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Abstract
Human-Robot Collaboration (HRC) is expected to have a broad impact on manufacturing when human
workers and robots can work together safely and efficiently. For HRC to be safe, no unintentional contact
should occur between the human and robot. In this paper we focus on a human-robot collaborative
manufacturing application, that is, composite sheet layup, as a context for presenting a knowledge-driven
approach for ensuring safe and effective HRC. A knowledge-based system is developed to offer a single
endpoint that fuses multiple sources of information from various sub-systems (i.e., perception, planning,
and execution) into a coherent knowledge representation that can be stored and queried.
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1. Introduction

In the manufacturing domain there is a plethora of tasks that require human labor (e.g., wire
harness, electronic or aircraft assembly, composite fabrication, etc.). Some of these tasks can be
tedious or strenuous for a human to perform. Many of these tasks are difficult – and in some
cases, too expensive – to fully automate due to advanced dexterity and flexibility requirements yet
increases in production volume and cost remain challenging. By combining robot repeatability
and precision with human intelligence, flexibility and dexterity, human-robot collaborative
systems can increase productivity and quality in production lines and reduce the physical and
cognitive load of human operators. At present, nearly 90% of composite layup processes are
performed by manual labor. Therefore, employee safety is a primary concern for manufacturers.
Moreover, damage of robots or tools due to errors and collisions incurs significant cost and
causes unacceptable production delays. The state-of-the-art safety techniques in Human-Robot
Collaboration (HRC) are structured either in a stop-and-go fashion or to slow down the robot
movements. Development and implementation of HRC frameworks have the potential to disrupt
composite manufacturing with expected benefits of part consistency, quality and cost, and
ergonomics. In effective collaborations, team members are not only capable of understanding
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what their partners are currently doing, but they can also estimate the intentions and needs of
each other and plan complementary actions accordingly. They also need to maintain appropriate
situational awareness about the environment and the overall system. In this paper, we describe a
knowledge-driven human-robot collaboration framework for smart manufacturing. The proposed
approach combines statically compiled knowledge about the operational environment with run-
time perceptual information to estimate the current and future class of an action being performed
by a human. A knowledge-based system is developed to offer a single endpoint that fuses multiple
sources of information from various sub-systems into a coherent knowledge representation that
can be stored and queried. The information on current and future actions is fed to a task planning
module, which selects the robot action that best suits the estimated present and future human
states and can also inform the collision avoidance system to ensure safety for the human. An
ontological framework is implemented to maintain situational awareness about the environment
and the system.

2. Related Work

2.1. Human Early Action Prediction

Understanding actions and events from visual temporal data (e.g., RGB/IR/NIR/thermal video
or depth map sequences) is valuable in many fields, including surveillance, safety monitoring,
autonomous navigation, protocol adherence verification/enforcement, and human-robot collabo-
ration. While extensive literature exists on action and event recognition from full sequences (e.g.,
data that captures the full action or event), early action and event detection (e.g., from incomplete
or non-existing data on the action or event) is less studied due to its higher technical complexity.
However, early detection is usually more valuable (and often required) in many applications: for
example, for human-robot collaboration to be most effective, team members should be capable of
not only understanding what their partners are currently doing, but also estimating their intentions
and needs, and planning complementary actions accordingly [1, 2, 3]. Anticipation is crucial in
scenarios where an autonomous system needs to react before an action is finalized. We propose
an automated method for early action and event detection from incomplete or non-existing visual
data, which effectively and efficiently exploits prior knowledge and historical observations. The
bulk of the existing literature on action and event detection relies on the availability of full
sequences [4, 5, 6, 7, 8, 9]. More recent work deals with online action and event detection, which
relies on partial observations (typically of the start of the action or the event) in order to carry out
real-time (albeit not predictive) recognition [10, 11]. Representative work on action anticipation
includes [12, 13].

2.2. Knowledge Representation and Reasoning

Effective, safe, and compliant human-robot collaboration for complex tasks requires endowing
the robots with advanced reasoning capabilities. The reasoning capabilities of an HRC system
need to consider not only the nominal operating conditions but also the off-nominal situations
that could arise due to faults within the system itself or unforeseen changes in the surrounding
environment. For the off-nominal scenarios, the reasoning subsystem within the HRC system



needs to also understand the root-cause of a contingency and take appropriate actions in off-
nominal scenarios. The reasoning capabilities depend on the collection of facts and assumptions
that are available to reason over. Examples of useful information to encode within a knowledge
base are rules of physics, safety constraints, strategies for contingency management, etc. The twin
problems of encoding a variety of world knowledge into a computationally amenable form and
reasoning over it is collectively referred to knowledge representation and reasoning ([14, 15, 16]).
Various paradigms to encode knowledge and reason over it have been proposed over the decades
([16, 17, 18, 15]). Knowledge base construction (KBC) is the process of populating a database
with information from data such as text, tables, images, or video. Some prominent examples of
large-scale, high-quality knowledge bases (KBs) are Freebase [19], YAGO [20], IBM Watson
[21], PharmGKB [22], and Google Knowledge Graph [23]. The KBC process can be human-
expert-driven (e.g., the CYC project [24], WordNet project [25], PaleoBioDB [26]) and it can also
be automated by leveraging ongoing advances in natural language processing and understanding
techniques (e.g., KnolwedgeVault [27], DeepDive [28], MinIE [29], NELL [30], Alexandria
[31], Fonduer [32]). We refer the reader to [16] for discussion on open challenges in creation of
high-quality knowledge bases for various safety critical applications. In the context of robotics, a
variety of knowledge-driven robotics frameworks have been proposed over last several years –
KnowRob [17], RoboBrain [18], RoboEarth [33], PMK [34], and openEASE [35]. Ontologies
offer a powerful paradigm for modeling and encoding knowledge into reusable knowledge
pieces [36, 37]. An ontology encompasses a representation, formal naming and definition of
the categories, properties and relations between the concepts, data and entities that substantiate
one, many or all domains of discourse [36]. Towards the goal of formally defining an ontology,
several formats exist. The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web
language designed to represent rich and complex knowledge about things, groups of things, and
relations between things [38]. OWL is a computational logic-based language such that knowledge
expressed in OWL can be reasoned with by computer programs either to verify the consistency of
that knowledge or to make implicit knowledge explicit [38]. OWL 2 is a knowledge representation
language, designed to formulate, exchange, and reason with knowledge about a domain of interest
through the modeled ontology [38]. A variety of ontologies have been proposed in robotics for
autonomy related applications ([35, 39, 40, 41, 42, 43, 33, 18, 44]).

2.3. Planning

Several approaches exist for different kinds of planning problems [45, 46, 47, 48, 49, 50]. For
trajectory planning, there exist sampling-based incremental search approaches ([45, 46, 48]),
and graph search-based point to point planning techniques [51] as also planning under process
constraints [52]. For grasp planning, large number of researchers have worked on grasp planning
problems ([53, 54, 55]). The problem of task-allocation and sequencing has been studied with
respect to homogeneous agents (only robots) using state-transition diagrams [56] and with
respect to heterogeneous agents (humans and robots) [57]. There also exist several high-level
task planning formalisms to support planning for human-robot teams [58]. This allows rapid
contingency handling by refining plans on the fly if human operator decides to follow a different
sequence than the one generated by the system.



3. System Architecture

Figure 1: High-level architecture for the
developed system.

The high-level architecture for our work is
shown in Figure 1. A complex robot plan-
ning and perception problem for human-robot
collaboration is split among several modular
system components (i.e., perception, planning,
knowledge representation and execution mon-
itoring). A perception-based analytics sys-
tem that couples generative and discriminative
models estimates the current and future class
of an action taking place. In this approach, cur-
rent and prior human joint positions are cap-
tured and used by machine learning models
to generate a prediction of future joint posi-
tions, consumed by a discriminative network
to then determine the probability of the action
that will next be performed. This prediction drives the behavior of the robot so that it can
anticipate and respond to what it expects the human to do next. A knowledge-base is leveraged
to offer a single endpoint that fuses multiple sources of information from various sub-systems
(i.e., perception, planning, and execution) into a coherent knowledge representation that can be
stored and queried. A planning system is leveraged to determine suitable robot base positions
to perform the task, select the robot action that suits the estimated human actions, and generate
low level instructions for the robot to precisely grasp and position objects. Last, an execution
monitoring layer is used to track the state of the cell to prevent errors/collisions. A contingency
planner for altering tasks and motion plans to enable safe and efficient operations was developed.

4. Methodology

4.1. Application and Setup

We consider the problem of manufacturing thrust reverser composite cascades for aircraft engine
nacelles. Based on the composite fabrication process, a modular workstation design approach
was selected. Three modular workstations, namely a kitting station, subassembly station, and
final assembly station were installed (Figure 2). The human and two robotic arms collaborated to
manufacture a thrust reverser composite cascade prototype for aircraft engine nacelles. A typical
composite cascade unit uses ∼1,000 plies of prepreg sheet. Each thrust reverser typically has 16
cascade units. In one aircraft engine, the number of plies can amount to ∼16,000 plies. The main
processing steps include 1) prepreg ply kitting, 2) applying the plies on small rectangular-shaped
compartment tools (i.e., mandrels) to form sub-assemblies, each one with unique geometric
feature, and 3) position the sub-assemblies in a large tool and applying additional large/long plies
to create the full cascade assembly.

For the selected application, where a human and robots work together to kit and assemble
composite subassemblies for installation in an overall product assembly, effectiveness and safety is



Figure 2: Hybrid cell setup: a) design; b) physical setup.

ensured by integrating human early action prediction generated by a visual perception framework
into the robot motion planner so that the planner can produce safe motions proactively, instead of
relying on frequent re-planning.

4.2. Deep Generative and Discriminative Framework

Figure 3: Schematic view of proposed
perception framework.

We propose a perception-based framework
(shown in Figure 3) that couples generative
and discriminative models, which estimate the
current and future classes of an action or an
event taking place. The analytics leverage a
sequence of skeletal joint positions extracted
from the sequence. The generative model in-
gests current and previous data points and
outputs a sequence of predicted future data
points. A Long Short-Term Memory (LSTM)
network is used, trained by optimizing the
mean squared error between the predicted output frames and actual future frames. Once trained,
the predicted data from the generative model along with the current and previous data from the
sensor is made available to the discriminative model. The discriminative model implements a
Convolutional Neural Network (CNN) model and a LSTM network with a SoftMax layer and
produces a vector of probabilities indicating the likelihood that the future action or event belongs
to a class among a set of classes being considered. The CNN uses dilated convolutional operations
to capture relations between pairs of joints, and pairs of pairs of joints. The discriminative model
is trained by optimizing a cross-entropy loss between the predicted class probabilities and the
actual class categories. The predicted data from the generative model is made available to the
discriminative model both during training and at inference.



Figure 4: Overall ARM KRM Implementation Architecture.

4.3. Knowledge Representation and Reasoning

We developed a knowledge-reasoning based framework to maintain situational awareness about
the environment and the system. An ontology-driven modeling framework for describing concepts,
instances and relationships was developed and an ontology-specific reasoning engine, Jena [59],
was used to reason over the instantiation of the ontology; A simplified user front-end to formulate
and parse the queries was also developed. Towards the goal of defining the ontology, the
software architecture, and the reasoning techniques, the team has taken the approach of re-using
components and know-how from previous relevant project within the RTX organization. The
system is named as The ARM Knowledge Reasoning and Management system (ARM KRM).
In the next few paragraphs, we detail and discuss each of the aspects of the ARM KRM. The
implementation architecture is shown in Figure 4. The ARM KRM system is used to integrate the
perception module with the planning module to enable synchronization on situational awareness.
In addition to the ontology itself, there are few other key pieces in the implementation architecture.
The Apache Jena (referred to as Jena DB in the implementation architecture shown in Figure 4)
is an open-source java library that provides a variety of APIs for instantiation, modification
and reasoning over a given ontology [59]. However, the use of Jena requires an expert-level
understanding of the API calls and the library itself. As a result, direct interaction with the
ontology instance using Jena is prone to errors and requires a steep learning curve. For ARM
KRM, we have adapted an existing RTX java implementation, called as the DB Manager that
serves as a bridge between the Jena API and the ARM KRM relevant functionalities that are
used by planning and perception module. The last key module in ARM KRM implementation
architecture is rc_dbjava. This is a ROS implementation of a client-server architecture that sends
queries (from Planning and Perception modules) and redirect responses from DBManager to
the initiator of a query. For the scope of the project, several existing ontology implementations
were studied for reusability and identifying salient features [43, 60, 61]. This included previously
developed ontologies within RTX for other use-cases and projects. The team also consulted
recently proposed standards specifically for manufacturing robotics [43, 61]. In the end it was
determined that the existing ontologies are useful as a guidance but not readily re-usable for the



project. They were either too specific to their end use-case or too abstract. It was instead decided
to adapt from prior existing works developed for RTX-internal projects. Various classes and their
hierarchies are shown in Figure 5 below.

Figure 5: OWL2-based ontology for the system: concepts about state, system and part objects.

As mentioned earlier, the ARM KRM system is used to integrate the perception module with the
planning module to enable synchronization on situational awareness. The DB Manager serves as a
bridge between the Jena API and the ARM KRM relevant functionalities that are used by planning
and perception module. Several functions have been implemented within the DBManager and we
will not discuss all of them here. Instead, we highlight one below which provides key functionality
regarding situational awareness. String inferState(): This method performs reasoning regarding
the system state given current instance of the ontology. The reasoning is implemented through
a combination of Jena Rules, Jena Generic Reasoner for forward chaining, SPARQL queries
and the ontology instance itself. The Jena rule is a forward implication rule that expresses the
condition “If there exist parts of type Small Ply, Large Ply and Mandrel, then the system state is
nominal”. This method returns the inferred system state.

4.4. Planning

From planning perspective, there are three agents in the cell (Figure 2). UR5_A, UR5_B and
Human Operator (HO) are considered agents in this work. UR5A belongs to the kitting station
and the UR5B belongs to the final assembly station. The following items are the workpieces
in this work namely, small ply, long ply, stacked-long ply, mandrel, wrapped mandrel. UR5A
works with mandrels, long plies and small plies. And UR5B works with wrapped mandrels and
stacked-long plies. The term workpiece buffer refers to an object that can store workpieces. In
this work, there are many buffers in use. For example, in the kitting cell, a kitting buffer stores the
small-plies and the mandrel. Another kitting buffer stores the long plies. The tray buffer stores
the workpieces before they are taken by the HO. The sub-assembly buffer stores the wrapped
mandrels and the stacked long plies. Finally, the cascade-frame buffer stores the assembled
workpieces. For the goals for kitting and assembly cells, a set of primitive tasks needed to
accomplish each of the goals was defined. For example, in the kitting cell, UR5_A needs to pick
and place the workpieces into the tray. The pick and place task consists of the following primitive
tasks: moving to a pose, moving to a grasp pose, moving along a path, moving to a configuration,
grasping, and ungrasping. A special task known as wait for signal task is also needed to ensure
that tasks can be executed after a certain event signal is received. Similarly, in the assembly cell,



UR5_B needs to transfer the wrapped mandrel from the sub - assembly fixture to the cascade
frame. It also needs to collaboratively move the stacked-long ply from the sub-assembly buffer
(or fixture) to the cascade frame with the help of the human operator. These operations involve
the following primitive tasks: moving to a pose, moving to a grasp pose, moving along a path,
moving to a configuration, grasping, and ungrasping. Therefore, both the cells share the same set
of primitive tasks. The primitive tasks need to be sequenced together to accomplish the overall
goals of each cell. The planning system is divided into two parts: the backend and the frontend.
The backend was constructed using the C++ MoveIt API and the frontend was constructed using
Python scripts and the Qt GUI framework. The backend is responsible for planning and executing
the primitive tasks. The frontend is responsible for sequencing the primitive tasks and accepting
user input from the GUI.

4.5. Evaluation

The developed technologies were demonstrated to support collaboration among robots and humans
in the layup of the composite cascade prototype. The assessment of the system performance
was done with respect to Key Performance Parameters (KPPs) that among other included (i) the
ergonomic exposure of human operators, measured as the time spent on repetitive layup process,
(ii) the direct labor required, as the number of human operators needed during layup process, and
(iii) the throughput rate, as assembly time. The current manual process for the layup of thrust
reverser composite cascades was considered as the baseline for the evaluation. Our assessment
demonstrated that human ergonomic exposure and direct labor were reduced by 50%. About the
layup assembly time, we considered that a human operator would take ∼4 minutes to create a
mandrel sub-assembly and ∼9 minutes to create a long ply sub-assembly (i.e., baseline). Our
objective was to achieve 30% improvement (i.e., 2.8 minutes for the mandrel sub-assembly and
6.3 minutes for the long ply sub-assembly). Through our approach we were able to achieve a
total time for sub-assembly kit of 1.2 minutes for the mandrel sub-assembly and 1.6 for the long
ply sub-assembly, only ∼42% and ∼25% of the time objective respectively.

5. Conclusion

In this paper, we have presented a knowledge-driven, human-robot collaboration framework
for a smart manufacturing use-case – manufacturing of a thrust reverser composite cascade
prototype for aircraft engine nacelles. The proposed framework for addresses the labor-intensive
nature of sheet-based composite manufacturing associated with current manual processes for
aircraft composite sheet layup. We have developed a visual perception analytics framework to
estimate actions being performed by a human and developed a knowledge-based system to store
and query knowledge. The planning architecture within the proposed framework determines
suitable robot base positions to perform the task, selects the robot action that suits the estimated
human actions, and generates low level instructions for the robot to precisely grasp and position
objects. An execution monitoring layer tracks the state of the cell for preventing errors/collisions.
The performance of the proposed framework has been evaluated with respect to selected Key
Performance Parameters (KPPs).
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