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Abstract
Earlier work has introduced ontologies to improve the performance of task and motion planning. However,
these approaches have not explicitly used first-order axiomatizations for ontologies that are typically used
for the specification of spatial constraints, such as mereotopologies. In this paper we demonstrate the
application of new mereotopologies to automatically generate spatial constraints that prune the search
space of task and motion planning, thereby enabling the semantic coupling of task and motion planning.
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1. Introduction

Within the factory of the future and the digital industrial transformation [1], the validation
(under simulation or real experiment) of complex industrial scenarios (e.g. tasks performed by
a manipulator or mobile robot in a cluttered environment) will become increasingly important.
Updated products are increasingly integrated, and the tasks related to their life cycle management
(e.g. manipulation performed by a human operator such as maintenance or assembly) are
likely to be executed under very strong geometric constraints; therefore, industrial companies are
expressing the need to validate these tasks at design stage, before manufacturing the corresponding
physical prototypes. Such an approach allows the detection of errors as early as possible, reduced
development times and costs, and the deployment of more environment-friendly production
processes, as fewer defective physical prototypes would be built. To address these issues, we
propose to develop new techniques based on the joint use of robotics (namely motion planning)
and Artificial Intelligence (AI) techniques.

To validate the feasibility of the targeted scenarios, showing the feasibility of motion is key.
Trajectory planning techniques developed by the robotics community since the 1980s [2] are
widely used. Their limitations are mainly due to the complexity of the environment models
used, which are traditionally purely geometric; neither the environment models nor the methods
for exploring these models are based on information relating to the task to be performed. In a
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complex environment, automatic trajectory planners may require long computation times, fail,
or explore or propose solutions of little relevance to the task to be performed. To address these
limitations, recent work has focused on collaborative human/planner approaches, which only
rarely enable continuous interaction [3][4] [5].

Recent work has demonstrated the utility of higher abstraction level data beyond the purely
geometric data traditionally used [6], to improve semantic control on motion planning [7]. Other
work has demonstrated the benefits of combining motion planning and learning techniques [8].
While these apporoaches have shown the necessity to consider jointly task and motion planning
[9] [10] and the interest for using ontologies in robotic applications [11][12] (often to bridge the
gap between low level motion planning and high level task planning), the integration of these AI
and robotics techniques is still a challenge [13].

Previous work has indeed demonstrated use of ontologies within task and motion planning, but
it has not made use of the full range of mereotopologies available, thereby limiting its usability
and generalizability. The role of using spatial constraints in reducing the search space at the
geometric level has been recognized, but this raises the question of the specification of the spatial
constraints. In this paper we demonstrate the application of new mereotopologies to automatically
generate spatial constraints that enable the semantic coupling of task and motion planning. We
use a simple battery changing scenario to illustrate how the spatial constraints are generated from
the mereotopology.

This paper is organized as follows: section 2 introduces related former works our contributions
rely on. Section 3 presents our contribution, illustrated on a challenging and relevant use case.
Section 4 summarizes our contributions and presents the next steps and perspectives of this work.

2. Using Ontologies in Task and Motion Planning

In this section, we review earlier work on ontologies and semantic coupling of task and motion
planning (TAMP) in the context of assistance to manipulation in Virtual Reality (VR) [14], which
forms the basis for the novel contributions presented in the current paper.

2.1. Semantic Coupling of Task and Motion Planning

The first step in the semantic coupling of task and motion planning was to propose an approach
for interactive and immersive motion planning using visuo-haptic guidance and addressing
control sharing between the motion planner and the human operator [15]. To face to well-known
limitations of automatic path planning [16] addressed in section 1, the proposed framework was
improved by the involvement of higher abstraction level data for environment modelling and
motion planning [16] (see figure 1).

Environment Modelling The environment is composed of two parts: rigid bodies (static
or mobile obstacles) and free space. The rigid bodies model is composed of two layers: a
geometrical layer where they are represented by classical geometric primitives (e.g. polyhedral
models as in Figure 1 (a)), and a semantic layer associating to each rigid body high-abstraction
text or numerical information (e.g. shape). The free space model is composed of 3 layers. The



geometrical layer relies on the use of a quadtree in 2D or octree in 3D [17] (see Figure 1 (b)). The
topological layer is based on a graph called topological graph (see Figure 1 (c)), which connects
places (the arcs of the graph) and borders (the nodes). Each place and border is associated with a
set of geometrical cells in the geometrical layer. The semantic layer (see Figure 1 (d)) is made
of text or numerical attributes attached to the places and borders of the topological graph and
describing the shape or the complexity to be crossed (e.g. level of clutter).

Figure 1: Multi layer

Multi-level Path Planning Strategy The multi-level path planning strategy proposed uses
the multi-layer environment model of free space and is based on 2 steps performed consecutively.
First, coarse planning finds a (minimum cost) path within the topological graph. This topological
path is made of topological steps, such that each step is composed of a place to cross and a border
to reach. The semantic layer of the environment provides control on the topological planning
through the definition of the costs associated to the nodes and arcs of the graph as functions of the
semantic information associated to them (see Figure 1 (d)). Second, a fine planning step uses the
geometrical models of the rigid bodies and of free-space to solve classical path planning queries
for each topological step.

As current approaches focus on the validation of complex tasks to be performed under strong
geometric constraints, the geometrical path planner used at the fine motion planning level
described above is a well-known probabilistic algorithm, namely Rapidly-exploring Random
Tree (RRT) [18], which performs a probabilistic exploration of free space to find a collision-free
trajectory and iteratively and locally extends a roadmap. The RRT algorithm is probabilistically
complete but does not guarantee finite-time solutions.

Nevertheless, merely showing the feasibility of motion is not enough to validate complex tasks,
and it is necessary to consider task [19] and motion planning techniques jointly [20], to model
and use task-oriented knowledge such as ontologies [21] to take into account spatial relations
expressed at the task and/or motion planning levels.

Coupling Task and Motion Planning: In a first step towards semantically coupling task
and motion planning, an original strategy was proposed for the semantic coupling of path
planning and a primitive action of a task plan for the simulation of manipulation tasks in a
virtual 3D environment [22]. The approach relies on the proposal of two original ontologies: a



Figure 2: Semantic coupling of motion planning and a primitive action of a task plan

3D environment ontology modelling the 3D environment according to the multi-level approach
described above, and an ontology of action-specific knowledge defining the knowledge of the
environment of a particular task, and the spatial knowledge that describes relative location
between two objects, between an object and an area, and between two geometric elements. The
proposed approach supports the automatic definition of path planning queries for the primitive
actions of a task plan, together with task-related geometric constraints on these queries.

Figure 2 presents the global approach. Two important classes are involved: 1) the Primitive
Action Specification (PAS) related to the primitive action identity (e.g. insert, put) and its
parameters (manipulated object) together with spatial constraints expressed at the task level. and
2) the Path Planning Query Description (PPQD) related to the manipulated object, the start and
goal configurations, and the geometric constraints on the motion planning query.

First, a PAS is generated automatically from the information related to the primitive task to
be performed. A set of associated spatial constraints is manually assigned by a human operator.
Then, the Path Planning Query Constructor generates a related path planning query description
(PPQD). The manipulated object in this PPQD is directly extracted from the primitive action
specification. The goal configuration is randomly sampled in the goal region. A reasoner is
invoked to generate the related geometric constraints from the spatial constraints using predefined
SWRL rules.

This approach allows the improvement of the state of the art from two points of view. First, it
allows a very significant improvement of path planning performances (processing times, relevance
of the proposed path) through better semantic control. Second, if compared to hard-coded
geometric constraints, the proposed ontology-based approach introduces a more flexible way
of defining geometric constraints through an inference process, and can be adapted to different
applications of manipulation tasks.



Nervertheless, this work still suffers a number of limitations. The input spatial constraints are
entered manually where it would be interesting to generate them automatically. Like other works
dealing with the use of ontologies for robotics, it also faces the issue of the generic expression of
the wide diversity of spatial constraints [23] [24] [25]. A use of the full range of mereotopologies
available and an explicit use of first-order axiomatizations for ontologies that are typically used
for the specification of spatial constraints might solve these difficulties.

2.2. Combined Mereotopology

The signature of the basic mereotopology Tmt) consists of two primitive binary relations, parthood
(P) and connection (C) [26]. The axioms of the theory1 state that connection is a reflexive and
symmetric relation, while parthood is a reflexive, transitive, and anti-symmetric relation. In
addition, if one individual is connected to another, then the first one is also connected to any
individual which the second is part of.

In practice, most approaches to mereotopology use RCC8, which is a set of eight jointly
exhaustive and pairwise disjoint binary relations representing mereotopological relationships
between (ordered) pairs of individuals. The results of [27] show that the mereotopology MT
corresponds to an extension of the first-order theory of the RCC8 composition table. This means
that the underlying mereotopology for RCC8 used in such settings does not include any of the
basic mereotopological principles (i.e., supplementation, atomicity, extensibility, and closure
under sum and product), since these principles are not axioms in MT.

2.2.1. Connected Induced Subgraph Mereotopology

In many domains (such as manufacturing assemblies, molecular structure, gene sequences, and
convex time intervals) the assumption that any two underlapping elements have a sum is not
valid. Instead, mereological sums must be connected objects. However, there has been little
work in providing an axiomatization of such a nonclassical mereology. Based on the observation
that the underlying structures in these domains are represented by graphs, we propose a new
mereotopology that axiomatizes the connected induced subgraph containment ordering for a
graph, and then identify an axiomatization of the mereology that is a module of the mereotopology.

In the mereotopology Tcisco_mt
2, the sum of two elements exists iff they are connected. A key

insight is that the underlying structure that specifies an object is a graph, and all parts of the
object correspond to connected induced subgraphs of that graph [28]. We therefore introduce the
parthood and connection structure on the set of connected induced subgraphs of a graph and use
this as the basis for the mereotopology for inferring spatial constraints.

1colore.oor.net/combined_mereotopology/mt.clif
2colore.oor.net/combined_mereotopology/cisco_mt.clif

colore.oor.net/combined_mereotopology/mt.clif
colore.oor.net/combined_mereotopology/cisco_mt.clif


Figure 3: Batteries case study

3. Generating Spatial Constraints

3.1. Mereotopology and TAMP: Proposed Approach and Challenging Scenario

The primary application of mereotopologies is through the automatic generation of spatial
constraints that can prune the search space so that only topologically feasible paths are considered.
For example, if x is externally connected to y, and y is a tangential part of z, then we can use
RCC8 to infer that x is connected to z. The use of mereotopology improves the semantic coupling
of task and motion planning within the framework presented in section 2.1, by providing enhanced
reasoning with the spatial constraints at the task level and geometric constraints at the motion
level.

To illustrate these potential benefits, let us consider the following case study: the replacement
of 2 cylindrical batteries in a container (see figure 3). This example is non trivial because it
requires the explicit representation of mereology, topology and orientation. The batteries must be
inserted in a specific direction to respect polarity. It is also relevant to illustrate the necessity to
couple task and motion planning. The targeted task may give way to diverse task plans, while the
order in which we remove and insert the batteries has a significant impact on accessiblity.

A battery is oriented, i.e. has a base and a knob, and so is a battery slot in the container, as
it is equipped with a spring at one end, and an indentation at the other end. The expression of
mereotopological constraints at the task level (the battery is inserted inside a given slot) allows
the automatic generation of mereotopological constraints expressing that the battery should
be inserted so that the base is in contact with the spring, and the knob is in contact with the
indentation.

The expression of such inferred constraints also supports the inference of knowledge and
constraints at the geometric motion planning level. First, the fact that the base is in contact with
the spring, and the knob is in contact with the indentation, will allow to determine an acceptable
final geometric configuration (or a set of these) for the manipulated battery. This paves the
way for improved pruning of the search space for the motion planning algorithms involved by
discarding irrelevant geometric configurations (from an orientation point of view for example, in
our case here).

3.2. Axiomatization of the Scenario

We define the scenario as a set of first order logic axioms. Axiom (1) defines the goal compartment
as containing a spring and indent as its proper parts. This is followed by a definition of battery



in axiom (2), which is defined as containing the key proper parts of knob and base. Axiom (3)
defines the relationship between battery and compartment as one of external connection. Finally,
Axiom (4) demonstrates that only one part of the battery can be externally connected to the spring
at any point. Let Σbattery be the following set of sentences:

∀x (ppart(x,compartment)≡ ((x = spring)∨ (x = indent)) (1)

∀x (ppart(x,battery)≡ ((x = knob)∨ (x = base)) (2)

EC(battery,compartment) (3)

∀x,y EC(x,spring)∧EC(y,spring)⊃ (x = y) (4)

With the scenario in mind, we can define the following proposition which confirms that if a part of
the battery is connected to a part in the compartment, there must exist another part of the battery
which is also by proxy connected to the compartment. Using an automated theorem prover such
as Prover9, we can derive
Tcisco_mt |= ∀x,y EC(x,y)⊃ (∃z,u part(z,x)∧ part(u,y)∧EC(z,u))

This is followed by the next proposition which states the possible goal states - otherwise known
as combinations of connections between the battery and the compartment. The correct combi-
nation would have the compartment indent connected to the battery knob, and the compartment
spring connected to the battery base. From these constraints, we can use Prover9 to derive
Tcisco_mt ∪Σbattery |= EC(indent,knob)∨EC(spring,base)

4. Conclusions and perspectives

In this paper, we have presented how the application of the full range of mereotopologies available
and an explicit use of first-order axiomatizations for ontologies that are typically used for the
specification of spatial constraints improves the semantic coupling of task and motion planning
for robotic tasks or for the assistance to manipulation.

Next steps for this work will consist in improving the architecture presented in figure 2
by integrating: 1) a process for the (automatic) expression of task-related mereotopological
constraints 2) a process extracting geometric information from the environment model to be used
in the inference of geometric constraints on the motion planning (e.g. geometric locations of
"contact points" from the CAD model of the environment) and 3) a process inferring geometric
constraints on the motion planning process from the (mereotopological) spatial constraints
expressed at the task level

The complete approach will be validated on the use case presented in section 3. In the longer
term, the approach should be extended to the semantic coupling of motion planning and a
complete task plan (not merely a primitive action), in a robotic context, then in the context of
interactive and immersive simulation in VR.
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