𝑗 states as user 𝑢 prefer item 𝑖 than item 𝑗 under the
behavior 𝑏. In multi-behavior scenario, we maintain >𝑢,𝑏
with the properties of totality, antisymmetry, transitivity
(see [7]) , extended it with extra property - hierarchy:

∀𝑖, 𝑗 ∈ 𝐼 , 𝑏1, 𝑏2 ∈ 𝐵 ∶
𝑖 >𝑢,𝑏1 𝑗 ∧ 𝑗 >𝑢,𝑏2 𝑖 ∧ 𝑏1 >𝑝 𝑏2 ⇒ 𝑖 >𝑢,𝑏1 𝑗, 𝑖 =𝑢,𝑏2 𝑗

where >𝑝 is the heuristically defined priority rank across
behaviors.
Intuition of hierarchy: Using the same example we
talked in fig. 1 in section 1: 𝑢3 add-to-cart the item 𝑖3 and
buy item 𝑖2. We have 𝑖2 >𝑢3,𝑏𝑢𝑦 𝑖3 and 𝑖3 >𝑢3,𝑎𝑑𝑑−𝑡𝑜−𝑐𝑎𝑟 𝑡 𝑖2.
Without defining of hierarchy, the BPR criterion would
classify 𝑖3 is positive and 𝑖2 is negative for 𝑢3 under be-
havior add-to-cart, 𝑖3 >𝑢3,𝑎𝑑𝑑−𝑡𝑜−𝑐𝑎𝑟 𝑡 𝑖2. This is not quite
practical since the typical case is a person click/view an
item, favor it or add-to-cart, then buy it. Under such
a hierarchical assumption, as long as the user buy an
item, the preference over other behaviors is supposed
to be automatically claimed. Following this logic, the
e-commerce shopping behaviors priority rank >𝑝 can be
set as 𝑏buy >𝑝 𝑏add-to-cart >𝑝 𝑏view.

Definition 1 (Higher priority rank set 𝑏+). Given a
behaviors priority rank: 𝑏0 >𝑝> 𝑏1 >𝑝 ⋯ >𝑝 𝑏𝑘. The
higher priority rank set of 𝑏𝑖(0 ≤ 𝑖 ≤ 𝑘) is denoted as
𝑏+𝑖 = {𝑏0, 𝑏1, ⋯ , 𝑏𝑖−1}.

For convenience, we define 𝐼+𝑢,𝑏 ⊂ 𝐼 as the set of all items
that user 𝑢 interacted with behavior 𝑏 and 𝐼−𝑢,𝑏 = 𝐼\𝐼+𝑢,𝑏
as non-interacted or unknown in contrast. Obviously,
𝐼+𝑢,𝑏 ∩ 𝐼

−
𝑢,𝑏 = ∅ and 𝐼+𝑢,𝑏 ∪ 𝐼

−
𝑢,𝑏 = 𝐼.

An item from 𝐼+𝑢,𝑏 can be treat as a positive sample for
user 𝑢 with the behavior 𝑏, while the negative one is not
directly from 𝐼−𝑢,𝑏 = 𝐼\𝐼+𝑢,𝑏 according to the requirements
of hierarchy.

Equipped with this definition of behavior higher pri-
ority rank set, we can determine the negative item sets
compatible with hierarchy principle:

𝐼 𝑐,−𝑢,𝑏 = {𝑖 ∈ 𝐼−𝑢,𝑏|𝑖 ∉ 𝐼−𝑢,𝑏′ , ∀𝑏
′ ∈ 𝑏+} (7)

In BPR [7], all user interactions are presumed to be
independent of each other. The objective likelihood func-
tions are:

ℒ = ∏
𝑢,𝑏

𝑝(>𝑢,𝑏 |Θ)

= ∏
𝑢,𝑏

∏
𝑖∈𝐼+𝑢,𝑏

∏
𝑗∈𝐼 𝑐,−𝑢,𝑏

𝑝(𝑖 >𝑢,𝑏 𝑗)
(8)

Substituting the user behavior preference modeling
eq. (6), the final objective (with regularization) is:

ℒ = ∑
𝑢,𝑏

∑
𝑖∈𝐼+𝑢,𝑏

∑
𝑗∈𝐼 𝑐,−𝑢,𝑏

− log 𝜎(𝑓 (𝑢, 𝑏, 𝑖) − 𝑓 (𝑢, 𝑏, 𝑗)) + 𝜆Θ||Θ||2

(9)

4. Model Scaling and Enhancing
Maintaining a lightweight backbone (Section 3) has en-
abled us to explore advanced techniques to enhance and
scale our framework to large graphs as discussed in this
section below.

4.1. Multi-Behavior Sub-graph Sampling
In real world e-commerce websites, recommender system
applications are typically expected to process billions of
users and items. Therefore, the scalability of recommen-
dation models is crucial for production deployments.

While recent works have exhibited impressive success
in homogeneous sub-graph sampling strategies (single-
behavior) [20, 21, 22, 23], there is a dearth of literature
in the heterogeneous (multi-behavior) sampling realm
[24, 25].

In KHGT’s [12] sub-graph wise sampling strategy, the
authors first sample target-behavior specific graph to ob-
tain all the nodes. They then form a sub-graph by adding
auxiliary behavior edges if present. Further, in the opti-
mization stage, a BPR optimization criterion is applied
only to the target behavior. This poses a major drawback
- biased multi-behavior distribution. Since the nodes in the
sub-graph are determined solely by the presence of target
behavior edges, the obtained sub-graph has a behavior
bias with skewed multi-behavior edge ratios (the target
behavior edge counts higher than the other behavior
edges). In this section, we propose a multi-behavior sub-
graph sampling strategy (see Figure 3 and Algorithm 1),
which enables tunable behaviors distribution, and the
corresponding pairwise HBPR sampling.

At a high level, we sample the sub-graph for each
single-behavior graph and obtain the final multi-behavior
sub-graph by the union of all the nodes and their con-
nected edges. For each behavior, we first determine a
small set of user and item nodes, which we call the sub-
graph kernel (the inner circle in Figure 3). Then, we



Figure 3: Multi-behavior sub-graph sampling. (a) original full graph; (b)”view”-behavior sub-graph sampling; (c)”buy”-behavior
sub-graph sampling; (d)”add-to-cart” sub-graph sampling (e)final sub-graph. For sub-graph BPR optimization, positive user-
item pairs are selected from the kernel of sub-graph and negative pairs come from the entire sub-graph.

sample up to 𝑘-hop neighborhood nodes for these kernel
nodes. In the HBPR optimization stage, where a pair of
nodes (positive and negative item samples for a user) are
required, we constrain the positive sample to be derived
from our core sub-graph kernel and the negative sample
to be derived from rest of the sub-graph. (Algorithm 1)

The justification of why sub-graph kernel is crucial
for optimization is as follows. In the original full-size
graph, nodes and edges are self-contained (connected),
and every node can receive information from all of its
neighborhoods during the graph propagation stage. In
the case of sub-graph, since only few nodes are kept,
there is an unavoidable loss of knowledge during the in-
formation propagation. Especially for those nodes in the
”border” of the sub-graph in Figure 3, they are left with
spare neighboring. In contrast, for those nodes in the
kernel, almost all the neighbors (dense neighborhoods)
would be kept due to our layer-wise sampling strategy.
This leads to a more accurate and informative embedding
representation for the nodes in the kernel. Thus it would
be beneficial to only optimize the kernel edges as positive
relations.

4.2. Temporal Encoding
Temporal information can be seamlessly incorporated
into our framework in a way similar to positional en-
coding in transformer[18, 12]. Formally, we define the
temporal representation as a vector 𝑃𝐸𝑡 ∈ ℝ𝑑 (𝑑 is the
latent dimension of the model):

𝑃𝐸𝑡 ,2𝜖 = sin( 𝑡

10000
2𝜖
𝑑

) 𝑃𝐸𝑡 ,2𝜖+1 = cos( 𝑡

10000
2𝜖+1
𝑑

)

(10)

where 𝑡 is the numerated timestamp, 𝜖 ∈ {0, 1, … , 𝑑/2−1}.
The temporal vector can be (element-wise) add onto

source nodes before the message propagating phase:

e(𝑙,𝑡)𝑖 = e(𝑙)𝑖 + 𝑃𝐸𝑡 (11)

The derived temporal representation e(𝑙,𝑡)𝑖 is used to sub-

stitute e(𝑙)𝑖 in Equation (1) and Equation (4). Note here
that the temporal information is not feasible for GCN-
based models [19, 13], where the message propagation
and aggregation is in-batch operated by adjacency (Lapla-
cian) matrix.

4.3. Knowledge Graph (KG) Enhancing
We are also able to enhance and boost our framework
with metadata. Similar to [11, 26], we leverage the item-
meta data and train a separate KG loss.
Collaborative Knowledge Graph (CKG) can be seam-
lessly extended from single-behavior recommendation to
multi-behavior recommendation. User-item interactions
can be largely divided into multiple triples, (𝑢, 𝑏, 𝑖) for
example, (𝑢, 𝑏𝑢𝑦, 𝑖), (𝑢, 𝑣 𝑖𝑒𝑤, 𝑗), etc. As to the item-meta
data, we can also define (𝑖, 𝑟 , 𝑒) where 𝑟 ∈ ℛ is the rela-
tion and 𝑒 ∈ ℰ is an entity (item feature), for example,
(𝑖, 𝑏𝑒𝑙𝑜𝑛𝑔𝑇 𝑜, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑒). To this end, the CKG is defined
as {(ℎ, 𝑟 , 𝑡)|ℎ, 𝑡 ∈ 𝑈 ⋃ 𝐼 ⋃ℰ, 𝑟 ∈ 𝐵⋃ℛ} The translation
principle which optimizes KG by projecting relations
and entities into a common semantic space, [26] is given
by:𝑊𝑟𝑒ℎ + e𝑟 ≈ 𝑊𝑟𝑒𝑡, where e𝑟ℎ and 𝑊𝑟𝑒𝑡 are the represen-
tation of the head and tail nodes in relation 𝑟 space. The
scoring function 𝑔 is thus given by

𝑔(ℎ, 𝑟 , 𝑡) = ||𝑊𝑟𝑒ℎ + 𝑒𝑟 − 𝑊𝑟𝑒𝑡|| (12)

We optimize a separate BPR criterion powered KG scoring
objective:

ℒ𝐾𝐺 = ∑− log 𝜎(𝑔(ℎ, 𝑟 , 𝑡′) − 𝑔(ℎ, 𝑟 , 𝑡)) (13)

Combine Equation (8):

ℒ ′ = ℒ +ℒ𝐾𝐺



Algorithm 1 Multi-behavior sub-graph HBPR sampling

INPUT: kernel users set 𝑈 𝑘 ⊂ 𝑈
OUTPUT: sub-graph 𝒢 𝑆 = {(𝑢, 𝑏𝑢𝑖, 𝑖)|𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 },
training set 𝑇 𝑆 = {(𝑢, 𝑏, 𝑖, 𝑗)}

1: for all 𝑏 ∈ ℬ do
2: construct single-behavior graph 𝒢𝑏
3: construct kernel items set 𝐼 𝑘𝑏 from one-hop neigh-

bors of 𝑈 𝑘

4: sampling and obtain single-behavior sub-graph
𝒢 𝑆
𝑏

5: end for
6: sub-graph 𝒢 𝑆 ← {(𝑢, 𝑏𝑢𝑖, 𝑖)|𝑢 ∈ ⋃𝑏 𝒢

𝑆
𝑏 , 𝑖 ∈ ⋃𝑏 𝒢

𝑆
𝑏 }

7: sub-graph kernel 𝒢 𝑘 ← {(𝑢, 𝑏𝑢𝑖, 𝑖)|𝑢 ∈ 𝑈 𝑘, 𝑖 ∈ 𝑖 ∈
⋃𝑏 𝐼

𝑘
𝑏 }

8: Empty dataset 𝑇 𝑆 ← {}
9: for all 𝑢 ∈ 𝑈 𝑘 do

10: for all 𝑏 ∈ 𝐵 do
11: 𝐼+𝑢,𝑏 ← {𝑖|(𝑢, 𝑏, 𝑖) ∈ 𝒢 𝑘}
12: 𝐼−𝑢,𝑏 ← {𝑖 ∈ 𝒢 𝑆|𝑖 ∈ 𝐼 \𝐼+𝑢,𝑏}
13: 𝐼 𝑐,−𝑢,𝑏 ← {𝑖 ∈ 𝐼−𝑢,𝑏|𝑖 ∉ 𝐼−𝑢,𝑏′ , ∀𝑏

′ ∈ 𝑏+}
14: for all 𝑖 ∈ 𝐼+𝑢,𝑏 do
15: 𝑐𝑜𝑢𝑛𝑡 ← 0
16: repeat
17: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
18: sampling one negative item 𝑗 from 𝐼 𝑐,−𝑢,𝑏
19: add (𝑢, 𝑏, 𝑖, 𝑗) to 𝑇 𝑆
20: until 𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑏
21: end for
22: end for
23: end for

5. Experiment
In this section, we experimentally investigate the per-
formance of the proposed framework on two real world
multi-behavior datasets. Specifically, we aim to answer
the following research questions:

(RQ1): How do our proposed models: HMGN-intra and
HMGN-inter perform compared to the SOTA baselines
[12, 13] in terms of target-behavior prediction?

(RQ2): How does the proposed hierarchical multi-task
learning perform compared to single-task learning in
terms of target-behavior prediction? And how does it
perform compared to other multi-task learning in terms
of multi-behavior predictions?

(RQ3): How do our models perform when trained on
sampled sub-graph vs non-sampling full graph?

(RQ4): How would different gadgets (temporal encoding,
knowledge-graph) contribute to the performance?

Table 1
Dataset statistic

datasets # user # item # interactions # categories period
Taobao 48381 39369 2018818 2511 11-25-2017 ∼ 12-03-2017

RetailRocket 14713 29286 207125 232 05-03-2015 ∼ 09-15-2015

5.1. Datasets
We use two publicly available multi-behavior e-
commerce datasets: 𝑇𝑎𝑜𝑏𝑎𝑜1 (with view, add-to-cart, buy
, favor four type behaviors) and 𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡2 (with view,
add-to-cart, buy three type behaviors). Works like [12]
experiment with popular datasets like𝑀𝑜𝑣𝑖𝑒𝑙𝑒𝑛𝑠 and 𝑌 𝑒𝑙𝑝
by partitioning the user-item rating into different tiers to
define target (like) and auxiliary behavior (dislike, neu-
tral). However, in practical circumstances, a user cannot
exhibit these behaviors simultaneously. Therefore, we
refrain from using them for our experiments.

5.1.1. Dataset Processing

Although the leave-one-out split strategy is widely
adopted in academic research works [19, 12, 11, 13], this
is impractical in a real-world e-commerce scenario [27].
To promote a rigorous and practical evaluation [28], we
take the temporal split approach [27]. Specifically, for
𝑇𝑎𝑜𝑏𝑎𝑜 dataset, data from Nov-25-2017 to Dec-01-2017
is treated as training set, data in Dec-02-2017 is the val-
idation set and Dec-03-2017 is the test set. Similarly in
the 𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡 dataset, we split data according to the
following timelines: May-03-2015 to Aug-15-2015 as a
training set, Aug-16-2015 to Sep-01-2015 as the valida-
tion set and Sep-01-2015 to Sep-15-2015 as a test set. For
reproducibility, we would share the details of the data
processing as well as the models in the code.

5.1.2. Dataset Statistics

We present the processed dataset statistic in Table 1

5.2. Experimental Settings
5.2.1. Evaluation Metrics

Same as [4], we take commonly used 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and
𝑁𝐷𝐶𝐺@𝐾 (𝐾 = 10, 50, 100) as our metrics, specifically
for a individual user 𝑢:

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾(𝑢) =

∑
𝑖∈𝐼 𝑡𝑒𝑠𝑡𝑢

𝛿(𝑅(𝑖) ≤ 𝐾)

𝑚𝑖𝑛(𝐾, |𝐼 𝑡𝑒𝑠𝑡𝑢 |)

𝐷𝐶𝐺@𝐾(𝑢) = ∑
𝑖∈𝐼 𝑡𝑒𝑠𝑡𝑢

𝛿(𝑅(𝑖) ≤ 𝐾)
log(𝑅(𝑖) + 1)

(14)

1https://tianchi.aliyun.com/dataset/649
2https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset

https://tianchi.aliyun.com/dataset/649
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset


Table 2
Performance of the HMGN models w.r.t baselines on Taobao dataset. Mean results are present by repeating 5 times.

Model NDCG@10 NDCG@50 NDCG@100 RECALL@10 RECALL@50 RECALL@100

Single-Behavior
itemKNN 0.0052 0.0074 0.0087 0.0087 0.0178 0.0249

BPR 0.0028 0.0049 0.0060 0.0049 0.0134 0.0195
LightGCN 0.0065 0.0103 0.0123 0.0116 0.0269 0.0376

Multi-Behavior

LightGCN-M 0.0079 0.0150 0.0188 0.0139 0.0424 0.0626
KHGT 0.0022 0.0046 0.0063 0.0040 0.0144 0.0243
KGAT 0.0093 0.0162 0.0209 0.0163 0.0444 0.0700
GHCF 0.0170 0.0256 0.0304 0.0271 0.0621 0.0885

Proposed Model
HMGN-inter 0.0156 0.0254 0.0303 0.025 0.0649 0.0917
HMGN-intra 0.0354 0.0453 0.0499 0.0474 0.0874 0.1124

Table 3
Performance of the HMGN models w.r.t baselines on RetailRocket dataset. Mean results are present by repeating 5 times.

Model NDCG@10 NDCG@50 NDCG@100 RECALL@10 RECALL@50 RECALL@100

Single-Behavior
itemKNN 0.0012 0.0017 0.0027 0.0005 0.0057 0.0111

BPR 0.0078 0.0072 0.0094 0.0163 0.0160 0.0289
LightGCN 0.0103 0.0090 0.0088 0.0144 0.0132 0.0131

Multi-Behavior

LightGCN-M 0.0559 0.0660 0.0681 0.0844 0.1217 0.1295
KHGT 0.0037 0.0079 0.0104 0.0111 0.0284 0.0426
KGAT 0.0645 0.0749 0.0794 0.0743 0.1162 0.1407
GHCF 0.0100 0.0135 0.0162 0.0144 0.0341 0.0468

Proposed Model
HMGN-inter 0.0710 0.0805 0.0857 0.0909 0.1267 0.1553
HMGN-intra 0.0957 0.1044 0.1070 0.1070 0.1398 0.1517

and 𝑁𝐷𝐶𝐺@𝐾 is the normalization of 𝐷𝐶𝐺@𝐾. Here
𝛿 is an indicator function and 𝑅(𝑖) is the rank of item
𝑖 [29, 30, 31, 32]. 𝐼 𝑡𝑒𝑠𝑡𝑢 is the set of positive items for
user 𝑢 in test set. It is worth noting that in some spe-
cial cases when |𝐼 𝑡𝑒𝑠𝑡𝑢 | > 𝑚𝑎𝑥(𝐾1, 𝐾2) and 𝐾1 ≥ 𝐾2.,
𝑅𝑒𝑐𝑎𝑙𝑙@𝐾1 ≤ 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾2 could happen. This is because
that numerator wouldn’t change much (from 𝐾1 to 𝐾2),
while the denominator could dominate the value.

5.2.2. Baselines

We compare the proposed model with several influential
recommendation models including both single-behavior
and multi-behavior ones.
Single-behavior Models:

• itemKNN [33] A classical and robust neighborhood
method.

• BPR [7] is one of the most popular methods in rec-
ommendation which learns to optimize pair-wise
objectives.

• LightGCN [19] is a graph-based model which sim-
plifies the framework of GCN for recommenda-
tion by removing feature transformation and non-
linear activation.

Multi-behavior Models:

• LightGCN-M We extend LightGCN for multi-task
optimization by integrating multi-behaviors dur-
ing the modeling stage.

• KHGT [12] is a SOTA model that targets on multi-
behavior recommendation task enhanced with
knowledge and temporal information.

• KGAT [11] attention-based graph neural network
that incorporates the item meta-data. Here, we
extend and optimize it with multi-task learning.

• GHCF [13] a SOTA model particularly for multi-
behavior collaborative filtering without sampling
any negative items by optimizing a mean square
error (MSE) loss.

5.3. Performance Comparison (RQ1)
Tables 2 and 3 show the performance of all models on
𝑇𝑎𝑜𝑏𝑎𝑜 dataset and 𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡 dataset respectively. We
highlighted the best performance in each column. Here
are some main observations:

• Our proposed model HMGN-intra can outper-
form all baselines significantly and consistently.
HMGN-intra improves performance by 35% (Re-
tailRocket) and by 64% (Taobao) as compared
to the best baseline in terms of 𝑁𝐷𝐶𝐺@100.
By leveraging the attention mechanism, HMGN-
intra is able to capture the multi-behavior infor-
mation that helps target behavior prediction.

• HMGN-intra is generally better than HMGN-inter,
indicating that behavior-specific learning is more



Figure 4: Single-task learning 𝑣𝑠 multi-task learning.

effective than cross-behavior learning for multi-
behavior recommendations. In the HMGN-intra
model, all information propagates first in the iso-
lated single-behavior graph and then gathers to-
gether. Considering the multi-task objectives,
these would better help explain and contribute to
each individual behavior prediction, leading to a
superior performance.

• most all the multi-behavior models exhibit better
performance compared to single-behavior ones,
this emphasizes the importance of multi-behavior
utilization.

5.4. HBPR Multi-task Optimization (Q2)
We empirically testify the HBPR based multi-task opti-
mization framework from two perspectives:
1. Speciality. Comparing the performance of Light-
GCN with its counterpart LightGCN-M, and base model
(HMGN-intra optimized by HBPR) with its counterpart
𝑤𝑜.𝑚𝑢𝑙𝑡𝑖 − 𝑡𝑎𝑠𝑘 in Figure 4, we would see that the multi-
task optimization is crucial for multi-behavior recom-
mender system. In other words, even if the end goal of
the model is to predict one target behavior, learning to
explicitly optimize auxiliary behaviors in model objective
significantly improves the model metrics.
2. Expressiveness. We also compare our proposed
model with GHCF on the ability to predict other auxiliary
behaviors. Figure 5 indicate our method consistently
outperforms GHCF on all behaviors prediction in terms
of 𝑁𝐷𝐶𝐺 metric.

5.5. Sub-graph Sampling (Q3)
To test the scalability of our graph, we utilized the al-
gorithms that are proposed in Section 4.1. We assign
different sampling size and obtain the performance for
each setting in Table 4. (Since the sub-graph size is depen-
dent on the sampling size, we repeat this experiment 100
times to compute an average sub-graph size.) Note that
for both the datasets, a sub-graph size of around 20𝐾, can
already get pretty good results compared to the full-size

Figure 5: Performance comparison (HMGN-intra 𝑣𝑠 GHCF)
on multi-behavior predictions for 𝑇𝑎𝑜𝑏𝑎𝑜 dataset, measured
by 𝑁𝐷𝐶𝐺@𝐾(𝐾 = 10, 50, 100).

Table 4
Performance of HMGN-intra w.r.t sampled sub-graph size.

Taobao
sub-graph size 20K 25K 30K 40K 88K (entire)
NDCG@100 0.0387 0.0462 0.0475 0.0483 0.0499
Recall@100 0.0918 0.1080 0.1083 0.1109 0.1124

Retail-
Rocket

sub-graph size 11K 14K 19K 24K 44K (entire)
NDCG@100 0.0904 0.0943 0.0948 0.0961 0.1070
Recall@100 0.1494 0.1450 0.1539 0.1508 0.1517

graph. It is also worth noting that sub-graph size need
not grow as the size of the dataset increases. Overall
this effective sub-graph sampling algorithm enables us
to execute the model on a large datasets.

5.6. Study of Graph Enhancement (Q4)
In this section, we investigate how different graph en-
hancing gadgets affect our best performing HMGN-intra
model. From Figure 6, we have two key takeaways:

• In 𝑇𝑎𝑜𝑏𝑎𝑜 dataset (Figure 6(a)), HMGN-intra
with temporal encoding performs worse than
that without temporal information whereas in
𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡 dataset (Figure 6(b)) HMGN-intra
with temporal encoding included gets better per-
formance than that without temporal encoding.
We think this contradictory effect is caused by
the duration of the data (Figure 6(c)). In 𝑇𝑎𝑜𝑏𝑎𝑜,
all data is collected within 9 days which all can
be considered as ”recent” events. In this case, the
fusion of temporal encoding would behave just
like a noise injection that decreases the perfor-
mance. In 𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡, a long period dataset, the
data lasts 3.5 months, which would enable the
temporal encoding to take effect.



Figure 6: Temporal and knowledge effect. Temporal encoding
benefits the HMGN model on the dataset with long term data
(𝑅𝑒𝑡𝑎𝑖𝑙𝑅𝑜𝑐𝑘𝑒𝑡 with 135 days data points).

• Also indicated in Figure 6, the knowledge informa-
tion specifically item metadata here, is particu-
larly beneficial to both two e-commerce datasets.

6. Related Works
Our work builds upon a few recent advancements. We
list related works in this section and compare the resem-
blance and discrepancy between them and ours.

6.1. Multi-behavior Recommender
System

The multi-behavior recommendation is an emerging field
that utilizes user-item multi-behavior interactions to pre-
dict target behavior. [34, 13, 12, 8, 14, 35, 36, 37]. MBGCN
[8] utilizes the multi-behavior information through a
graph convolutional neural network. KHGT [12] is a
SOTA model that incorporates knowledge and tempo-
ral information for the multi-behavior recommendation
task enhancing model performance. GHCF [13] achieves
SOTA results through multi-behavior collaborative filter-
ing. There are also some sequential-based multi-behavior
recommendations. MMCLR [36] learns sequence view
and graph view multi-behavior model. MBHT [15] pro-
poses a sequential recommendation framework that en-
ables the dependencies of both short-term and long-term
multi-behavior information.

6.2. Graph Enrichment and Augmentation
With the ability to learn high-order topological informa-
tion, Graph Neural Network (GNN) [38, 39] has achieved
significant success in Recommender System [19, 40, 41].
Various techniques like optimizing Contrastive Learning
(CL) [42], leveraging metadata or Knowledge Graph (KG)
[11], incorporating temporal information [39], sampling
sub-graph [43] for scalability, are exhibiting advantages

to exploit robust and powerful GNN.We reason such tech-
niques as graph enrichment and augmentation. KGAT
[11] integrates the KG and attention mechanism for sin-
gle behavior recommendations systems where the objec-
tives are consist of with both KG [26] and collaborative
filtering optimization. SGL [44] generates multiple views
of graphs by node and edge drop and applies InfoNCE
[45] onto that. SimGCL [46]

6.3. Resemblance and Discrepancy
In terms of architecture, GNMR [10], KHGT [12]
share the multi-behavior graph attention backbone with
HMGN-intra, while HMGN-intra is lighter with fewer
learning parameters and a simple representation combi-
nation. When handling knowledge information, instead
of allowing information propagation in a hybrid graph
like KHGT and KGAT [11], we only optimize for an inde-
pendent KG objective to enable efficiency. When it comes
to objectives, while the majority of multi-behavior mod-
els only learn to optimize and predict target behaviors
[12, 8], there are fewworks that are similar to this. NMTR
[35] treats all observed behavior as (weighted) positive
and sample negative from non-interacted items as nega-
tive, without any hierarchical relation between behaviors.
Similar to us, [36] defines the behavior priority rank but
applies the BPR to two behaviors in adjacent order. GHCF
[13] is the only existing model that establishes predic-
tions for all behaviors. They optimize a mean square
error (MSE) loss without sampling any negative items
while we utilize HBPR considering the hierarchical rela-
tions between behaviors. Besides, GHCF is a GCN-based
model, compared to our proposed HMGN model which
is an attention-based GNN, allowing temporal encoding.

7. Conclusion
In this paper, we devised two new graph attention-based
frameworks called HMGN-intra and HMGN-inter for
multi-behavior recommender systems. We discover that
it is crucial for multi-behavior systems to learn via multi-
task objectives, aka, optimizing for all behaviors instead
of target behaviors. To this end, we propose a hierarchi-
cal Bayesian Personalized Ranking optimization criterion.
We enable our model with the ability to capture prefer-
ence generalization as well as behavior specialization and
to predict all types of behaviors. Further, we provide a
unified and comprehensive strategy for multi-behavior
methods. Specifically, we enhance our model with mul-
tiple techniques like temporal encoding and metadata
information. To scale up the model, we also extend the
sub-graph sampling to the multi-behavior scenarios. Ex-
tensive empirical analyses indicate our proposed model
outperforms the baselines significantly.
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