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Abstract
Graph-based approaches have become an effective strategy to model the users’ preferences in recommender systems

accurately; however, despite their excellent recommendation quality, the literature still needs to incorporate impressions

(past recommendations) into existing approaches. By their definition, impressions contain the selection of the most relevant

items for the user; enriching the users’ profiles with those items may lead to higher-quality recommendations. In this

work, we propose and empirically explore the effectiveness of two approaches that include impressions into graph-based

recommenders. Both approaches are simple yet extensible as they do not change the definitions of the recommenders; but

transform their main data structure: the graph’s adjacency matrix. The results of our experiments suggest that our approaches

may improve the recommendation quality of graph-based recommenders that do not use impressions; however, we also find

that beyond-accuracy metrics may become negatively affected.
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1. Introduction
Graph-based recommenders model the relationship be-

tween users and items of a recommender system using

graphs [1]. In this work, we focus graph-based recom-

menders that use bipartite undirected graphs, such as

the ones used by Cooper et al. [2] and Christoffel et al. [3].

This type of graph represents users and items as its nodes,

and the edges indicate a pair-wise relation between the

user and the item. The graph is bipartite between the

user and item nodes, meaning edges only connect a user

node to an item node.

Impressions are a data source that contains the items

shown to the users. In other words, impressions are the

recommendations generated by the recommender. The

community’s awareness and interest in impressions has

increased in recent years. The increased interest is sup-

ported by papers incorporating impressions into existing

recommenders or developing new recommenders that

use impressions. For instance, Aharon et al. [4] incorpo-

rated a latent factor that estimates the preference of users

to repeated impressions with the same item to a tradi-
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tional matrix factorization recommender. Recently, Pérez

Maurera et al. [5, 6] performed a systematic literature

review about impressions in recommender systems. In

their review, they show how previous works have incor-

porated impressions into recommendation approaches.

For instance, the literature incorporates impressions into

a wide range of techniques, some papers [7, 8] include

them to heuristics, while others include them to machine

learning [9, 10], deep learning [11, 12], or reinforcement

learning [13, 14] recommenders.

The literature has yet to include impressions on exist-

ing graph-based approaches or to develop new ones using

impressions. In this work, we address this gap and pro-

pose two methods to incorporate impressions into this

type of recommenders. We propose adding impressions

to the primary data structure used in graph-based recom-

menders: the adjacency matrix. To test the effectiveness

of our approaches, we perform an evaluation study on

three public datasets with impressions and compare the

recommendation quality of two strong graph-based rec-

ommenders when building the adjacency matrix with the

traditional formulation and our approaches.

2. Graph-Based Recommenders
Before defining the main mathematical structures needed

by graph-based recommenders, we present the mathe-

matical notation for this section and the following ones.

𝒰 is the set of all users, and ℐ is the set of all items. We

use the superscript ⊺ to indicate a transpose of a matrix.

At the same time, we use the subscripts 𝑢 and 𝑖 to obtain

the row 𝑢 and column 𝑖 of a matrix, respectively. When
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those subscripts are combined, we obtain the value on

the cell indicated by the 𝑢 row and 𝑖 column.

Graph-based recommenders construct the graph of

user-item relations by first inspecting using the user-

rating matrix 𝑈𝑅𝑀 ∈ R|𝒰|×|ℐ|
. This matrix holds the

interactions users performed with the system, where an

interaction is any action the users performed on an item.

When the recommender system uses explicit interactions,
𝑈𝑅𝑀 holds the ratings the users performed, e.g., num-

bers between 1-5. When the recommender system uses

implicit interactions, 𝑈𝑅𝑀 holds binary indicators that

tell whether the user interacted with an item or not:

𝑈𝑅𝑀𝑢,𝑖 =

{︃
1 if 𝑢 interacted with 𝑖

0 otherwise

(1)

Graph-based recommenders model user-item interac-

tions by building an undirected bipartite graph 𝐺 =
(𝑉,𝐸,𝑋,𝑊 ), where 𝑉 is the set of nodes, 𝐸 is the set

of edges, 𝑋 are the attributes of nodes, and 𝑊 are the

attributes of the edges. For graph-based recommenders,

nodes are users and items, and the edges are the interac-

tions (either explicit or not) between a user and an item.

The content of the 𝑈𝑅𝑀 gives the weight of the edges.

As the graph is bipartite, the edges only connect user

nodes to item nodes, i.e., no edge connects two item nodes

or two user nodes. This graph is represented mathemati-

cally using an adjacency matrix𝐴 ∈ R(|𝒰|+|ℐ|)×(|𝒰|+|ℐ|)

which encodes the information of the graph:

𝐴 =

(︂
0 𝑈𝑅𝑀

𝑈𝑅𝑀⊺ 0

)︂
(2)

3. Adding Impressions to
Graph-based Recommenders

This section presents our two methods to incorporate

impressions into graph-based recommenders. First, the

definition of an impression is the recommendation list

shown to the user by the recommender system. Second,

we define the user-impressions matrix 𝑈𝐼𝑀 ∈ R|𝒰|×|ℐ|

as a matrix that indicates whether a user has been im-

pressed with an item:

𝑈𝐼𝑀𝑢,𝑖 =

{︃
1 if 𝑢 was impressed with 𝑖

0 otherwise

(3)

As the impressions also contain the interacted items,

the contents of the traditional 𝑈𝑅𝑀 are also in 𝑈𝐼𝑀 .

In other words, 𝑈𝐼𝑀 contain interacted and impressed

but non-interacted user-item pairs.

3.1. Users Profiles with Impressions
We propose to use impressions as the users’ profiles to

build the adjacency matrix. Such an approach contrasts

with the traditional formulation that uses the interac-

tions of users, as shown in Equation 2. The reasoning

behind this method is that impressions include additional

information to the users’ profiles, i.e., by definition of

impressions, we can expand the users’ profiles to have

the items the recommender system presented to the user.

Graph-based methods may leverage the additional in-

formation in users’ profiles to produce higher-quality

recommendations.

Mathematically, we construct the adjacency matrix of

the graph using the 𝑈𝐼𝑀 instead of the 𝑈𝑅𝑀 :

𝐴 =

(︂
0 𝑈𝐼𝑀

𝑈𝐼𝑀⊺ 0

)︂
(4)

3.2. Directed Graphs with Impressions
We propose to change the definition of the graph; mainly,

we define it as a directed graph, where the edges go in

two directions. First, when a user interacts with an item,

we create an edge from the user node to the item node.

Second, when a user is impressed with an item, we create

an edge from the item node to the user node. The tradi-

tional characteristics of the graph remain unchanged, i.e.,

only user and item nodes are permitted, and the graph is

bipartite.

As we change the definition of the graph, we also

change the definition of the adjacency matrix 𝐴, which

now reflects the directed edges:

𝐴 =

(︂
0 𝑈𝑅𝑀

𝑈𝐼𝑀⊺ 0

)︂
(5)

4. Experimental Methodology
In our experiments, we follow the same evaluation

methodology as Pérez Maurera et al. [15, 16] as they al-

ready proposed a framework to evaluate recommenders

that use impressions.

Datasets We train and evaluate our recommenders

in two recently published datasets with impressions:

MIND [17] and ContentWise Impressions [18].

Datasets Processing As we construct binary versions

of the 𝑈𝑅𝑀 and 𝑈𝐼𝑀 , we de-duplicate the user’s in-

teractions with the same item by keeping the one with

the latest recorded date and time. As interactions are

paired with impressions, the de-duplication process also

removes the impressions associated with the removed

interactions. Lastly, we remove users with less than three

interactions from the datasets.



Datasets Splits We partition those datasets into three

splits train, validation, and test using a user-wise leave-

last-out strategy: for each user, we sort their interactions

and impressions by their recorded date and time. Then,

we place the last interaction and impression in the test
split, the second last interaction and impression in the

validation split, and the remaining interactions and im-

pressions in the train split.

Recommendation Task For a given user, the recom-

menders are tasked to generate a recommendation list of

𝑁 items containing relevant items to the users. In our

experiments, an item is considered relevant if the user

interacted with such an item in the test split. We evalu-

ate the recommendations using traditional accuracy and

beyond-accuracy metrics. Regarding accuracy metrics,

we evaluate the recommenders using the normalized Dis-

counted Cumulative Gain (nDCG) [19], Precision [19],

and Recall [19]. Regarding beyond-accuracy metrics, we

evaluate the recommenders using the Coverage [20], the

Diversity Gini [20], and the Novelty [20].

Baseline Methods In our experiments, we train two

well-known graph-based recommenders: 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽 .

Those recommenders have shown excellent competi-

tive recommendation quality in previous works [21, 22]

against other recommenders and represent the strongest

graph-based baselines. 𝑃 3
𝛼 was proposed by Cooper et al.

[2] and performs random walks through the adjacency

matrix 𝐴 to model the users’ preference to items in the

catalog. 𝑅𝑃 3
𝛽 was proposed by He et al. [23] and applies

the same concept as 𝑃 3
𝛼; however, with the difference

that the edges of the graph are weighted to account for

the items’ popularity. Despite the simplicity and exten-

sion capabilities of our approaches, we do not evalu-

ate graph-based recommenders using deep learning, e.g.,

LightGCN [23] due to their long training time.

Proposed Methods As presented in Section 3, our

approaches incorporate impressions to graph-based rec-

ommenders by modifying their adjacency matrix. To try

the effectiveness of our methods, we train 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽

using the adjacency matrices defined in Equation 4 and

Equation 5. We denote those approaches with the suffixes

“UP” and “DG”. In total, we perform our experiments with

three variants of both 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽 : one is the traditional

(see Equation 2), one uses our UP approach, and the other

uses our DG approach.

Hyper-parameter Tuning We perform Bayesian op-

timization [24] to search the hyper-parameter space of

the recommenders and select the combination of hyper-

parameters that yield the highest nDCG. Mainly, the op-

timizer trains each recommender 50 times, out of which

the first 16 times it selects random hyper-parameters; in

the remaining cases, the optimizer exploits those hyper-

parameters with the highest likelihood to become the

optimal set of hyper-parameters. When tuning the hyper-

parameters, the recommender is trained using the train
split and is evaluated against the validation split. At the

end of the Bayesian search, the optimizer trains the rec-

ommender on the union of the train and validation splits,

it selects the hyper-parameters with the highest recom-

mendation quality found, and evaluates the recommender

on the test set.

5. Results & Discussion
Table 1 reports the recommendation quality of the recom-

menders evaluated in our study for a recommendation list

with 20 items. Mainly, those results correspond to those

obtained when evaluating the recommender against the

test split and with the best hyper-parameters found in

validation. Due to the number of hyper-parameter cases

(50), the number of datasets (2), and the number of rec-

ommenders (6), the experiments involved the training

and evaluation of 600 models.

5.1. Accuracy
From Table 1, we notice two patterns in the results de-

pendent on the dataset we test against. On the MIND

dataset, our proposed methods are effective and produce

recommenders that achieve a higher recommendation

accuracy when compared to the baseline method, i.e., 𝑃 3
𝛼

and 𝑅𝑃 3
𝛽 benefit from the inclusion of impressions in

the adjacency matrix, either by considering only impres-

sions (denoted as UP, see Equation 4) or by building a

directed graph (denoted as DG, see Equation 5). Over-

all, the UP approach is the one that obtains the high-

est accuracy in five out of the six comparisons; in the

remaining one, the DG approach achieves the highest

nDCG. The results suggest that the UP approach can

model user preferences with finer granularity than the

DG and traditional approaches. Moreover, for the UP

approach, the relative improvements in accuracy on this

dataset are higher when training a 𝑃 3
𝛼 recommender than

a 𝑅𝑃 3
𝛽 recommender. The opposite occurs for the DG

approach, where pairing it with a 𝑅𝑃 3
𝛽 recommender

yields a higher relative improvement than pairing it with

a 𝑃 3
𝛼 recommender. Lastly, for 𝑃 3

𝛼 recommender, we see

minimum relative improvements in the accuracy of 50%.

In contrast, for the 𝑅𝑃 3
𝛽 recommender, we see minimum

relative improvements in the accuracy of 100%.

On the ContentWise Impressions dataset, the results

are not favorable; indeed, none of our proposed meth-

ods achieve a higher recommendation accuracy when

compared to the baseline method, i.e., 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽 ob-



Table 1
Top-20 accuracy and beyond-accuracy metrics of graph-based recommenders when evaluated on the MIND and ContentWise

Impressions datasets. The recommender without suffix (i.e., 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽 ) use the adjacency matrix shown in Equation 2. The

suffix “-UP” indicates the recommender uses our proposed adjacency matrix shown in Equation 4. The suffix “-DG” indicates

the recommender uses our proposed adjacency matrix shown in Equation 5. For each metric, we indicate in boldface the

methods using impressions with higher accuracy than the recommender without impressions.

Dataset Method nDCG Precision Recall Coverage Diversity Gini Novelty

MIND

𝑃 3
𝛼 0.0249 0.0027 0.0533 0.4288 0.0515 0.0039

𝑃 3
𝛼-UP 0.0564 0.0065 0.1292 0.0821 0.0071 0.0040

𝑃 3
𝛼-DG 0.0423 0.0041 0.0821 0.1129 0.0063 0.0034

𝑅𝑃 3
𝛽 0.0276 0.0030 0.0597 0.5904 0.0670 0.0039

𝑅𝑃 3
𝛽 -UP 0.0561 0.0064 0.1285 0.1004 0.0071 0.0040

𝑅𝑃 3
𝛽 -DG 0.0594 0.0063 0.1264 0.0698 0.0048 0.0037

ContentWise

Impressions

𝑃 3
𝛼 0.0948 0.0104 0.2077 0.2718 0.0255 0.0073

𝑃 3
𝛼-UP 0.0491 0.0057 0.1145 0.1207 0.0112 0.0070

𝑃 3
𝛼-DG 0.0685 0.0079 0.1578 0.0999 0.0061 0.0064

𝑅𝑃 3
𝛽 0.0976 0.0107 0.2145 0.4122 0.0247 0.0069

𝑅𝑃 3
𝛽 -UP 0.0492 0.0057 0.1144 0.1673 0.0182 0.0073

𝑅𝑃 3
𝛽 -DG 0.0720 0.0082 0.1636 0.1236 0.0090 0.0067

tain the highest nDCG, Precision, and Recall when

the adjacency matrix is built using interactions alone

(see Equation 2). Contrary to the results on the other

dataset, the recommendation quality between the DG

and UP approaches is interchanged, i.e., on this dataset,

the DG approach obtains higher accuracy than the UP ap-

proach. Furthermore, both approaches have negative rel-

ative improvements in recommendation quality; specifi-

cally, between −20% and −50% less accuracy than the

traditional recommender.

5.2. Beyond-Accuracy
When inspecting the beyond-accuracy metrics, we notice

that our approaches generally yield lower values on all

datasets and both 𝑃 3
𝛼 and 𝑅𝑃 3

𝛽 recommenders. Notably,

the coverage and the diversity Gini metrics are the most

affected, with negative relative improvements ranging

from −55% to −95%.

When inspecting the Coverage metric, the results

indicate that although our approaches yield higher ac-

curacy, they recommend fewer unique items from the

catalog. At the same time, when inspecting the Diver-
sity Gini metric, the results indicate that our approaches

have less diversity. Some exceptions to the behavior on

the previous metrics occur when inspecting the Novelty
metric; particularly, the metric measure the ability of

recommenders to recommend unpopular items. In three

cases, the novelty of the UP approach was higher than

the DG and the traditional approaches; despite that result,

the relative improvement ranges from 1% to 5.5%.

5.3. Future Works
This work proposes two approaches to incorporate im-

pressions into existing graph-based recommenders. We

empirically validate the effectiveness of our approaches

by conducting experiments on two datasets with impres-

sions. These experiments show positive and negative

outcomes: our approaches consistently obtain more accu-

rate recommendations on one dataset; however, it comes

with less diverse recommendations. Future works may

analyze this effect and understand whether such results

are due to the recommendation domain or characteristics

of the datasets.

Our approaches do not currently model the nuances

of users and their preference toward impressions. No-

tably, we assign the same importance to impressions and

interactions on the definition of the adjacency matrix

of our approaches (see Section 3). This is more evident

in the DG approach, as we construct a directed graph

where each edge is 0 or 1. A future direction is to tune

the importance of impressions on the edges of the graph

when constructing the adjacency matrix; this would be

similar to the ideas behind the 𝑅𝑃 3
𝛽 recommender.

Another direction to pursue is to explore our ap-

proaches on other graph-based recommenders, par-

ticularly those that use deep learning and message-

passing [25, 26] to learn users’ preferences, e.g.,

NGCF [27] and LightGCN [23].
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