CEUR-WS.org/Vol-3595/paper9.pdf

C

CEUR

Workshop
Proceedings

Towards a Definition and Conceptualisation of the
Perceived-Entity Linking Problem

Mark Adamik!*, Stefan Schlobach’

1 Vrije Universiteit Amsterdam, Netherlands

Abstract

In this paper we present an initial conceptualization of the problem of Perceived-Entity Linking (PEL),
which is inspired by the entity linking task used in the Natural Language Processing domain. The task was
adopted to represent a problem knowledge-driven embodied systems face, which concerns the linking of
the representations of perceived entities to a target knowledge graph. We provide an initial description of
the problem, demonstrated with a motivating example, and followed by a preliminary case study, where we
identify some of the challenges and opportunities PEL presents both to the engineers of knowledge-driven
autonomous agents and to the knowledge engineers of the Semantic Web community.
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1. Introduction

Autonomous agents, such as robotic systems, base their operation on the sensory information
extracted from the environment. In order to be able to operate in an autonomous manner, these
systems need to perceive different aspects of the often dynamically changing environment.
Perception has been a fundamental problem of many fields of science, from philosophy through
psychology and biology to computer vision and artificial intelligence. Consequently, many
notions and definitions of perception exist, but for the purposes of this paper, perception is defined
as the process of creating symbolic representations through sensory receptors from stimulus
coming from the environment.

Within the field of robotics, one of the most popular methods to represent symbolic knowledge
is in the form of ontologies, which can be defined as shared conceptualisations of a domain[1].
There are several different ontologies that are being used for representing knowledge in the field
of robotics (for a recent survey of ontology-based robotic systems, consult [2, 3]). Most of
these systems have some form of representation of perceptual data. These knowledge structures
however are usually engineered by domain experts, and therefore could be considered as a
top-down approach to creating conceptualizations. From a philosophical point of view however,
it can be argued that all symbolic knowledge humanity ever acquired have come through some
form of perceptual input, and therefore - in theory - knowledge could be coupled with some (set
of) perceptual data. Harnad [4] defined the direction of the coupling process that points from the
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Figure 1: A simplified view of the Perceived Entity Linking problem, and its relation to the other, similar
problems. Here the Sensory Data could mean both raw sensory data and processed data.

symbolic description to the direction of the sensory data as the symbol grounding problem, which
has been an influential idea for many different fields, such as cognition, language and computer
science.

In this paper, we present a first attempt to conceptualize the problem that we call Perceived-
Entity Linking (PEL), which is the process of linking perceptual data to a corresponding entity in
a target knowledge graph, where perceptual data could mean either the raw sensory output of the
sensing devices, or the outputs of the perception pipelines implemented in the given system. The
term of PEL was coined using a problem from the Natural Language Processing (NLP) domain
called Entity Linking as an inspiration, which is the process of linking entities occurring in text
to the corresponding entities in a target knowledge graphs. A simplified conceptualisation of
these terms can be seen in Figure 1. The conceptualisation process follows an ontology-based
approach. As this task opens up a vast array of problems and possible directions, we limit our
initial investigations to the domain of physical objects and their properties.

The following section provides a definition and analysis of the PEL task, followed by Section
3, that provides a general overview of some of the ontology-based approaches to robotics, and
their relation to PEL. Section 4 provides a preliminary case study using a single physical object
and comparing some of the representations, while addressing the shortcoming and challenges
posed to the task of PEL. Section 5 concludes the paper, outlining some possible directions of
future work and open challenges.

2. Problem Analysis

2.1. Problem Description

Underlying the vision of the semantic web is the assumption that computers have access to
structured collections of information and inference rules that allow automated reasoning to
be done on the information[5]. This information is then stored openly, usually in the form
of knowledge graphs. Although the knowledge shared in these graphs such as DBpedia [6],
ConceptNet [7] and WikiData [8] are often considered common-sense knowledge, a robot cannot
readily access the information contained within, and can’t relate it to the environment without



human engineering. Accessing the knowledge encoded in these resources requires the autonomous
agent to establish a connection between the context it’s currently embedded in, and the target
knowledge graph. In order to do so, the agent first needs to represent the context through its
sensory capabilities. In an ontological approach, the Semantic Sensor Network (SSN) Ontology
[9] is aimed at describing the sensory capabilities and the observations provided by these sensors.
This framework however is not sufficient to model the PEL problem.

Among the examined knowledge-based robotic systems, this connection is commonly estab-
lished by one of the two ways:

1. Hand-crafting the system to link to the correct identifier in an online knowledge-graph (e.g.
[10, 11]).

2. Reducing the problem of PEL to a local' problem by not utilizing general, external
knowledge graphs, but instead creating an separate knowledge framework, often with focus
on a specific set of tasks (e.g. [12, 13, 14, 15]).

In both cases, first a local representation is created, which then - in the case of the first approach
- is linked to an external knowledge graph. This suggests that the problem of PEL could be
conceptualized with two levels, where the first level is concerned with using the sensory data
and integrating different perceptual processes to create a representation using the knowledge
representation format the knowledge-driven system is utilizing. The second level is concerned
with aligning these representations with external knowledge graphs. The the two levels of PEL
therefore try to answer the following questions:

Level one: Given a set of sensors and their outputs, how could the sensory data be linked to
the corresponding entities in the knowledge base of the knowledge-driven system?

Level two: Given a representation of a perceived entity and a target knowledge graph, how
could the representation be linked to a corresponding entity in a target knowledge graph?

There are two distinctive differences in the two levels. The first one lies in the input, where
level one has a finite set of sensors and their corresponding outputs corresponding to physical
stimulus the sensor is responding to, whereas the possible representations serving as input for
level two are less constrained. The second difference lies in the target knowledge graph. The
first level has a representation that is tailored to the system by the designers, whereas the target
knowledge graph in level two is usually designed for representing general knowledge.

2.2. Motivating Example

Consider the following example: a robot equipped with an RGB camera captures an image of
an orange. In order for the system to create a symbolic representation that could be associated
with the concept of an orange, the object needs to be detected. Taking a popular object detection
algorithm, such as Yolo [17] as an example, the output of the algorithm would be a label, a
bounding box indicating the location of the object on the image, and a value between 0 and 1
indicating the prediction certainty. Taking only these values, as a starting point, if the robot
would be required to access the entity based on the label *orange’ in a large knowledge base
such as WikiData, additional knowledge would be required to differentiate between the several

'In this context local refers to a system crafted by the designers to solve the PEL problem, and not necessarily to
physical locality.
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Figure 2: A motivating example of the PEL problem, formulated using the SSN ontology and WikiData
[16] as the target knowledge graph. The pipeline consists of a single procedure, namely a YoloV4
object detection algorithm, and the detection instance is encompassed into an Observation instance.
An instance of type featureOfInterest denotes the identity of the observed entity. The two levels of PEL
consist of determining how features of the sensory data create a featureOfinterest, and determining
which resource should the featureOfinterest be linked to in the target knowledge graph.

possibilities. In this specific scenario, the robot would need to have a (local) representation, from
which it could be inferred that the label orange represents a class which is a subclass of the fruit
class. Using a local knowledge graph to link to the correct entity would transform the problem of
PEL to an ontology alignment problem [18]. We would argue however, that this solution would
only solve the Level 2 problem, as it would only move the problem to a local representation
(namely linking the label, bounding box and prediction certainty to class Orange). Furthermore,
this solution assumes a label is produced by the perception system. However, in the case where
an object detection algorithm is not able to provide a label (e.g. if the implemented perception
system can only estimate the size, shape and color of the object), the name of the class and
subclass couldn’t be used, and the matching would need to be performed based on other resources



in the knowledge graph.

2.3. Similar Tasks

In [19], the authors describe the process of reification as the bidirectional mapping between
symbolic systems and the sensory data. They propose a reification engine, based on biologically
inspired cognitive architectures, that is capable of performing the reification task using PerCepts,
which are abstracted symbolic properties of objects. The problem of Data Association is mainly
concerned with tracking sensory measurements, e.g. linking the measurements together over time.
While the techniques developed in this field could be considered relevant to the problem of PEL,
the main concern of data-association seems to be mainly finding interframe correspondences
between objects [20].

Another related term is anchoring, introduced by Chella et al. [21], which is considered a
special case of the symbol grounding problem, where symbols represent individual physical
objects. While this term is used in a very similar way to PEL, the main differences are that PEL
is concerned with linking to knowledge graphs, and the linked entities are not limited to physical
objects, but could also represent properties as well.

3. Related Work

This section briefly reviews how robotic systems that employ ontologies represent properties
of the perceived objects, and the means of obtaining their measurements, when specified. The
robotic systems considered are largely taken from recent surveys [2, 3, 22]. The main emphasis
when investigating these systems are on their representations of physical objects and the processes
that support the calculation of these properties.

Diab et al. developed a reasoning framework called Perception and Manipulation Knowledge
(PMK) [15], where both object properties and algorithms are represented in the ontology. Their
described method uses an AR tag tracking approach, and encodes the semantic knowledge
manually, circumventing the problem of PEL.

The Ontology-based Unified Robot Knowledge (OUR-K) framework [23] has a promising
structure, as it integrates low-level perceptual sensory data with the extracted perceptual features
(i.e. color, texture and SIFT) and couples these features to perceptual concepts. For all three
perceptual features the corresponding algorithm is linked using the hasFeatureAlgorithm predicate.
Unfortunately, no online version of the system can be found, therefore the exact implementation
of the perceived entity linking process is unknown.

Socio-physical Model of Activities (SOMA)[24] is an ontological framework designed for
aiding robots to solve everyday manipulation activities, with a special focus on home environ-
ments. SOMA is built on the DUL ontology and also serves as a foundational ontology behind
the KnowRob[13] framework. SOMA introduces a more nuanced object representation, and
using DUL as the upper ontology, divides qualities into social (e.g. cleanliness) and physical
qualities, where physical qualities are further divided into intrinsic and extrinsic qualities. In this
model, extrinsic qualities depend on the environment, while intrinsic qualities are independent of
context. Although SOMA is not concerned with the detailed sensory capabilities of the robot,



another extension of KnowRob, the Semantic Robot Description Language (SRDL) [25] includes
a taxonomy of the different sensory categories and some software categories.

A related project, RoboEarth [12] was an ambitious international effort running between 2010
and 2014 with an overarching purpose of providing a platform for robots to store and share
information in a scalable and reusable way. Much of the infrastructure around the project however
seems to be unavailable.

RoboSherlock [14, 26] is a cognitive vision system that extends the previously mentioned
KnowRob framework. It provides a perception pipeline that can accommodate different perceptual
processes. It is built on a promising work by Nyga et al. [27] that proposes a partial solution to
PEL, where a collection of image processing techniques called annotators are used to provide a
detailed description of the objects perceived by the robot.

The following section presents a simple use-case that aims to investigate how some of the
ontologies represented in this section could solve the two different levels of PEL described in the
previous section.

4. Case Study

In this section we use a preliminary proof-of-concept case study to compare how some of the
knowledge-based robotic systems, namely PMK? and RoboSherlock® could represent an orange
on the two levels of the PEL task using their currently available ontologies to create an instance of
an orange. In this manually created example an ideal object detection algorithm is assumed, that
can provide all the information the ontologies afford. Since KnowRob, SOMA, RoboSherlock
and SRDL described above are part of the same infrastracture, only RoboSherlock is considered
for the case study as it is the most relevant to the PEL task. The other frameworks described in
the previous section had no available implementations that were readily accessible online.

4.1. Linking to a Local Representation

The ontologies of both the PMK and RoboSherlock systems were examined using Protégé* (see
Figure 3). In this use-case, both ontologies represent two key aspects of the object: Material
and Color, with both ontologies lacking the exact color (orange). PMK considers three more
classes: ObjectName, Weight and SIFT features. SIFT features however are only representative
of the current viewpoint, therefore we would not consider it to be a good representative of a
constant quality. RoboSherlock includes the shape and size of the object, both of which could
be considered important features that represent the core identity of the concept. Although the
relative nature of the size representation should be addressed.

It is important to note that RoboSherlock is focused solely on visual features, therefore weight
and objectname are not considered in this example. These features however could also be included
when considering the KnowRob framework as a whole.

Zhttps://github.com/MohammedDiab 1/PMK/tree/master/PMK/interfaceprologcpp/owl
3https://github.com/RoboSherlock/robosherlock/tree/master/robosherlock/owl
“https://protege.stanford.edu/



ObjectName

RoboSherlock PMK
/
4 Logo 7 er
Carton < = yellow
- ., > Color |
= = =

Matrix

SIFT

i ConstantQuantit -
VisualAppearanc TextOnObject ﬁ RobotConstrains
€ S
- [ ObjectPart } 4{ Handle ] N } -
ObjectID
- [ Size ] I Small ] N
. |*® GraspingPose
Color | | Yellow l NN

Weight

Figure 3: Examining the object representation capabilities of the RoboSherlock and PMK ontologies
using the OntoGraf plugin of Protégé. The classes that are possibly relevant to the perception of an

orange are highlighted. Since neither of the ontologies contain the color orange therefore both red and
yellow are marked.

4.2. Linking to an External Representation

For this task, three target knowledge graphs containing common-sense knowledge are considered,
namely ConceptNet °, DBPedia ©® and WikiData ’. As the contents of Yago [28] is based on
WikiData, it is excluded from the comparison. For all three resources, the relationships providing
information about the physical or visual qualities of the fruit orange is considered.

Upon examining all the three resources a perceived instance of orange could be linked to,
ConceptNet had the least structured information, mixing several meanings of orange. WikiData
and DBpedia presented more structured information, and contained images depicting oranges
that served as grounding. While several pieces of information that is characteristic of the concept
orange fruit is represented, such as the color and the parent classes (DBpedia and WikiData), and
nutritional information (DBpedia only) there is no information about the material, shape, or the
average sizes or weights of the fruits that could be used for the PEL task.

This preliminary investigation has revealed some weaknesses and opportunities in both the
Semantic Web resources and ontology-based approaches

5. Conclusion and Future Work

In this paper we introduced the task of Perceived-Entity Linking, which addresses the problem of
how the different representations abstracted from the perceptual sensory data could be linked to
a target knowledge graph. We performed a preliminary analysis of this problem, during which
two layers of the linking task were identified, namely linking to a local representation that is
engineered for the specific system, and linking to an external knowledge source. After briefly

Shttps://conceptnet.io/c/en/orange
Shttps://dbpedia.org/page/Orange_(fruit)
Thttps://www.wikidata.org/wiki/Q13191
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describing some of recent knowledge-driven robotic systems we described a simple case-study,
which served as a motivating example, and as an investigation of the problem domain. The results
of this investigation indicated that while some of the robotic systems could partially perform the
PEL task, with the RoboSherlock’s ontology being the most representative, all of the systems
examined could be extended with a more complete and precise object representation method.
Furthermore we discovered that all of the large, "common-sense" knowledge graphs investigated
lack some common-sense qualities of an orange, such as shape, weight, and size.

As an initial effort, this paper does not consider a number of issues, which are deferred and
used as further motivation for the work that follows this paper. Some of the open questions are:

* What type of entity should PEL link to? In which cases should the system link to instances
and in which cases should the linking be performed to classes?

* How can sensory experiences from different modalities be combined to give rise to emergent
features?

* How do the challenges of the named entity linking task of NLP (e.g. scalability, name
variations, multiple languages) translate to the task of PEL?

Future work will focus on addressing each of the above mentioned issues, as well as on
providing a formal definition of the problem, followed by a structured analysis of the relevant
knowledge available on the Semantic Web resources, a thorough and systematic examination of
how knowledge-driven robotic systems solve the different levels of PEL and on analyzing the
different approaches that could be taken to solve the problem of Perceived-Entity Linking.
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