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Abstract
This paper presents a continuation of the previous research on the interaction between a human traffic
manager and the UATMS. In particular, we focus on the automation of the process of handling a vertiport
outage, which was partially covered in the previous work. Once the manager reports that a vertiport is out of
service, which means landings for all corresponding agents are prohibited, the air traffic system automates
what it has to handle for this event. The entire process is simulated using Knowledge Representation and
Reasoning to describe the detailed process of reasoning about UAM operations. Moreover, two distinct
perspectives are respected for the human supervisor and the management system, and related ontologies
and rules are introduced. We believe that applying non-monotonic reasoning can verify each step of the
process and explain how the system works. After a short introduction with related works, this paper
continues with problem formulation, primary solution, discussion, and conclusions.
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1. Introduction

Urban Air Mobility (UAM) is a novel and rapidly expanding mode of transportation. Utilizing
urban airspace is viewed as a crucial solution to traffic problems in densely populated areas.
The concept of a vertical airport, or vertiport for short, allows small aircraft to take off and land
without runways around tiny structures. There is increased pressure to standardize the UAM air
traffic management system, or UATM for short, despite its increasing popularity as a new mode of
transportation. At the same time, this becomes problematic because it is difficult to accommodate
everyone’s desires. Introducing a new system into an established environment sounds like a
challenge. Specifically, the airspace should be shared with the existing aircraft system. By
dividing the required altitude, potential conflicts between the two methods are avoided. We aim
to have this new transportation system operational by 2035, despite the difficulties associated
with low-altitude travel and heavy air traffic. This study investigates how each vertiport and the
UATM communicate with one another. We are primarily interested in discussing what vertiport
administrators and the UATM do and how they respond to incidents. By constructing a graph-
based model of the traffic system, we simply characterize the system and provide an illustration
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of a common occurrence at a vertiport. In the previous paper, we took the initial step toward
our objective. The primary difference between the previous one and this one is that the previous
one believed certain corridors should be avoided when determining where the plane should go,
whereas this one believes the current target should be avoided. This implies that the route must
be altered.

1.1. Related Works

The papers [1, 2, 3, 4] give an in-depth examination of UAM technology, regulatory context,
possible advantages, and obstacles. Recently the article in [5] suggests a layered system for
managing airspace for UAM vehicles, with different layers defined based on the type of vehicle,
level of automation, and altitude. The paper [6] discusses a variety of ATM projects in German
Aerospace Center (DLR) initiatives. The paper [7] suggests a collision risk assessment model
between a vehicle and obstacles. The paper [8] discusses state-of-the-art Deep Learning (DL)
solutions for ATM in depth.

However, none of previous attempts to avoid crashes based on ATM systems are ready to be
widely adopted because of complex UATM systems, various stakeholders, mass agent activities,
and possibly catastrophic events. Considering multiple stakeholders, our initial work [9] was to
detour agents’ route, avoiding particular corridors. In that paper, nonmonotonic reasoning was
used in the operation of the complex UATM system to describe how to control unexpected cases
or easily changeable information.

In this regard, the paper [10] serves as a valuable guide for the explanation of complex systems—
explainable AI (or XAI for short). To validate the complex system, their proposed epistemological
model is based on knowledge representation and reasoning in particular. However, their approach
is philosophical. Hence, as a concrete, motivating use case that can be easily adapted to our case,
it was not sufficient.

The paper [11] examines a method for developing automatic classifiers capable of offering
explanations based on an ontology. The paper [12] briefly reviews five approaches based on
association rule mining, formal concept analysis, inductive logic programming, computational
learning theory, and neural networks, and provides how to build descriptive logic (DL) ontologies.
Even though these papers provide a basis on which reasoning can be linked to the ontology, the
use of their approaches in our system has not been a practical solution.

For the practical point of view, the paper [13] provides a framework for intra-logistics problems
based on ASP. The papers [14, 15] propose to perform task assignment and vehicle routing by
means of ASP for automated guided vehicles (AGVs). While they concentrate on showing how
to calculate their path and give a series of subtasks, we concentrate on the logic utilized in the
process of interaction between a human manager and the system, as well as across systems.

The paper [16] provides a systematic survey for projects at the intersection of ontologies and
autonomous robotics and compares them according to what terms are defined in their ontologies,
how these terms are used to support different cognitive capabilities of a robot, and in which
application domain they are used. However, the authors indicate that ontologies for behaviors
and interaction have been relatively less focused than other terms in several scopes.1 In order

1For more details, see Table 1 in [16].



to illustrate the interaction, rather than solely conceptualizing in ontologies, we chose a hybrid
approach (as the approach introduced in [17]) combining the ontology with the reasoning process
by ASP. While the paper [17] focuses on the user-centered explanation and the generalization
itself, we focus on the trace of reasoning to provide facts collected by each agent’s information in
real time, which is dynamically changeable.2

1.2. Contributions

As an illustration, we present a destination-changing scenario that may occur frequently in
UAM environments. Then, we elaborate on our demonstration of nonmonotonic reasoning and
explainability.

1.3. Outlines

In the following sections, we describe the problem formulation, provide the solution, continue
discussions, and conclude this paper.

2. Problem Formulation

Examine the graph depicted in Fig. 1. Each vertex denotes a vertiport, while the edges denote
corridors. Large circles represent UAM Air Traffic Management (UATM) systems covering
these vertiports. These corridors transport agents between this network’s vertiports. UATMs
can communicate directly with agents within their coverage area. This study presumes that
the ‘UATM Network’ possesses a communication relaying protocol that enables UATMs to
relay messages to one another. Upon the agent’s departure from this UATM Network, direct
communication becomes impossible.

Each agent typically commences a voyage as follows: It begins in a vertiport, where prepara-
tions for flight are made. This agent requests departure from the vertiport traffic manager. After
receiving permission, the agent enters the airspace.

The destination and route are configured prior to flight. The agent uses UATMs to update its
velocity, GPS coordinates, and other information as it travels through corridors to the destination
vertiport. UATMs can then supervise the agent while considering traffic.

The agent requests landing from the vertiport traffic manager when close.
Typically, the traffic manager directs it to the vertipad after confirmation. This traffic system

operates autonomously. Managers of human traffic are in control of each vertical airport. Mon-
itoring traffic, vertiports, and legacy traffic systems is their responsibility. They improve the
system’s adaptability.

2.1. A Vertiport Closure Scenario

The human manager’s perspective: While a human manager in vertiport 6 (or vp6 for short)
monitored landing some agents, he or she found that there was a safety issue. It appears that

2We note that specifying the concept of ‘real time’ in this paper is out of scope.



Figure 1: Partly sampled UATM Network composed of five vertiports ranging from vp3 to vp7,
bidirectionally connected corridors between adjacent vertiports, three UATMs ranging
from UAT M1 to UAT M3, and their coverage indicated by outside circles.

approving landing requests from the following agents would be risky. Hence, he or she reported
this status to the UATM (here, UAT M2). In particular, the vp6 is temporarily closed, so it is
required for all vp6 heading agents to change their destination to vp5, which is the candidate
vertiport of the vp6.

The UAT M2’s perspective: The UAT M2 received a report that the vp6 is closed. Since all
vp6 heading agents should detour their route to the new destination, it should find all the related
agents. While finding them, it also looks up other UATMs. Once it finds all, it checks the vp6’s
candidate vertiport. We assume that the candidate vertiports are carefully chosen, depending on
previous records, including congestion, landing turnover ratio, and capacity. After getting the
candidate vertiport and computing the route to the new destination, it sends to all these agents the
replaced path, which has the newly appended route at the end. Once all these agents’ paths are
changed, the UAT M2 replies back to the vp6 human manager.

3. Solution

This section presents our hybrid approach depicted in Fig. 2. This approach consists of the
following two steps:

1. The problem is declared in Answer Set Programming. Goals and rules are defined, and
each interaction is addressed.

2. Composed ontology is used in this problem. As a semantic layer, we develop the ontology
model against a unified data source. Class and property information for essential classes
such as Human Traffic Managers, Agents, and UATMs provide additional information
for reasoning in this layer. Then, relations are constructed for these classes based on the
predicates used in the ASP area.

The flow we covered in the scenario is as follows: Once the human manager reports the
vertiport closure, the reasoning component computes the necessary process and returns the
detailed result. The result is then updated in the ontology component. Then a human manager
can trace the result through the ontology.



Figure 2: Conceptual diagram of hybrid approach using ontology model and ASP. Through the
relationship between each entity on semantic layer, it is possible to infer the UATM
associated with the vertiport and the flight information managed by the UATM.

Table 1: Each Predicate and Description

Predicate Description
uatm/1 a set of UATMs
agent/1 a set of agents
vp/1 a set of vertiports
edge/2 a set of corridors
cover/2 the relation in which the UATM covers which vertiport
edge_range/3 each corridor’s distance bound
covered_wp/4 the coverage provided by each UATM for each corridor
candidate_vp/2a pair of vertiports: a vertiport and its candidate vertiport for backup
step/1 a range of step
loc/4 an agent’s location at a step
plan/4 an agent’s plan to move one step at a time
source/3 the initial vertiport of an agent
target/3 the final vertiport of an agent

3.1. Common Setting

The whole approach begins with two common settings for the world and the agents. Due to the
page limitation, we here only introduce the used predicates in Table 1.3

3.2. Queries

In order to make the contents more structured, we will enumerate the queries with the codes first
and then provide the results. We note that each code is generalized. Hence, when executing the

3The complete code listings are available as a technical report: https://arxiv.org/abs/2307.03558. We note that, for
simplicity, we now intentionally omit the arity part for each predicate. For example, we will write edge_range/3 to
edge_range.

https://arxiv.org/abs/2307.03558


code, instead of vp6, other vertiports can be specified.4

Find all vp6 heading agents within the UATM network: In order to answer this query, there
is an initial predicate covered_agent in Code 1. This rule is essential for determining whether
each agent is covered by the UATM network. Additionally, it searches only agents whose target
is vp6. Then, as shown in Table 2, covered_by_uatm2 and covered_by_other present five
agents: 3, 5, 6, 1, and 2.

Code 1: Find all vp6 heading agents within the UATM network
covered_uatm(TM) :- cover(TM, V1), V1 == vp.
covered_agent(A, TM) :- loc(A, T, U, V, WP), covered_wp(U, V, TM, WP), target(A, T, V1), V1 == vp.

covered_by_target_uatm(A) :- covered_agent(A, TM), covered_uatm(TM).
covered_by_other(A) :- loc(A, T, U, V, _), covered_agent(A, TM), covered_uatm(TM1), TM != TM1.

trigger_query :- covered_agent(A, TM).
covered :- 1 <= #count{A: covered_by_target_uatm(A); A:covered_by_other(A)}.
:- trigger_query, not covered.

#show loc/5. #show covered_uatm/1. #show covered_by_target_uatm/1.
#show covered_by_other/1.

Change the destination of the agents we found: Since we already found these agents from
Code 1, the next procedure for the UAT M2 has the followings:

• it finds the candidate vertiport for the vp6,
• it creates the new plans for the relayed agents: Here, relayed agents include agents covered

by other UATMs as well as agents covered by UAT M2,
• it appends the new plan to the end of the existing plan for these agents,
• it sends target change requests to other UATMs, and
• once the plan is ready and target change requests are received, UATMs do the target change

for these agents.

The vp6 human manager, then, is known by the target_change as shown in the Table 2.
Handle a landing request from agent 4: Consider the vp6 human manager received a landing

request from agent 4 shortly after he or she informed the target_change. The agent 4 was in
waypoint 2 (or wp2 for short) in Fig. 1 when UAT M2 searched all the vp6 heading agents. We
remark that even though every inch in each corridor is guaranteed to be within the coverage of
the UATM network, relaying the message for each agent may take some time, and some of the
agents may send the landing request before their targets are changed. Shortly after the search, let
us assume that agent 4 moves closer to vp6 and into coverage. In particular, suppose it is located
at loc(4, 2, 7, 6, 17).5

4With the ‘-c’ command option in clingo, it is possible to insert a specific value into the code. For example, to designate
vp6 as the vertical airport of interest, Code 1 can be executed as follows: $ clingo world.lp agent.lp code1.lp -c vp=6.
This option replaces the vp in the first two lines of Code 1 with the value 6.

5This indicates that in step 2, agent 4 located itself at a quantified position, say 17, along the corridor between vp7
and vp6. Note that the quantified position for the corridor has been bounded at edge_range (see Table 1), and this
additional agent location is provided as a separate input file to keep the program general.



Code 2: Change the destination of the found agents
relayed(A) :- covered_by_target_uatm(A).
related(A) :- covered_by_other(A).

new_plan(A, T+1, V, V1) :- plan(A, T, U, V), target(A, T, V), V == vp, relayed(A),
candidate_vp(V, V1), step(T+1), not new_plan(A, T, V, V1).↪→

target_change_request(A, T) :- relayed(A), new_plan(A, T, V, V1).

plan(A, T+1, V, V1) :- plan(A, T, U, V), target(A, T, V), new_plan(A, T+1, V, V1), step(T+1).
plan(A, T+1, U, V) :- plan(A, T, U, V), step(T+1).

target_change(A, T) :- plan(A, T, U, V), new_plan(A, T, U, V), target_change_request(A, T).
:- not target_change(A, T), new_plan(A, T, U, V), target_change_request(A, T).

#show relayed/1. #show new_plan/4. #show target_change_request/2.
#show target_change/2.

Code 3: Handle the landing request from agent 4
vp_heading_agent_number(N) :- N = #count{A:target(A, T, V), V==vp}.

covered_wp(U, V, TM, WP).
landing_request(A, T+1, V) :- not target(A, T+1, _), target(A, T, V), loc(A, T+1, U, V, WP), V ==

vp, covered_wp(U, V, TM, WP).↪→

new_plan(A, T+1, V, V1) :- plan(A, T, U, V), landing_request(A, T, V), candidate_vp(V, V1),
step(T+1), not new_plan(A, T, V, V1).↪→

plan(A, T+1, V, V1) :- plan(A, T, U, V), landing_request(A, T, V), new_plan(A, T+1, V, V1),
step(T+1).↪→

target_change_request(A, T+1) :- landing_request(A, T, V), new_plan(A, T+1, V, V1).
plan(A, T+1, V, V1) :- plan(A, T, U, V), landing_request(A, T, V), new_plan(A, T+1, V, V1),

target_change_request(A, T+1), step(T+1).↪→
- not target_change(A, T+1), landing_request(A, T, V), step(T+1).

#show vp_heading_agent_number/1. #show target_change_request/2.
#show target_change/2. #show landing_request/3.

In the vp6 manager’s perspective, the landing request would not be welcome. However, after
checking that its target hasn’t been updated, he or she can just report to the UAT M2 that the vp6
is closed again.

In the UAT M2’s perspective, since agent 4 is in the coverage of UAT M2 now, handling the
landing_request in Code 3 is not much different from what we have seen in Code 1 and
Code 2. The target_change(4, 3) in Table 2 explains that agent 4 has a new target at step 3.

4. Discussion

We here discuss current progress, limitations, and future directions.
Nonmonotonicity: Through the entire program, the initial background knowledge given is that

vertiport 6 is temporarily closed. Hence, this is a given fact. In order to illustrate the nature of
nonmonotony, agents’ locations can vary. However, due to the unified demonstration of the codes
and the result, the locations of each agent are not selectable while running the system model.



Table 2: Each Query and Result: Each query is declared in the code. Its running result is shown
in the next column of the query. The results of the corresponding queries also keep the
results of their predecessors without changing or removing them.

Query Result
Find all vp6

heading agents
within the
UATM net-
work:

covered_by_other(3) covered_by_other(5) covered_by_other(6)
covered_by_target_uatm(1) covered_by_target_uatm(2)
covered_uatm(2) loc(1,1,7,6,20) loc(2,1,7,6,18)
loc(3,1,7,6,8) loc(4,1,7,6,14) loc(5,1,3,7,17)
loc(6,1,7,6,3)

↪→
↪→
↪→
↪→

Change the
destination of
the agents we
found:

relayed(2) relayed(1) new_plan(1,2,6,5) new_plan(2,2,6,5)
target_change_request(2,2) target_change_request(1,2)
target_change(2,2) target_change(1,2)

↪→
↪→

Handle a land-
ing request
from agent 4:

loc(4,2,7,6,17) landing_request(4,2,6) new_plan(4,3,6,5)
target_change_request(4,3) target_change(4,3)
vp_heading_agent_number(6)

↪→
↪→

Since all the corresponding rules in the queries we covered have a general declaration, we believe
that this can be easily generalized by changing their locations through choice rules.

Explainability: The query asking whether ’Changing the destination of the agents we
found’ is successful is represented as the predicate target_change and its supporting rule
just followed by the predicate. The answer shows that target_change(A, T) is true when it
is satisfiable. In this query, the validation of the explanation is checked by the combination of
the predicate, target_change, which is regarded as a fact when the body of the rule is true,
and the safe rule, which ensures the fact’s consistency. Assuming that all the derived rules and
relationships lead to the body of the rule as true, the logical consequence makes the predicate
target_change by also being connected, and this justifies the answer to the query. We note
that the explanation is somewhat abstract depending on the ontological features, and the deeper
explanation is desirable.

Future Directions: The research related in the explanation of the complex system is in early
stage yet. More scenarios are necessary. Agent movement should be considered more carefully,
and the scenario can be reactively simulated with proper foundations. We hope to deliver a
comprehensive air traffic management system in the near future.

5. Conclusions

We have described a scenario involving UATMs. Through knowledge representation and reason-
ing, the scenario was simulated by expressing the predicates in ontology. Applying the Answer
Set Programming framework, queries and their responses were examined from two distinct
perspectives: those of a human manager and the UATM system. The discussion then turned to
nonmonotonicity and explainability.
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