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Abstract

On social networks, algorithmic personalization drives users into filter bubbles where they rarely see content that deviates from their

interests. We present a model for content curation and personalization that avoids filter bubbles, along with algorithmic guarantees and

nearly matching lower bounds. In our model, the platform interacts with 𝑛 users over 𝑇 timesteps, choosing content for each user from

𝑘 categories. The platform receives stochastic rewards as in a multi-arm bandit. To avoid filter bubbles, we draw on the intuition that if

some users are shown some category of content, then all users should see at least a small amount of that content. We first analyze a

naive formalization of this intuition and show it has unintended consequences: it leads to “tyranny of the majority” with the burden of

diversification borne disproportionately by those with minority interests. This leads us to our model which distributes this burden more

equitably. We require that the probability any user is shown a particular type of content is at least 𝛾 times the average probability all

users are shown that type of content. Full personalization corresponds to 𝛾 = 0 and complete homogenization corresponds to 𝛾 = 1;

hence, 𝛾 encodes a hard cap on the level of personalization. We also analyze additional formulations where the platform can exceed its

cap but pays a penalty proportional to its constraint violation. We provide algorithmic guarantees for optimizing recommendations

subject to these constraints. These include nearly matching upper and lower bounds for the entire range of 𝛾 ∈ [0, 1] showing that the

cumulative reward of a multi-agent variant of the Upper-Confidence-Bound algorithm is nearly optimal. Using real-world preference

data, we empirically verify that under our model, users share the burden of diversification and experience only minor utility loss when

recommended more diversified content.
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1. Introduction
Over the past decade, large internet platforms have amassed

an unprecedented level of social and political power. Research

has shown that the feedback loops generated by algorith-

mic recommendations increase polarization [1, 2, 3]. Echo

chambers created by algorithmic recommendations on these

platforms can have a wide range of adverse effects, such as

amplifying and creating glass ceilings for minorities [4], as

well as limiting exposure and job recommendations [5]. They

also lead to disinformation and propaganda being dispropor-

tionately spread to minoritized groups [6].

In this paper, we propose an approach to content recom-

mendation that simultaneously preserves the positive aspects

of personalization while avoiding the pitfalls of filter bubbles.

We do so by introducing a model that ensures that if some

users are served a particular category of content, then all

users will see at least a small amount of that content. For

example, if a network includes individuals across a political

spectrum, then every user will be exposed to at least a small

amount of news from opposing perspectives. This allows a

platform to present diverse content without forcing content

on its users that no one is interested in. This approach builds

upon seminal work by Celis et al. [7] who initiated the study

of algorithmic approaches to reducing polarization. How-

ever, our approach to avoiding filter bubbles is different and

our analysis techniques diverge significantly, as detailed in

Section 1.2.

We model a platform recommending content to users with

a standard multi-armed bandit formulation. There are 𝑘 cate-

gories of content—such as fashion, sports, left-learning polit-
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ical content, right-leaning political content, and so on—and

𝑛 users. For each user and content category, the platform

receives a stochastic reward from an unknown distribution

for showing the user content from that category, measured,

for example, in terms of engagement or ad revenue. The plat-

form interacts with the 𝑛 users over 𝑇 timesteps, at each

timestep choosing a distribution over content categories for

each user. The platform’s goal is to maximize its cumulative

reward. Standard bandit algorithms would eventually learn

for each user the category with maximal expected reward and

only show them content from that category, at which point

the user’s content recommendations would be caught in a

filter bubble.

1.1. Our contributions
We propose a flexible approach to disincentivizing filter bub-

bles that adapts to the interests of the individuals on the net-

work. We summarize our contributions along the following

two axes.

1.1.1. Modeling contributions

We first analyze an approach that requires that the distribution

of content shown to any one user is not far from the distribu-

tion shown to the population, so users cannot be siloed into

disjoint filter bubbles. However, we show that the optimal rec-

ommendations exacerbate tyranny of the majority: the burden

of diversification is borne by groups with minority interests

(as often happens with naive approaches to diversification).

A majority group will exclusively see content that they most

enjoy while recommendations for minority users become far

less relevant.

An equitable approach to preventing filter bubbles.
The intuition behind our revised approach is that in order

to avoid filter bubbles and tyranny of the majority, (1) users

should primarily see content that they are most interested in

(thus avoiding tyranny of the majority), and (2) if some users
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are shown a particular type of content, then all users should

see at least a small amount of that content (thus avoiding filter

bubbles). When both requirements are satisfied, users with

majority interests will be exposed to content that interests

minority groups and vice versa.

Formally, for each user, we impose the following constraint:

we require that the probability she is shown content from

a particular category must be at least 𝛾 times the average

probability the entire population is shown content from that

category, where 𝛾 ∈ [0, 1] is a tunable parameter. We refer

to this model as Formulation 1. Setting 𝛾 = 0 corresponds

to complete personalization and setting 𝛾 = 1 requires that

everyone see the same distribution of content. Moreover, if

no one on the network is interested in some type of content,

there is no requirement that users be shown that content.

When 𝛾 ≤ 1
2

, we show that conditions (1) and (2) are met

and thus the burden of diversification is borne more equally

among all users. We also provide a second formulation, called

Formulation 2, where instead of imposing hard constraints,

the platform is penalized based on the the extent to which it

violates the 𝛾 constraint.

Taxation without knowledge of the true content dis-
tribution. The penalization described above depends on

the true, underlying probabilities that the platform assigns to

different types of content at each timestep. To augment the

flexibility of our approach, we also analyze a model where

an auditor only has access to a dataset describing the types

of content that users were actually shown, as opposed to a

description of the true distributions. In this model, the plat-

form is penalized at the end of the 𝑇 timesteps based on the

extent to which the empirical distribution over content shown

to each user violates the 𝛾 constraint described above. We

refer to this model as Formulation 3.

1.1.2. Technical contributions

Since the platform does not know the reward distributions

(corresponding to the users’ preferences for the different

types of content), it must learn a high-reward policy over the

course of the 𝑇 rounds. We analyze the regret of the Upper-

Confidence-Bound (UCB) algorithm. The key challenges we

face are providing nearly-matching lower bounds—which de-

pend on structure exhibited by the specific constraints that

we impose—and bounding the regret under Formulation 3,

under which the optimal policy may be history-dependent.

Regret upper bounds. Under Formulation 1, we measure

regret as the difference between (1) the cumulative reward

of the optimal distribution over content that satisfies our 𝛾
constraint and (2) the cumulative reward of the platform’s

learning algorithm. Crucially, the optimal distribution (1)

is defined by the users’ reward distributions, but these are

unknown to the learning algorithm. When 𝛾 = 1, a variant

of the UCB algorithm achieves a regret of �̃�(
√
𝑛𝑘𝑇 ) and for

𝛾 < 1, another variant achieves a regret of �̃�(𝑛
√
𝑘𝑇 ). Under

Formulations 2 and 3, we measure regret with respect to the

optimal policy that maximizes the cumulative reward minus

the penalty. Our regret bounds are �̃�(𝑛
√
𝑘𝑇 ).

Key challenge. Under Formulation 3, the optimal pol-

icy may be history-dependent: it may dynamically adjust its

recommendations based on the empirical distribution over

content thus far, and thus the magnitude of the final penalty.

This is in contrast to Formulations 1 and 2, where the optimal

policy is a fixed distribution over content.

Regret lower bounds. We provide a nearly-matching

lower bound on regret under Formulation 1. As in the upper

bound, our lower bound transitions from an Ω(𝑛) dependence

for small 𝛾 to an Ω(
√
𝑛) dependence for large 𝛾. For 𝑘 = 2

arms, we prove a lower bound of Ω(𝑛
√
𝑇 ) for 𝛾 < 1

2
. Mean-

while, for all 𝑘 ≥ 2 and all 𝛾 ∈ [0, 1], we prove a lower bound

of Ω(
√
𝑛𝑘𝑇 ). This means that no algorithm has regret better

than Ω(𝑛
√
𝑇 ) for 𝛾 < 1

2
or Ω(

√
𝑛𝑘𝑇 ) for any 𝛾 ∈ [0, 1].

This transition from a Θ(𝑛) to Θ(
√
𝑛) dependence elu-

cidates a tension between the reward of the optimal policy

and the ability of the learning algorithm to compete with

the optimal policy. As 𝛾 grows, the set of distributions that

the platform can show the user while still satisfying the 𝛾
constraint shrinks. Thus, the optimal policy comes from an

increasingly restricted set so the regret benchmark is smaller.

Likewise, as 𝛾 grows, the learner has to use an increasingly

restricted set of policies to compete with the optimal policy.

Since regret shrinks as 𝛾 grows, we show that the optimal

policy’s reward diminishes at a faster rate than the learner’s

handicap in competing with the optimal policy.

Key challenge. Lower bounds for bandit problems typi-

cally follow by identifying two worst-case problem instances

that are similar enough that any algorithm would not be

able to statistically distinguish between them, but are distinct

enough to ensure that even if an algorithm has low regret on

one instance, it will have high regret on the other. Simply cre-

ating 𝑛 copies (one for each user) of the worst-case problem

instances used in standard bandit lower bounds would lead

to a large statistical difference between problem instances,

thus precluding an Ω(𝑛) dependence. Our lower bound con-

struction therefore takes advantage of structure specific to

our model.

Experiments. We analyze the optimal policies under the

formulations from Section 1.1.1 using real user preference

data [8]. We empirically verify that when users’ preferences

are heterogeneous, subgroups share the burden of diversifica-

tion. We also show that users experience only a minor loss in

utility when recommended diversified content.

1.2. Related work
There has been significant interest in understanding the me-

chanics of how recommender systems affect large-scale opin-

ion dynamics, and if and when they lead to polarization [e.g.,

9, 10, 11]. Most of the analysis has focused on how recom-

mender systems impact network structure [12] and how this

affects the spread of information and the opinions of mem-

bers on the network. Recently there have been growing calls

to algorithmically increase “exposure diversity” and combat

filter bubbles [13, 14, 15]. Castells et al. [16] discuss method-

ologies and metrics to assess recommendation diversity, and

Halpern et al. [17] analyze the trade-off between diversity and

engagement in recommendation algorithms.

The most related research to ours is seminal work by Celis

et al. [7], who initiated the study of algorithmic approaches

to reducing polarization. There are a variety of differences

between our work and theirs, highlighted below.

• Modeling approach. Celis et al. [7] suggest that a regula-

tor should place pre-determined, fixed upper and lower

bounds on the probability that each arm is played so

that no user can exclusively see one type of content.

Choosing bounds for each type of content, however,

may be challenging. (For example, how should bounds

2
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on fashion content and major world events compare?)

Moreover, if no user is interested in a type of content,

it may not make sense to force all users to see it. The

regulator would have to make these differential de-

cisions, which would be a divisive and controversial

task. These concerns are largely ameliorated under

our model.

• Stronger assumption on the regulator’s knowledge. Celis

et al. [7] assume the regulator can control the exact

probabilities that the platform shows different types

of content to users. In contrast, in our Formulation

3, we propose a tax based on the content that the

platform actually showed the user. As we describe in

Section 1.1.2, this introduces technical challenges in

providing a no-regret algorithm for the platform.

• Lower bounds. Our nearly-matching lower bounds help

develop a complete understanding of this problem.

Since the multi-armed bandit problem was proposed [18],

many variants have been studied, such as bandits with bud-

gets [19, 20, 21], bandits with constraints [22, 23, 24, 25], and

bandits with floors on content [26, 27]. Only a few vari-

ants [e.g., 28] study multi-agent settings. However, they usu-

ally still involve a common reward like in the classical multi-

armed bandit problem. There has also been recent work on

fairness in multi-armed bandits [e.g., 28, 29] but none of these

focus on the issues of filter bubbles and polarization in social

networks.

2. Notation and model
We use P𝑑−1 = {𝑥 ∈ [0, 1]𝑑 : ‖𝑥‖1 = 1} to denote the prob-

ability simplex and [𝑘] to denote the set [𝑘] = {1, 2, . . . , 𝑘}.

Problem definition. There are 𝑛 users and 𝑘 categories

of content—for example, fashion, sports, right-leaning news,

left-leaning news, and so on—each modeled as an arm of a

𝑘-armed bandit. An instance of our problem, denoted 𝜈 =
{D𝑖,𝑗 : 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]}, is defined by reward distributions

D𝑖,𝑗 over [0, 1] with density function 𝑓𝑖,𝑗 : [0, 1] → R≥0.

This distribution models the platform’s reward for showing

user 𝑖 content from category 𝑗, measured in terms of engage-

ment or ad revenue, for example. The set of all instances 𝜈 is

denoted E𝑛,𝑘
. The mean of user 𝑖’s reward distribution for

arm 𝑗 is denoted 𝜇𝑖,𝑗 ∈ [0, 1], with 𝜇𝑖 = (𝜇𝑖,1, . . . , 𝜇𝑖,𝑘).
The instance 𝜈 is unknown to the platform.

Interaction between platform and users. This interac-

tion takes place over 𝑇 timesteps. At each timestep 𝑡 ∈ [𝑇 ]:

1. The platform selects an action, which is a distribution

over arms for each user. This distribution corresponds

to a random variable 𝐴𝑡 ∈ [𝑘]𝑛 over arm choices for

each of the 𝑛 users. We use the notation 𝑎𝑡 ∈ [𝑘]𝑛 to

denote the specific set of arms the platform plays on

round 𝑡, so it is a realization of the random variable

𝐴𝑡.

2. Given the set of arms 𝑎𝑡 = (𝑎𝑡,1, . . . , 𝑎𝑡,𝑛) ∈
[𝑘]𝑛, the platform receives a reward for each user.

The reward for user 𝑖 is drawn from the distribu-

tion D𝑖,𝑎𝑡,𝑖 . We use the random variable 𝑋𝑡 =
(𝑋𝑡,1, . . . , 𝑋𝑡,𝑛) ∈ [0, 1]𝑛 to denote the platform’s

reward on round 𝑡. We also use 𝑥𝑡 ∈ [0, 1]𝑛 to denote

a realization of this random variable.

Platform’s learning algorithm. The platform uses a

learning algorithm, or policy, 𝜋 to decide the distribution

over arms at each timestep. On timestep 𝑡 ∈ [𝑇 ], the

(randomized) policy 𝜋 takes as input the history ℎ𝑡−1 =
(𝑎1,𝑥1, . . . ,𝑎𝑡−1,𝑥𝑡−1) ∈ ([𝑘]𝑛 × [0, 1]𝑛)𝑡−1

and returns

the set of arms 𝑎𝑡 ∈ [𝑘]𝑛 that will be played on round 𝑡.
The conditional probability that 𝐴𝑡 = 𝑎𝑡 given the history

𝐴1 = 𝑎1,𝑋1 = 𝑥1, . . . ,𝐴𝑡−1 = 𝑎𝑡−1,𝑋𝑡−1 = 𝑥𝑡−1 is

denoted 𝜋(𝑎𝑡 | 𝑎1,𝑥1, . . . ,𝑎𝑡−1,𝑥𝑡−1), or more compactly

as 𝜋(𝑎𝑡 | ℎ𝑡−1). The notation Π𝑛,𝑘
denotes the set of all

policies 𝜋.

Distribution over outcomes. Since the reward distribu-

tions are independent, the conditional distribution of the re-

ward 𝑋𝑡 ∈ [0, 1]𝑛 given 𝐴𝑡 = 𝑎𝑡 = (𝑎𝑡,1, . . . , 𝑎𝑡,𝑛) ∈ [𝑘]𝑛

has density function

𝑓𝑎𝑡 (𝑥𝑡) =

𝑛∏︁
𝑖=1

𝑓𝑖,𝑎𝑡,𝑖 (𝑥𝑡,𝑖) .

The interaction between the policy 𝜋 and the instance 𝜈 in-

duces a distribution P𝜋𝜈 over outcomes with density function

𝑓𝜋𝜈 (𝑎1,𝑥1, . . . ,𝑎𝑇 ,𝑥𝑇 )

=

𝑇∏︁
𝑡=1

𝜋(𝑎𝑡 | 𝑎1,𝑥1, . . . ,𝑎𝑡−1,𝑥𝑡−1)𝑓𝑎𝑡(𝑥𝑡). (1)

Platform’s goal. The platform’s overall goal is to choose a

policy 𝜋 that optimizes its total reward

E
𝜋𝜈

[︃
𝑛∑︁

𝑖=1

𝑇∑︁
𝑡=1

𝑋𝑖,𝑡

]︃
. (2)

For each user 𝑖 ∈ [𝑛], the optimal policy would choose the arm

𝑗𝑖 that maximizes expected reward: 𝑗𝑖 = argmax𝑗∈[𝑘] {𝜇𝑖,𝑗}.

Classic bandit algorithms will eventually converge to this

policy. However, repeatedly showing user 𝑖 content from

category 𝑗𝑖 traps the user in a filter bubble. In the next sections,

we limit the platform’s ability to form filter bubbles.

3. A first attempt to disincentivize
filter bubbles

We begin with a naive first attempt at disincentivizing filter

bubbles and show that it has the harsh unintended conse-

quence of exacerbating “tyranny of the majority”: the burden

of diversification is borne by those with minority interests.

Interestingly, this issue mirrors real-world attempts at diver-

sification where the labor associated with diversification is

put disproportionately on members of the underrepresented

groups.

To motivate this first attempt, we observe that in a net-

work with severe filter bubbles, members are partitioned into

groups which are exposed to disparate types of content. Thus,

our first attempt at avoiding filter bubbles ensures that the

content recommendations are not too “spread out.” We for-

malize this intuition by requiring that each user’s distribution

over content is not too far from the average distribution over

content shown to the entire population.

More formally, building on the notation from Section 2, let

𝜋𝑖(𝑗 | ℎ𝑡−1) denote the marginal probability that the plat-

form shows user 𝑖 arm 𝑗 on timestep 𝑡 given the history ℎ𝑡−1,

with 𝜋𝑖(ℎ𝑡−1) = (𝜋𝑖(1 | ℎ𝑡−1), . . . , 𝜋𝑖(𝑘 | ℎ𝑡−1)). Next,

3
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let �̄�(ℎ𝑡−1) =
1
𝑛

∑︀𝑛
𝑖=1 𝜋𝑖(ℎ𝑡−1) denote the average of these

marginal distributions. The 𝑗𝑡ℎ component of �̄�(ℎ𝑡−1), de-

noted �̄�(𝑗 | ℎ𝑡−1), measures the average probability that arm

𝑗 is shown to any user. Under our naive first approach, we

require that the distance between the vectors 𝜋𝑖(ℎ𝑡−1) and

�̄�(ℎ𝑡−1) is small under the ℓ∞-norm:

‖𝜋𝑖(ℎ𝑡−1)− �̄�(ℎ𝑡−1)‖∞
= max

𝑗∈[𝑘]
|𝜋𝑖(𝑗 | ℎ𝑡−1)− �̄�(𝑗 | ℎ𝑡−1)| ≤ ∆ (3)

for some ∆ > 0. (The ℓ∞-norm could be replaced by any

norm, but we use the ℓ∞-norm for this exposition.)

We now show that the optimal policy 𝑝*
1, . . . ,𝑝

*
𝑛 ∈ P𝑘−1

leads to tyranny of the majority, where

𝑝*
1, . . . ,𝑝

*
𝑛

= argmax
𝑝1,...,𝑝𝑛

{︃
𝑛∑︁

𝑖=1

𝜇𝑖 · 𝑝𝑖 :

⃦⃦⃦⃦
⃦𝑝𝑖 −

1

𝑛

𝑛∑︁
𝑖′=1

𝑝𝑖′

⃦⃦⃦⃦
⃦
∞

≤ ∆,∀𝑖

}︃
.

To illustrate the pitfalls of this approach, we analyze a setting

where there are two types of content (e.g., left- and right-

leaning political content) and the users can be partitioned

into disjoint sets where one set only likes content from the

first category (i.e., 𝜇𝑖 = (1, 0)). Meanwhile, the other set

only likes content from the second category (i.e., 𝜇𝑖 = (0, 1)).
Without loss of generality, we assume that the former set—

which we denote as 𝑁—is the majority.

When ∆ ≥ |𝑁|
𝑛

, the constraints are meaningless and al-

low for full personalization: 𝑝*
𝑖 = (1, 0) if 𝑖 ∈ [𝑁 ] and

𝑝*
𝑖 = (0, 1) if 𝑖 ̸∈ [𝑁 ]. Therefore, we analyze the case where

∆ < |𝑁|
𝑛

. We show that under the optimal policy, the ma-

jority group will be able to exclusively see the content that

they enjoy: 𝑝*
𝑖 = (1, 0) if 𝑖 ∈ 𝑁 . Meanwhile, the minor-

ity group’s recommendations take a hit in order to ensure

that the constraints are satisfied. In particular, for all 𝑖 ̸∈ 𝑁 ,

𝑝*
𝑖 =

(︁
1− 𝑛Δ

|𝑁| ,
𝑛Δ
|𝑁|

)︁
. The proof of the following lemma is

in the full version of the paper linked here

Lemma 3.1. Suppose that there are 𝑘 = 2 arms and for some
set 𝑁 ⊆ [𝑛] with |𝑁 | ≥ 𝑛

2
, 𝜇𝑖 = (1, 0) for all 𝑖 ∈ 𝑁 and

𝜇𝑖 = (0, 1) for all 𝑖 ̸∈ 𝑁 . If ∆ < |𝑁|
𝑛

, then 𝑝*
𝑖 = (1, 0) if

𝑖 ∈ 𝑁 and 𝑝*
𝑖 =

(︁
1− 𝑛Δ

|𝑁| ,
𝑛Δ
|𝑁|

)︁
otherwise.

Lemma 3.1 illustrates that under this approach, tyranny of

the majority prevails at the expense of minority interests.

4. Equitable approaches to
disincentivizing filter bubbles

Motivated by Section 3, we propose three different formula-

tions for disincentivizing filter bubbles that avoid tyranny of

the majority. The intuition behind these approaches is built

upon the following two pillars:

1. To avoid tyranny of the majority, users should primar-

ily be recommended content they are most interested

in,

2. But to avoid filter bubbles, that content must contain

a flavor of the content shown to the entire population.

We show that it is possible to achieve both of these ends.

If both conditions are satisfied, then a policy like that of

Lemma 3.1 where the majority group sees no minority con-

tent is not possible. By the first requirement, groups with

minority interests will be recommended content that they are

interested in, which means that by the second requirement,

the majority group’s content recommendations will contain a

small amount of that minority content, and vice versa.

4.1. Formulation 1: Personalization constraint
In our first formulation, we require that for each user 𝑖 ∈ [𝑛],
𝜋𝑖(ℎ𝑡−1) is at least 𝛾�̄�(ℎ𝑡−1) for some 𝛾 ∈ [0, 1]:

𝜋𝑖(ℎ𝑡−1) ≥ 𝛾�̄�(ℎ𝑡−1). (4)

Each user’s recommendations become less personalized as 𝛾
grows.

To illustrate the benefit of this approach over that of Sec-

tion 3, we analyze the same polarized example where there

is a majority group 𝑁 with 𝜇𝑖 = (1, 0) for all 𝑖 ∈ 𝑁 . For

the minority group, 𝜇𝑖 = (0, 1) for all 𝑖 ̸∈ 𝑁. For all 𝛾 ≤ 1
2

,

we show that under the optimal policy, the majority of each

group’s content recommendations match their interests, but

both groups see some content that appeals to the opposing

group. In this case the optimal policy is defined as

𝑝*
1, . . . ,𝑝

*
𝑛

= argmax
𝑝1,...,𝑝𝑛

{︃
𝑛∑︁

𝑖=1

𝜇𝑖 · 𝑝𝑖 : 𝑝𝑖 ≥
𝛾

𝑛

𝑛∑︁
𝑖′=1

𝑝𝑖′ ,∀𝑖 ∈ [𝑛]

}︃
. (5)

The proof of the following lemma is in the full version of the

paper linked here

Lemma 4.1. Suppose that there are 𝑘 = 2 arms and for some
set 𝑁 ⊆ [𝑛], 𝜇𝑖 = (1, 0) for all 𝑖 ∈ 𝑁 and 𝜇𝑖 = (0, 1) for all
𝑖 ̸∈ 𝑁 . For 𝛾 ≤ 1

2
, the optimal policy has the following form:

𝑝*
𝑖 =

⎧⎨⎩
(︁
1− 𝛾(𝑛−|𝑁|)

𝑛
, 𝛾(𝑛−|𝑁|)

𝑛

)︁
if 𝑖 ∈ 𝑁(︁

𝛾|𝑁|
𝑛

, 1− 𝛾|𝑁|
𝑛

)︁
if 𝑖 ̸∈ 𝑁.

Since 𝛾 ≤ 1
2

, this policy ensures that users are mostly rec-

ommended content that they are interested in: 𝜇𝑖 · 𝑝*
𝑖 ≥

1 − 𝛾 ≥ 1
2

for all 𝑖 ∈ [𝑛]. However, they are still shown a

small fraction of content that the other set of the population

is interested in. We note that when 𝑁 is the majority group(︀
|𝑁 | ≥ 𝑛

2

)︀
, the minority group [𝑛] ∖𝑁 still sees more con-

tent that they are not interested in than the majority group

because
𝛾|𝑁|
𝑛

≥ 𝛾(𝑛−|𝑁|)
𝑛

. However, the burden of diversifi-

cation is split far more equally among the two groups than in

Lemma 3.1. The policy mirrors a typical mode of community

forum discussions where members split time between listen-

ing to the opinions of each person in the entire group (for a

𝛾-fraction of the time) and breaking into focus groups about

specific topics (for a (1− 𝛾)-fraction of the time).

In Section 5, we provide upper and lower bounds on the plat-

form’s regret with respect to the optimal policies 𝑝*
1, . . . ,𝑝

*
𝑛

defined in Equation (5). Regret measures the difference be-

tween the total reward of the optimal policy and that of the

platform’s policy 𝜋. In other words, for any instance 𝜈 and

policy 𝜋, the expected regret is defined as

𝑅𝑇,1(𝜋, 𝜈) = 𝑇

𝑛∑︁
𝑖=1

𝑝*
𝑖 · 𝜇𝑖 − E

𝜋𝜈

[︃
𝑛∑︁

𝑖=1

𝑇∑︁
𝑡=1

𝑋𝑖,𝑡

]︃
. (6)

4.2. Formulation 2: Personalization penalty
We analyze a second formulation where there are no con-

straints on the platform’s policy, but the platform is penalized

4
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based on the extent to which Equation (4) is violated. Given a

parameter 𝜂 ≥ 0, this penalty is defined as

𝜂

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

max {𝛾�̄�(𝑗 | ℎ𝑡−1)− 𝜋𝑖(𝑗 | ℎ𝑡−1), 0} .

In other words, the platform’s goal is to maximize its cu-

mulative reward

rew2(𝜋, 𝜈; 𝜂, 𝛾)

= E
𝜋𝜈

[︃
𝑛∑︁

𝑖=1

(︃
𝑇∑︁

𝑡=1

𝑋𝑖,𝑡

− 𝜂

𝑘∑︁
𝑗=1

max

{︃
𝛾�̄�(𝑗 | ℎ𝑡−1)− 𝜋𝑖(𝑗 | ℎ𝑡−1), 0

}︃)︃]︃

=

𝑇∑︁
𝑡=1

E
𝜋𝜈

[︃
𝑛∑︁

𝑖=1

(︃
𝜇𝑖 · 𝜋𝑖(ℎ𝑡−1)

− 𝜂

𝑘∑︁
𝑗=1

max

{︃
𝛾

𝑛

𝑛∑︁
𝑖′=1

𝜋𝑖′(𝑗 | ℎ𝑡−1)− 𝜋𝑖(𝑗 | ℎ𝑡−1), 0

}︃)︃]︃
(7)

The policy that maximizes Equation (7) is history indepen-

dent and can be written as 𝑝* = (𝑝*
1, . . . ,𝑝

*
𝑛) with 𝑝*

𝑖 ∈
P𝑘−1. The expected regret of a policy 𝜋 under this formula-

tion is 𝑅𝑇,2(𝜋, 𝜈) = rew2(𝑝
*, 𝜈; 𝜂, 𝛾)− rew2(𝜋, 𝜈; 𝜂, 𝛾).

4.3. Formulation 3: Personalization penalty
on the empirical distribution

Sections 4.1 and 4.2 describe models in which the platform is

subject to constraints or penalties based on the true distribu-

tion over content that it shows users. However, an auditor may

only have access to the realizations of those distributions—

that is, the set of arms 𝑎𝑡,𝑖 ∈ [𝑘] shown to each user 𝑖 at

timestep 𝑡. Formulation 3 covers a setting in which a regula-

tor penalizes the platform at the end of the 𝑇 timesteps based

on the empirical distribution over content. Specifically, let

�̂�𝑖,𝑗 = 1
𝑇

∑︀𝑇
𝑡=1 1{𝐴𝑡,𝑖=𝑗} be the average number of times

that the platform pulls arm 𝑗 for user 𝑖. At the end of the

𝑇 timesteps, the platform is penalized based on how small

�̂�𝑖,𝑗 is compared to
𝛾
𝑛

∑︀𝑛
𝑖′=1 �̂�𝑖′,𝑗 . In particular, given a nor-

malizing factor 𝜂, we define a penalty that is the analogue of

Equation (7):

𝜂

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

max

{︃
𝛾

𝑛

𝑛∑︁
𝑖′=1

�̂�𝑖′,𝑗 − �̂�𝑖,𝑗 , 0

}︃
.

The platform’s goal is therefore to maximize their expected

total payoff minus this penalty, which is equal to

rew3(𝜋, 𝜈; 𝜂, 𝛾) = E
𝜋𝜈

[︃
𝑛∑︁

𝑖=1

(︃
𝑇∑︁

𝑡=1

𝑋𝑖,𝑡

− 𝜂

𝑘∑︁
𝑗=1

max

{︃
𝛾

𝑛

𝑛∑︁
𝑖′=1

�̂�𝑖′,𝑗 − �̂�𝑖,𝑗 , 0

}︃)︃]︃

=

𝑛∑︁
𝑖=1

(︃
𝑇∑︁

𝑡=1

E
𝜋𝜈

[︃
𝜇𝑖 · 𝜋𝑖(ℎ𝑡−1)

]︃

− 𝜂

𝑘∑︁
𝑗=1

E
𝜋𝜈

[︃
max

{︃
𝛾

𝑛

𝑛∑︁
𝑖′=1

�̂�𝑖′,𝑗 − �̂�𝑖,𝑗 , 0

}︃]︃)︃
. (8)

Let 𝜋*
be the policy that maximizes Equation (8). The regret

of 𝜋 is 𝑅𝑇,3(𝜋, 𝜈) = rew3(𝜋
*, 𝜈; 𝜂, 𝛾)− rew3(𝜋, 𝜈; 𝜂, 𝛾).

A key difference between Equation (7) and Equation (8)

is that in Equation (7), the platform is penalized at every

timestep whereas in Equation (8), the platform is penalized at

the end of the 𝑇 timesteps. We make this distinction because

the empirical distribution over content at a single timestep

would be extremely noisy.

5. Regret analysis
In this section, we discuss algorithms that the platform can use

to minimize regret in the three formulations from Section 4.

We also provide a nearly-matching lower bound on regret for

Formulation 1 in Section 5.1.3.

5.1. Regret analysis for Formulation 1
We begin with lower bounds on regret under Formulation 1.

In Section 5.1.1, we show that a variant of the UCB algorithm

has regret 𝑂(𝑛
√
𝑇𝑘) for 𝛾 < 1 and in Section 5.1.2, we show

that a different variant of UCB has regret𝑂(
√
𝑛𝑘𝑇 ) for 𝛾 = 1.

We then prove in Section 5.1.3 that these bounds are nearly

optimal: for 𝛾 ≤ 1
2

and 𝑘 = 2, no algorithm can achieve

regret better than Ω(𝑛
√
𝑇 ), and for all 𝑘 ≥ 2 and 𝛾 ∈ [0, 1]

(including 𝛾 > 1
2

) our bound is Ω(
√
𝑛𝑘𝑇 ).

The transition from a Θ(𝑛) to a Θ(
√
𝑛) dependence illus-

trates that as 𝛾 grows, the platform is better able to compete

with the optimal policy subject to the 𝛾 constraints. As 𝛾
grows, the platform has a smaller set of distributions that it

can use to compete with the optimal policy while obeying the

𝛾 constraints. However, for the same reason, the cumulative

reward of the optimal policy shrinks as 𝛾 grows. Intuitively,

the transition from aΘ(𝑛) to aΘ(
√
𝑛) dependence as 𝛾 grows

illustrates that the optimal policy’s reward degrades faster

than the platform’s ability to compete with that policy.

5.1.1. Regret upper bound when 𝛾 < 1

We analyze a multi-agent variant of the UCB algorithm, which

we call 𝑛-UCB, and show that it has regret 𝑂(𝑛
√
𝑇𝑘) when

𝛾 < 1. The 𝑛-UCB algorithm essentially runs a copy of

classic UCB for each user, but coordinates amongst these 𝑛
UCB copies to ensure that they satisfy the global constraints.

This requires 𝑛-UCB to play distributions over arms from the

set of distributions (𝑝1, . . . ,𝑝𝑛) that satisfy the constraints:

𝑝𝑖 ≥ 𝛾
𝑛

∑︀𝑛
𝑖′=1 𝑝𝑖′ for all 𝑖 ∈ [𝑛]. This is in contrast to the

classic case where UCB plays a single arm at each timestep.

For completeness, we include a full description of 𝑛-UCB and

the proof of the following theorem in the full version of the

paper linked here

Theorem 5.1. Let 𝜋 be the policy of 𝑛-UCB. Then
𝑅𝑇,1(𝜋, 𝜈) = �̃�(𝑛

√
𝑘𝑇 ).

5.1.2. Regret upper bound when 𝛾 = 1

When 𝛾 = 1, all users must be shown the same distribution

of content. We can therefore reduce our problem to a single-

agent bandit problem with the reward distributions D𝑗 =∑︀𝑛
𝑖=1 D𝑖,𝑗 for all arms 𝑗 ∈ [𝑘]. We adapt the robust-UCB

framework by Bubeck et al. [30] with the median-of-means

estimator [31], as summarized by Algorithm 1. The full proof

of the following theorem is in the full version of the paper

linked here
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Algorithm 1 Robust-UCB (defined by parameter 𝛿)

Require: Failure probability 𝛿 ∈ (0, 1), median-of-means

estimator �̄�(𝑡, 𝛿)

1: Set 𝑁𝑗(0) = 0, �̂�
(0)
𝑗 = 0 ∀𝑗 ∈ [𝑘]

2: for 𝑡 ∈ {1, . . . , 𝑇} do
3: if 𝑡 ∈ {1, . . . , 𝑘} then
4: Set 𝑝(𝑡) = 𝑒𝑡

5: else
6: Set 𝑝(𝑡) = argmax

𝑝∈P𝑘−1

𝑝 · �̂�(𝑡−1)

7: end if
8: Draw an arm 𝑗(𝑡) ∼ 𝑝(𝑡)

9: Receive reward 𝑟(𝑡) ∼ D𝑗(𝑡)

10: Set 𝑁𝑗(𝑡)(𝑡) = 𝑁𝑗(𝑡)(𝑡− 1) + 1 ◁ Increment the

counter for arm 𝑗(𝑡)

11: Set 𝑁𝑗(𝑡) = 𝑁𝑗(𝑡− 1), ∀𝑗 ̸= 𝑗(𝑡) ◁ Do not

increment the other counters

12: Set 𝛽
(𝑡)
𝑗 =

√︁
24𝑛

𝑁𝑗(𝑡)
log 𝑇𝑘

𝛿
, ∀𝑗 ∈ [𝑘] ◁ Define

confidence intervals

13: �̂�
(𝑡)
𝑗 = �̄�𝑗(𝑁𝑗(𝑡), 𝛿) + 𝛽

(𝑡)
𝑗 , ∀𝑗 ∈ [𝑘] ◁ Get mean

rewards estimates

14: end for

Theorem 5.2. Let 𝜋 be the policy of Robust-UCB. Then
𝑅𝑇,1(𝜋, 𝜈) = �̃�(

√
𝑛𝑘𝑇 ).

5.1.3. Regret lower bound

In this section, we provide nearly-matching regret lower

bounds. Our first bound holds when there are 𝑘 = 2 arms,

𝛾 ≤ 1
2

, and 𝑛 is sufficiently large (𝑛 > 100). In this case, we

prove a regret lower bound of Ω(𝑛
√
𝑇 ). Meanwhile, for all

𝑘 ≥ 2 and 𝛾 ∈ [0, 1] (including 𝛾 > 1
2

), we provide a bound

of Ω(
√
𝑛𝑘𝑇 ). We begin with our main result (Theorem 5.3)

and show in Corollary 5.4 that it implies a regret bound of

Ω(𝑛
√
𝑇 ) for 𝛾 ≤ 1

2
and 𝑛 > 100.

Theorem 5.3. For all 𝑇 ≥ 4, the regret is lower bounded as
follows:

inf
𝜋∈Π𝑛,2

sup
𝜈∈E𝑛,2

𝑅𝑇,1(𝜋, 𝜈)

≥ max

{︃√︂
𝑇

8

(︂
𝑛

8𝑒
− 𝛾

(︂
𝑛

8𝑒
+

√︂
𝑛

2𝜋

)︂)︂
,

√
𝑛𝑇

16𝑒

}︃
.

Proof. The proof of this theorem can be found in the full

version of the paper linked here

Corollary 5.4. For all 𝑛 > 100, 𝛾 ≤ 1
2

, and 𝑇 ≥ 4, the regret
is lower bounded as

inf
𝜋∈Π𝑛,2

sup
𝜈∈E𝑛,2

𝑅𝑇,1(𝜋, 𝜈) ≥
𝑛
√
𝑇

900
.

5.2. Regret analysis for Formulation 2
Under Formulation 2, a variation on UCB we call Penalty-UCB

(Algorithm 2) achieves regret �̃�(𝑛
√
𝑘𝑇 ). Penalty-UCB main-

tains estimates �̂�
(𝑡)
𝑖 of each 𝜇𝑖 and selects the distribution

maximizing the estimated reward minus the penalty:

(︁
𝑝
(𝑡)
𝑖

)︁
𝑖∈[𝑛]

=argmax

{︃
𝑛∑︁

𝑖=1

𝑝𝑖 · �̂�(𝑡)
𝑖

− 𝜂

𝑘∑︁
𝑗=1

max

{︃
𝛾

𝑛

𝑛∑︁
𝑖′=1

𝑝𝑖′,𝑗 − 𝑝𝑖,𝑗 , 0

}︃}︃
.

For completeness, we include the proof of the following theo-

rem in the full version of the paper linked here

Algorithm 2 Penalty-UCB (defined by parameter 𝛿)

Require: Failure probability 𝛿 > 0

1: Set 𝑁𝑖,𝑗(0) = 0, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]; �̂�
(0)
𝑖 = 0, ∀𝑖 ∈ [𝑛]

2: for 𝑡 ∈ {1, . . . , 𝑇} do
3: if 𝑡 ∈ {1, . . . , 𝑘} then
4: Set 𝑝

(𝑡)
𝑖 = 𝑒𝑡

5: else
6: Set

(︁
𝑝
(𝑡)
𝑖

)︁
𝑖∈[𝑛]

=

argmax

{︂
𝑛∑︀

𝑖=1

𝑝𝑖 · �̂�(𝑡−1)
𝑖 − 𝜂

∑︀𝑘
𝑗=1 max

{︀
𝛾
𝑛

∑︀𝑛
𝑖′=1 𝑝𝑖′,𝑗 − 𝑝𝑖,𝑗 , 0

}︀}︂
7: end if
8: Draw 𝑗

(𝑡)
𝑖 ∼ 𝑝

(𝑡)
𝑖 ∀𝑖 ∈ [𝑛]

9: Receive reward 𝑟
(𝑡)
𝑖 ∼ 𝑋

𝑖,𝑗
(𝑡)
𝑖

10: 𝑁𝑖,𝑗𝑡𝑖
(𝑡) = 𝑁𝑖,𝑗𝑡𝑖

(𝑡− 1) + 1, ∀𝑖 ∈ [𝑛]

11: 𝑁𝑖,𝑗(𝑡) = 𝑁𝑖,𝑗(𝑡− 1), ∀𝑖 ∈ [𝑛] and 𝑗 ̸= 𝑗𝑡𝑖

12: 𝛽
(𝑡)
𝑖,𝑗 =

√︁
log(2𝑇𝑛𝑘/𝛿)

𝑁𝑖,𝑗(𝑡)
, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]

13: �̂�𝑡
𝑖,𝑗 = 1

𝑁𝑖,𝑗(𝑡)

𝑡∑︀
𝜏=1

𝑟
(𝜏)
𝑖 1

{︁
𝑗
(𝜏)
𝑖 = 𝑗

}︁
+ 𝛽

(𝑡)
𝑖,𝑗 , ∀𝑖 ∈

[𝑛], 𝑗 ∈ [𝑘]
14: end for

Theorem 5.5. Let 𝜋 be the policy of Penalty-UCB. Then
𝑅𝑇,2(𝜋, 𝜈) = �̃�(𝑛

√
𝑘𝑇 ).

5.3. Regret analysis for Formulation 3
A key challenge under Formulation 3 is that the platform’s

optimal strategy, given perfect information about the reward

distributions D𝑖,𝑗 , may be history dependent. For example, the

platform may choose to increase or decrease personalization

dynamically based on the empirical distribution of content

chosen thus far. Nonetheless, we show that Penalty-UCB

(Algorithm 2) competes with the optimal history-dependent

policy by reducing our analysis to that of Section 5.2. We use

the notation 𝜋*
to denote the optimal policy that maximizes

Equation (8).

First, we show that under Formulation 2, the optimal policy

obtains a larger reward (measured in terms of rew2) than 𝜋*

under Formulation 3 (measured in terms of rew3).

Lemma 5.6. Let 𝑝* = (𝑝*
1, . . . ,𝑝

*
𝑛) with 𝑝*

𝑖 ∈ P𝑘−1 be the
policy that maximizes rew2

(︀
𝑝, 𝜈; 𝜂

𝑇
, 𝛾
)︀
. Then

rew2

(︁
𝑝*, 𝜈;

𝜂

𝑇
, 𝛾
)︁
≥ rew3(𝜋

*, 𝜈; 𝜂, 𝛾).

Proof. The proof of this lemma can be found in the full version

of the paper linked here

Next, we show that for any policy 𝜋 that deterministically

plays each of the 𝑘 arms once in the first 𝑘 rounds, the dif-

ference between its rewards under Formulations 2 and 3 is

bounded. This condition holds for Penalty-UCB (Algorithm 2)

and could be removed with a slightly more involved analysis.
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Lemma 5.7. Let 𝜋 be any policy such that 𝜋𝑖(𝑡 | ℎ𝑡−1) = 1
for all 𝑡 ≤ 𝑘 and 𝑖 ∈ [𝑛]. For any instance 𝜈,

rew2

(︁
𝜋, 𝜈;

𝜂

𝑇
, 𝛾
)︁

≤ rew3(𝜋, 𝜈; 𝜂, 𝛾) + 𝜂𝑛𝑘(𝛾 + 1)

√︂
10 log 𝑇

𝑇
.

Proof. The proof of this lemma can be found in the full version

of the paper linked here

Our regret bound follows from Lemmas 5.6 and 5.7 as well

as Theorem 5.5. The proof is in the full version of the paper

Theorem 5.8. Let 𝜋 be the policy played by Algorithm 2. Then
the regret is bounded as

rew3(𝜋
*, 𝜈; 𝜂, 𝛾)− rew3(𝜋, 𝜈; 𝜂, 𝛾)

= �̃�

(︂
𝑛
√
𝑘𝑇 +

𝜂𝑛𝑘(1 + 𝛾)√
𝑇

)︂
.

Even if 𝜂 grows linearly in 𝑇 , the regret bound in Theo-

rem 5.8 will only grow with

√
𝑇 .

6. Empirical Results
To explore how our framework impacts exposure diversity

in practice, we test it out on real world data: the MovieLens

dataset [8] which describes people’s expressed preferences

for movies
1

. These preferences take the form of <user, item,

rating, timestamp> tuples, each the result of a user giving a

0–5 star rating for a movie at a particular time.

6.1. Experimental setup
There are 𝑛 = 58 users, randomly selected from the database,

and a setK of 𝑘 = 18movie genres: K = {Action, Adventure,

Animation, Children, Comedy, Crime, Documentary, Drama,

Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-

Fi, Thriller, War, Western}. Each genre is paired with an

associated index in [𝑘] determined by alphabetically ordering

K. For each movie 𝑚 ∈ M , where M is the set of all movies,

there is an associated genre set 𝑚𝐾 ⊆ [𝑘] with |𝑚𝐾 | ≥ 1 (a

movie could belong to multiple genres). We use the ratings

data to generate preferences for the users. For each movie

𝑚 ∈ M𝑖, where M𝑖 is the set of movies watched by user

𝑖 ∈ [𝑛], the user gives a numeric rating 𝑟𝑖,𝑚 on a 5-star scale

with half-star increments: 𝑟𝑖,𝑚 ∈ {0.5, 1, 1.5, . . . , 5.0}. We

sum these ratings by genre and divide by the number of movies

that user 𝑖 watched from that genre. This results in an average

rating 𝜇𝑖,𝑗 ∈ [0, 5] per genre 𝑗 ∈ [𝑘]. Finally, we divide 𝜇𝑖,𝑗

by 5 so that 𝜇𝑖,𝑗 ∈ [0, 1]. In the end,

𝜇𝑖,𝑗 =

∑︀
𝑚∈M𝑖

𝑟𝑖,𝑚 · 1 {𝑗 ∈ 𝑚𝐾}∑︀
𝑚∈M𝑖

1 {𝑗 ∈ 𝑚𝐾} · 1
5
.

Using the 𝜇𝑖s as the mean reward vectors, we use linear

programs (LPs) to solve for the optimal policy under no con-

straints and under both our polarization cap and polarization

tax frameworks.

1
We use this dataset in order to analyze our methods on real-world user

preferences, recognizing that movie recommendation filter bubbles would

likely not be as pernicious as political news filter bubbles, for example.

(a) Average probability placed on romance for romance- and thriller-

lovers.

(b) Average probability placed on thriller for horror- and thriller-

lovers.

Figure 1: Polarization cap: Content changes as a function of 𝛾 for
2 user groups. We compute the optimal policy for 50 values of 𝛾
equally spaced between [0, 1].

6.2. Effect of the polarization cap and tax on
content recommendations

We begin by investigating the effects that our constraints from

Formulation 1 (Section 4.1) have on the optimal content dis-

tribution. These experiments provide a parallel to Lemma 4.1,

which shows that in a polarized population, users share the

burden of diversification. To model a polarized society, we

restrict our attention to two dissimilar genres: thriller and

romance. In this restricted space, 𝜇𝑖 ∈ [0, 1]2. We call the

users who prefer the thriller genre thriller-lovers and those

who prefer the romance genre romance-lovers. In Figure 1a, we

plot the probability placed on romance by the optimal policy

(which maximizes

∑︀𝑛
𝑖=1 𝜇𝑖 ·𝑝𝑖 such that 𝑝𝑖 ≥ 𝛾

𝑛

∑︀𝑛
𝑖′=1 𝑝𝑖′ )

as a function of 𝛾. For comparison, we run the same experi-

ments for two similar genres: thriller and horror. In Figure 1b,

we plot the probability placed on thriller.

In both Figures 1a and 1b, as 𝛾 increases, the content

recommendations become more homogeneous. However, the

rates at which the recommendations become homogeneous

are significantly different. In Figure 1a where the users are

polarized, the content recommendations converge slowly. It is

not until 𝛾 = 0.9 that the content is completely homogeneous.
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(a) Probability placed on romance for romance-lovers.

(b) Probability placed on romance for thriller-lovers.

Figure 2: Polarization tax: Content changes as function of 𝛾 and 𝜂
for romance- and thriller-lovers. We compute the optimal policy
for 6 values of 𝛾 equally spaced between [0, 1] and 50 values of 𝜂
equally spaced between [0, 1].

Meanwhile, in Figure 1b where the groups of users are similar,

the recommendations become homogeneous at a faster rate.

In this example, they converge at approximately 𝛾 = 0.6.

Under Formulation 2—where the platform is subject to a

penalty (Equation (7))—we perform the same experiments for

romance- versus thriller-lovers. These experiments are illus-

trated in Figure 2 where we vary both 𝜂 and 𝛾. As before,

the content distributions converge as 𝛾 increases. However, 𝜂
serves to modulate the impact of 𝛾 on content recommenda-

tions. When 𝜂 is small, the platform prefers to pay some tax

to show more personalized content than they would under

the hard constraint from Formulation 1. In fact, in Figure 2a,

we see that even when 𝛾 = 1 (so the platform is penalized for

any level of personalization), the platform prefers to pay some

tax and personalize its recommendations, but for sufficiently

large 𝜂 (approximately 𝜂 ≳ 0.2), the platform switches to

obeying the 𝛾 constraint and paying no tax. For the other

values of 𝛾, the content recommendations change more grad-

ually as 𝜂 grows. However, after a certain point (𝜂 ≳ 0.4),

only the value of 𝛾 leads to differences in the optimal policy.

(a) Romance- and thriller-lovers

(b) Horror- and thriller-lovers

(c) All user types

Figure 3: Multiplicative utility loss as a function of 𝛾 and 𝜂.

6.3. Effect of the polarization tax on user
utility

We next investigate the impact of the polarization penalty

(Formulation 2) on the users’ utility. We analyze the same

setting from Section 6.2 where there is a polarized society

consisting of romance- and thriller-lovers. Letting (𝑝𝛾;𝜂
𝑖 )𝑖∈[𝑛]

be the optimal policy under Equation (7) and (𝑝*
𝑖 )𝑖∈[𝑛] policy

8
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with no penalty (𝜂 = 0), Figure 3a plots the ratio of the

users’ cumulative utilities under these two policies:

∑︀
𝜇𝑖 ·

𝑝𝛾;𝜂
𝑖 /

∑︀
𝜇𝑖 · 𝑝*

𝑖 . Figure 3b plots the same quantity under

the homogenous society from Section 6.2 with only horror-

and thriller-lovers.

In Figures 3a and 3b, utility decreases as 𝛾 and 𝜂 grow, but

there is a larger utility loss for the polarized group (Figure 3a)

compared to the homogeneous group (Figure 3b). Interest-

ingly, in the homogenous group (Figure 3b), utility continu-

ously decreases as 𝜂 increases, while in the polarized group

(Figure 3a), the utility loss eventually flattens out. This is

because when the population is homogeneous, as 𝜂 increases

the platform only recommends one genre rather than pay the

tax, even when 𝛾 is small. However, when users are polarized

(Figure 2), the platform recommends both genres and pays

some tax for most values of 𝛾. It is only when 𝛾 = 1 that the

platform recommends only one genre.

Figure 3c plots the same quantity but without restricting

the genres (𝜇𝑖 ∈ [0, 1]18). Since the users’ preferences are

more diverse, the users’ cumulative utility suffers a larger

but still minimal loss. This is because each user now sees a

larger share of content they might not prefer since there are

more groups on the platform. Finally, in the full version of the

paper, we provide plots illustrating the additive utility loss

(rather than multiplicative).

7. Conclusions and discussion
Our work proposes a flexible approach to disincentivizing

filter bubbles that adapts to the interests of the individuals

on the network. Under our model, if some users are shown a

particular type of content, then all users see at least a small

amount of that content. We show that our model incentivizes

diversity in a way that is equitable to users on the platform

and discuss algorithms for recommending content under our

framework.

There remain many open questions around disincentivizing

polarization in social networks. One might want to distinguish

between the content of protected minority groups and that

of hate-focused or troll groups. Our current formulation does

not distinguish between these situations. One could consider

a model where the penalties or cap might scale non-linearly

with the size of the group, allowing for more effective modera-

tion. In addition, there is more work to be done to understand

the precise impacts of our constraints on the utility of the

users and platform. Rewards could represent the profit of the

platform or the utility of its users, and our current analysis

does not address this distinction. However, the difference

could be important when there is a wealth disparity between

groups and differences in utility of the users might not easily

map to differences in the platform’s revenue. A related direc-

tion could be to extend our model to maximize popular and

well-studied notions of fairness like Nash social welfare.
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