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Abstract
This study explores gesture interpretation by utilizing an ontological context. The aim is to store gestures
and scene context data in an ontology and use its knowledge graph to actuate the robot arm to perform
sets of manipulation tasks used in various environments. The knowledge graph captures the relationships
between gestures, objects in the scene, and the desired actions. By putting the ontological context into use,
the system can understand the meaning behind the gestures and execute the appropriate actions. The paper
focuses on the development of the ontology, including the creation of class properties and the embedding
of gestures within the ontology. Additionally, the paper explores how the integration of specifying context
interpretation from the ontology may look to enhance the interpretation of gestures. The proposed approach
aims to provide more intuitive and adaptive gesture-based supervisory control of robots in general. We
tested the proposed ontological system in several tests so that it may be used in our future applications.
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1. Introduction

Human-robot interaction (HRI) plays a crucial role in enabling robots to assist humans in various
tasks. One important aspect of HRI is the ability of robots to understand and interpret human
gestures accurately. Gesture recognition allows robots to perceive and respond to human com-
mands and intentions, enhancing their usability and effectiveness in assisting humans. Similarly,
the ability to understand and represent gestures enables robots or virtual agents to behave in a
way that is easily interpretable by humans.

Robot control using hand gestures so far is mainly considered a direct mapping between
gestures and actions without any context of the environment (e.g. [1]). However, context is
crucial to properly interpreting meaning of the nonverbal communication. The human intent
for robot control may be determined from a set of gestures in the given context [2], [3] (i.e.,
interpreting the gestures with respect to the user, objects on the scene, or performed task), however
a very simplified representation of the environment and context was considered, which makes it
hard to reason correctly on the historical data and make a generalization to new environments.
There are also a few efforts that propose a more robust knowledge representation of nonverbal
communication [4], however, these do not consider the context of the environment, objects, and
robot itself and are more focused on human-device interaction, i.e., using gestures for operating

RobOntics 2023: Workshop on Ontologies in Autonomous Robotics, August 28, 2023, Seoul, South Korea
∗Corresponding author.
$ petr.vanc@cvut.cz (P. Vanc); karla.stepanova@cvut.cz (K. Stepanova); danielb@uni-bremen.de (D. Beßler)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:petr.vanc@cvut.cz
mailto:karla.stepanova@cvut.cz
mailto:danielb@uni-bremen.de
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


a game/tablet which is compared to human-robot interaction in a simplified environment that
requires also different representation of affordances.

In this work, we link these two worlds by proposing a robust knowledge representation for the
interpretation of gestures within the context of realistic robotic environments. To achieve accurate
and context-aware gesture recognition, we built upon our previous work [3], and, in addition,
represent the gestures and the relevant context in an ontology. The ontology enables us both to
collect experiences from historical interactions and to reason on top of the acquired knowledge or
current state. Our approach utilizes a pre-trained set of gestures based on a semaphoric model
which discretely classifies different types of gestures and employs the gesture toolbox [5] to
prepare the target set of gestures specifically designed for the tested environment. The focus is
on the application of gesture recognition in the context of kitchen environments, which can be
further expanded to other workspaces.

The kitchen environment presents unique challenges for robots, as it is relatable and under-
standable for humans and contains various basic manipulation tasks such as food preparation,
desk organization, and cleaning in a kitchen setting. In these scenarios, a subset of objects from
the YCB dataset [6] is utilized consisting of kitchen equipment and food items.

The proposed ontology and related code is available online1.

2. Related Work

First, we review related work about the usage of human gestures for robot control. Second, we
summarize the most significant works on modeling and representing gestures.

In previous works, hand movements were used to teleoperate the robot by directly mapping
the user’s hand to the robot end-effector [7]. In [8], hand motions recognized by a combination
of depth cameras and inertial measurement units (IMUs) were used for robot teaching. Another
way of control is commanding gestures using action signaling (e.g., [3]). In this case, recognized
gestures are linked to specific robot actions.

Most of the current gesture-controlled devices (e.g., Hi5 VR Glove [9]) were used only
experimentally. Only a few (e.g., Leap Motion [10], Oculus Quest’s hand tracking) made it into
mass production and even fewer people started using them on a daily basis. One example is
the smartphone industry, where developers used hand gestures to control basic controls, e.g.,
music [11] or resizing pictures. Gestures are also used in virtual reality, including environment
control [12]. In contrast to these approaches, all consider only a very simple notion of context.
Our hypothesis is that using situation context from a rich knowledge graph is the key to making
gestures a reliable and natural means of communication.

The modeling of gestures is in many cases rather informal (e.g., [13]), or restricted to geo-
metrical characteristics (e.g., [14], [15]). For example, Ousmer et al. [14] decomposes gestures
into different segments with associated hand poses to support the recognition of gestures. In
contrast, our goal is rather to support their interpretation, and thus geometrical characteristics are
not sufficient. A well-formalized account is provided by the SUMO ontology which focuses on
modeling the communication underlying a gesture [16]. However, gestures are not characterized
by the affordances of the environment in the SUMO ontology. Another related ontology is the

1https://github.com/petrvancjr/gesture-ontological-context-interpreter

https://github.com/petrvancjr/gesture-ontological-context-interpreter


(a) Bowl (b) Cheez
It

(c) Foam (d) Mug (e) Mus-
tard

(f) SPAM (g) Sugar (h) Toma-
toes

Figure 1: Set of the selected objects. It is a subset of YCB objects [6].

HDGI ontology [17]. It is designed for human-device interaction and puts particular emphasis
on the link between gestures and device context and affordances. However, here we consider
human-robot interaction which requires a more detailed representation of affordances and context.

In most works the scene context is not taken into account, e.g. the system uses fixed mapping
from gestures to robot task [1]. Other formal accounts rather employ probabilistic representa-
tion [18] for human intent recognition in shared-control robotics. It looks at the integration of
human gestures and robotic actions. We build upon [3] method for mapping the context, which
is using a Bayesian neural network to estimate the next user-intended action. The key is to con-
struct a feature vector that properly describes the scene context. Contextual characteristics were
extracted from the working data set based on their natural properties which were hand-picked
based on common sense and stored as ontological properties.

3. Application Domain

In this section, we will describe the considered application domain including the utilized objects
(Sec. 3.1), robot actions (Sec. 3.2), and gestures (Sec.3.3). For the gesture detector, we use the
Leap Motion Controller [10] and Franka Emika Panda [19] as our robot which is popular to be
used for human-robot interaction while being able to easily manipulate the objects.

3.1. Objects

The scenario in consideration comprises a table and several items that are on top of it. The objects
are a subset of the popular YCB dataset [6] because they are objects which people interact with
on a daily basis. We took mainly kitchen equipment and food items to accomplish specified tasks,
which we will describe in the next section. The objects are randomly arranged on the scene within
every new task. See Fig. 1 for the set of selected objects.

3.2. Set of Actions

We defined the number of actions the robot can perform while still being able to accomplish given
scenarios. The final list consists of 7 actions: Pick, Pour, Put, Place, Move-up, Move-right, and



(a) Steady
Grab

(b) Steady
Point

(c) Steady
Pinch

(d) Swipe
Down

(e) Swipe
Left

(f) Swipe
Right

(g) Swipe
Up

(h) Thumbs
Left

Figure 2: Set of gestures. Gestures are a combination of Static and Dynamic detectors (see 3.3). For
example Steady-Grab (a) is a combination of no movement with Grab hand configuration. Same way the
Thumbs-Left (h) is hand movement left and Thumb-left hand pose.

Move-left. Actions Pick, Pour, Put, and Place are tied to a specified object. Action Place places
the object into specified storage, the storage defined within reach on the side of the table.

Action Move-up moves the robot end-effector into the home (upper) position. Actions Move-
left or Move-right move the robot end-effector according to the common coordinate axis by a
certain amount. Additional object-focused features might be added for convenience. For example,
if an object is near the end-effector position, the position is adapted to attain the position above
the given detected object.

Additionally, the system supports a non-robotic action Select-object which computes probabili-
ties of objects being selected based on the direction of the pointing finger (see Sec. 3.3 for more
details).

3.3. Gesture Description

Our system utilizes two gesture types: action gestures and point (deictic) gestures.
The first action gesture type is defined based on gestures taxonomy [20], the Semaphoric

Gestures Model. It is used to discretely classify a pre-trained set of gestures. We selected a set
of 8 action gestures that are shown in Fig. 2. The detectors used in our system are returning the
confidence of each gesture from this set in real-time. When any gesture has enough evidence, its
data are written into the ontology. The gesture detection uses a combination of static and dynamic
gesture detectors. The static detector uses a single time-frame hand structure (see Fig. 4), from
which then the feature vector (of length 57) is extracted for gesture classification. On the other
side dynamic gesture detector uses a moving time frame of hand movement but only hand pose
as the feature is used. The detectors are combined to form the final Compound gesture, resp.
specific hand configuration plus movement (see Fig. 2 description).

Point (deictic) gestures have the effect of triggering the procedure of object choice. The
procedure chooses the closest object to the user’s pointed line. This involves the calibration with
a scene [21]. The poses of objects are retrieved from the knowledge graph which saves recent
object positions. We use the CosyPose detection method [22] to get 6DoF poses of objects.

4. Ontological Characterization

The ontological nature of gestures appears to be somewhat diverse. Gestures are, on the one
hand, acts of non-verbal communication where an agent attempts to convey some information
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Figure 3: Ontology graph shows class definitions with Composed Gesture in the middle. Gesture set
if defined in Fig. 2, Object set is defined in Fig. 1, Hand Description in detail is on Fig. 4, Scene objects
have qualities of static properties (see Fig. 5. In our implementation, we define four easy robot tasks, see
Sec. 3.2.

to other agents in its surrounding. They are, on the other hand, also bodily expressions in
the form of postures and motions. This observation is captured, for example, in the SUMO
ontology where a gesture is seen as any body motion which is also an instance of communication
[16]. Another foundational account for an ontological notion of gestures is included in the
ontology for Information Objects where a gesture is seen as an instance of bodily motion, and
each bodily motion is seen as the realization of an abstract piece of information[23]. However,
such foundational definitions are rather vague about the actual meaning of gestures. In our
implementation, we commit to the IO ontology definition simply for pragmatic reasons as the
alignment with the adopted knowledge framework was less cumbersome.

The intended meaning of a gesture can often only be understood when taking context into
account. A hand gesture indicating a stop signal, for instance, is vague and can only be understood
if it is clear to which objects and actions it refers. Another aspect is that the detection of gestures
could be wrong, but that the falsely detected gesture does not make sense in the current context in
which case it could be discarded or re-classified. This suggests the importance of relationships
between gestures and the context in which they occur. These relationships are of primary concern
for us, but they are rarely considered in related literature about gesture ontologies or are not
designed for robotics use cases.

Nevertheless, it is worth investigating to what extent existing ontologies that link gestures and
context could be adopted for robotics use-cases. To this end, we adopt the HDGI ontology [17] as



it defines a rather comprehensive model of gestures that also includes links to device affordances
and context. The ontology does however not model interactions between agents and what is
afforded to them. But this interaction is important for robotics use-cases as robots have different
capabilities to execute an action. Thus, we rather employ a more fine-grained notion of affordance
from an existing ontology that was designed with robotics use-cases in mind [24]. We consider
an affordance as the description of a disposition and a disposition is an absolute property, it
does not depend on a context. Furthermore, the ontology defines affordances as the descriptive
context between dispositional pairs and thus can express a relation between two disposed objects.
For example, the robot is disposed to handle small-sized objects while a small-sized object is
disposed to be grasped, carried, thrown, and so on. The concepts and relations used or defined in
the proposed ontology are shown in Fig. 3.

The central notion is the Gesture concept. It is characterized as a type of task, i.e. as a
sub-concept of CommunicationTask. The notion of task is imported via the robotics affordance
ontology [24] which in turn imports the foundational ontology DOLCE+DNS Ultralite (DUL)
[25]. Following DUL, tasks describe how certain events are to be interpreted, executed, etc. In
the case of CommunicationTask, this is done through the three roles linking sender, receiver,
and message to the task. For gestures, the role of the message is actually taken by the event that
executes the gesture, i.e. the act of performing the gesture is the message transported. Finally, we
say that each gesture is defined in one or more affordances representing some action potential in
the environment. For example, gesture grab has affordance representing picking the object.

Definition 1. A gesture is a communication task that is defined in an affordance.

An affordance further defines a task related to affordance and creates constraints for objects
taking the roles of the task. Namely, those objects need to be the host of certain dispositions.
For example, an affordance of picking up an object may refer to a task where the picked object
must be a host of the pickable disposition, and where the agent must be the host of the can-pick
capability (disposition).

The gesture concept is further decomposed into three cases: DeicticGesture, ActionGesture,
and ComposedGesture. First, a deictic gesture is a pointing gesture used to draw the attention
of the receiver to a particular object or region of interest. Second, an action gesture refers
to a task request. Finally, a composed gesture is a combination of several gestures during an
episode. An instance of ComposedGesture is created each time the gesture episode ends. In
our implementation, this depends on our hand sensor [10], which has a limited field of detection.
The end of the episode is defined as the hand disappearing from the detection area. Each gesture
event gives us data about confidence, timestamp, name of gesture which has been triggered, and
potentially the relevant selected object, on which the user wants to work.

Features of scene objects are defined as object properties. These properties are shown in
Figure 5 with relation to object type (e.g., Bowl). Properties are hand-picked based on our needs:
Sizes (SmallSize and LargeSize) based on the ability to fit inside the PandaGripper, Color as a
visual property, Sharpness property defining rounded or sharp objects (this property might be
used when clarifying object choice), and finally Object types defining whether the object is a
container and of which type (Liquid-container, or Object-container). Dynamic properties are
supposed to be updated in real-time to keep the world representation up-to-date. They include
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Figure 5: Small sample of object relations
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current Container capacity, Accessibility (disposition to be interacted, e.g. object is on top of a
stack or in reach by robot’s gripper), or if an object has been already manipulated, which can help
estimate the user’s next choice based on their preference. Geometric parameters include instant
Pose value. Perception methods might be used for some properties, e.g. get pose (in our case by
CosyPose method [22]) of the object. If no such technique is available, the logic methods might
be used, e.g. when action Pour is done, the capacity of a container changes.

5. Experience Acquisition

In this chapter, we discuss the potential approach for acquiring experience in the context of
gesture interpretation using ontological context. While this work is currently in progress, we
outline the steps and considerations that could be taken to acquire the necessary to test the usage
of our knowledge graph and the possibility to improve the context-based gesture control system.

To acquire experience in gesture interpretation, a large dataset of human-robot interactions
needs to be collected. This dataset should include our defined kitchen scenarios and tasks in
which humans interact with the robot using described gestures. From the interactions, the data
about the user’s Task instance reference for the current context (Dynamic properties of objects
and applied gesture). The next step is to take advantage of ontologies and scale the number of
object properties.

Instantaneous object properties are written in real-time into ontology. As we discussed poses
of objects [22] and other properties experimentally or by hand, e.g. current capacity of Liquid-
container. Accessibility of an object by the property, that the given object is in a predefined



boundary, and checker to estimate if no other object is detected on top of the given object.
The Arm instances also enable us to store raw hand movements. Based on this data structure,

we may run gesture set classification that uses collected data training and improving discussed
gesture recognizers.

6. Discussion and Conclusion

Representing world and gesture information as ontology enables us to define the knowledge of
the world in the right format with the possibility to scale its properties by size without getting
confusing. One of the ways is to generate a better embedding vector for context-dependent action
generation.

The following steps involve the validation of the proposed setup and a comparison test of how
useful is using the knowledge graph to other methods in terms of scaling, for example, the number
of properties on context-based action estimation. Last but not least, it would be interesting to
explore the assembly of context vector embeddings with automatic methods. This would involve
some scraping method, evaluator, and discriminator, to evaluate if the context vector is chosen
properly for a given environment.
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