Highway to Hell.
Towards a Universal Dependencies Treebank
for Dante Alighieri’s Comedy

Claudia Corbetta1,2,*, Marco Passarotti1, Flavio Massimiliano Cecchini3 and Giovanni Moretti3

1Università degli studi di Bergamo, via Salvecchio 19, 24129 Bergamo, Italy
2Università di Pavia, corso Strada Nuova 65, 27100 Pavia, Italy
3Università Cattolica del Sacro Cuore, largo A. Gemelli 1, 20123 Milano, Italy

Abstract
In this paper, we describe the creation in Universal Dependencies of a treebank for Dante’s Comedy, the first syntactically annotated text for Old Italian following a dependency-based schema. We detail the phase of treebanking the first part of the Comedy, the Inferno, and we describe some annotation issues. Then, we perform an evaluation of automated dependency parsing with models trained on the currently available annotated portion of the text.

Keywords
Dante Alighieri, Old Italian, treebank, Universal Dependencies

1. Introduction
Over the past two decades, there has been a growing convergence between the world of corpora for ancient languages and the scholarly community working in the area of technologies for Natural Language Processing (NLP). Because of the absence of native speakers and newly written texts, dealing with ancient languages means lacking the possibility of introspective analysis or field inquiries. The only empirical evidence historical linguists can engage with is confined to old texts, many of which are fortunately digitally available today. Enhancing these data sources with meta-linguistic annotation provides scholars with enriched data to support their investigations. Moreover, building annotated sets of textual data for an ancient language following de facto standards is a way to make these old texts compatible with several ready-made NLP tools, as well as to make them comparable with annotated corpora for other (modern) languages.

Universal Dependencies1 (UD) [1] is an annotation framework started in 2015 which aims to provide a universal formalism for dependency-based syntactic annotation, with the goal of facilitating cross-linguistic comparison. Currently, the project boasts 245 treebanks for 141 languages, including historical languages such as Ancient Greek, Latin, Old French, Akkadian and Classical Chinese. With regard to the Italian language, there are 9 UD treebanks, covering a diverse range of genres, amounting to 879,657 tokens and 37,871 sentences.

This paper details the process of developing a UD treebank out of Dante’s Comedy, starting from the annotation of the Inferno, the first out of the three parts (cantiche) of the work. The motivation for this is the current absence of any dependency-based treebank for Old Italian. Besides providing the scholarly community of historical linguistics with a valuable resource, we create gold data that can be used for the supervised training and testing of stochastic NLP tools.

This paper is organized as follows: in Section 2, we introduce Old Italian and the resources available for this language, with a specific focus on the DanteSearch corpus. In Section 3, we describe the creation of the treebank, starting from the Inferno. In Section 4, we describe training and evaluation of a number of models for parsing. Section 5 concludes the paper by summarizing our findings and sketching future work.

2. Old Italian
Although in earlier stages of linguistic research there were claims of similarity between Old Italian, particu-
larly Dante Alighieri’s vernacular, and Modern Italian, especially when compared to the evolution of other Romance languages like French, where differences between old and modern varieties are more pronounced [7]. Numerous studies have now recognized and emphasized the distinction between Old and Modern Italian [8], particularly from a syntactic perspective [9].

The Grammatica dell’italiano antico (gia ‘Grammar of Old Italian’) [10], defines Old Italian as the language spoken in Florence during the 13th century and the early 14th century. The authors of the gia justify their choice of selecting Florentine texts (later expanded to texts from all the Tuscan region) on the basis of the abundant documentation of vernacular scripta in Florence, driven also by the diligence and productivity of the Florentine scribes. However, it should be noted that there are numerous written varieties that characterize Medieval Italy, albeit in a minority when it comes to documentation and written evidence.

Regardless of whether Old Italian should be strictly limited to the Tuscan area or can also encompass non-Tuscan varieties, the significance and influence of Tuscan on the evolution of the Italian language is undeniable. Therefore, while choosing an Old Italian text for a treebank, it seems obvious to select a Tuscan text, specifically a Florentine one, namely the Comedy of Dante Alighieri.

Dante Alighieri was born in Florence in 1265 and he is legitimately considered one of the greatest poets and writers of the Middle Ages. His most important work is the Comedy, which was written between 1308 and 1320, and is crucial to Italian literature, due to its historical (and still continuing) success among readers, and relevance among scholars. The decision of Dante to write the Comedy in the Florentine vernacular represents a pivotal moment in the history of Italian literature and language, as it contributed to spreading and elevating the vernacular to a literary language [11].

Together with the undeniable significance of the text, the availability of a digital resource, DanteSearch [12], containing all of Dante’s works enhanced with a number of fundamental layers of annotation, further supports our decision to choose the Comedy as the text for the first Old Italian treebank.

2.1. Resources for Old Italian

There is quite a substantial amount of texts and lexical resources in digital format available for Old Italian. Among them, the Opera del Vocabolario Italiano corpus (ovi) contains Old Italian texts dating before the 15th century and is one of the major corpora, containing 3 443 texts of Old Italian for a total of 30 176 628 word occurrences.

Strictly related to the the historical dictionary of Old Italian built by ovi is the Tesoro della Lingua Italiana delle Origini corpus (tti10) [13], which collects 3 173 texts for a total of 23 685 634 occurrences. Additionally, there are corpora that cover a wider temporal span, such as the mira corpus [14], a lemmatized and morphologically annotated collection of Italian texts from the 13th century to the first half of the 20th century, and the corr corpus [15], a diachronic corpus of Italian that covers the period from the 13th century until 1947.

Although a preliminary effort has been made towards the creation of a digital corpus of Old Italian with respect to the quotations reported in the Grande dizionario della lingua italiana [16], no dependency-based syntactic annotation of Old Italian texts is currently available.

2.2. DanteSearch

Among the resources available for Old Italian, DanteSearch (os) [12] is an annotated corpus containing all of Dante Alighieri’s works, including both the Latin and the vernacular texts. The resource has been developed by the University of Pisa and consists of a set of (downloadable) xml files providing both textual data and linguistic annotation.

Concerning the Comedy, the text included in os is based on Petrocchi’s edition [17] and is recorded in two separate xml files: one file provides the grammatical layer of annotation (featuring tokens, lemmas, and tags representing both parts of speech and morphosyntactic features), while the other contains a clause-based layer of syntactic annotation [18].

The clause-based annotation of syntax distinguishes main and subordinate clauses, the latter being assigned a label for their function, such as “declarative”, “temporal”, and “relative” [19].

3. Treebanking Dante’s Comedy: the Inferno

Dante’s Comedy is composed of three parts, called cantiche, which are Inferno ‘Hell’, Purgatorio ‘Purgatory’ and Paradiso ‘Heaven’. These cantiche are divided respectively into 34, 33 and 33 subsections called canti. This Section details the process of annotating the Inferno according to un’s formalism.

5As exemplified by a statement by [5, p. 124], cf. [6, ch. vi].

6http://www.ovi.cnr.it/Il-Corpus-Testuale.html

7The work by Favaro consists of a conversion from an xml source file to the CoNLL-U format adopted in os, for tokenization, lemmatization, and morphological annotation.

8https://dantesearch.dantenetwork.it
3.1. From DanteSearch to ud

In ds, the Inferno consists of 33,416 tokens out of a total of 99,390 (without punctuation marks).

We perform a conversion from the grammatical xml file of the Inferno provided by ds to the CoNLL-U format adopted by ud’s treebanks. The conversion focuses on tokens (i.e., forms), lemmas, parts of speech (PoS), and morphological features. However, in the CoNLL-U file we do not report the syntactic annotation contained in the xml syntactic file of ds, due to its incompatibility with the word-based ud syntactic analysis [1, §2.2].

The conversion of tags happens on a 1:1 basis (ds:ud) whenever possible. Different criteria for the assignment of PoS and morphological tags between the two annotation styles are managed case by case. For instance, ds alternately assigns the tag for “pronouns” (p) or “adjectives” (a) to possessives such as mio ‘my’, while in ud we always tag them as “determiners” (DET).

With regard to tokenization and lemmatization, in a few cases we modify the criteria followed by ds to fit the ones of ud. Specifically, this applies to the tokenization and lemmatization of what are referred to as locuzioni “locutions” in ds, i.e. sets of two or more words arranged in a fixed sequence [20], such as mentre che ‘while’ and davanti a ‘in front of’. In ds, such multiword expressions are analyzed as single tokens, while the ud annotation schema requires that the words they are composed of be analyzed individually and considered as separate tokens. As a consequence, for locutions we employ a distinct tokenization, lemmatization, and PoS tagging in contrast to ds, as shown in Table 1 with regard to the following example:

Inferno, v. vv. 95–96

noi udiremo e parleremo a voi, / mentre che l’vento, come fa, ci tace.

‘will please us, too, to hear and speak with you, / now while the wind is silent, in this place.’

Modifications of lemmatization and PoS tagging are required also for multiword proper nouns, which are lemmatized under a unique lemma in ds in contrast to ud. Table 2 shows the example of the multiword proper name Filippo Argenti:

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. tokens</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>lemma(s)</td>
<td>mentre che</td>
<td>mentre che</td>
</tr>
<tr>
<td>tag(s)</td>
<td>clst</td>
<td>ADV</td>
</tr>
</tbody>
</table>

Table 1
Example of locution mentre che

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. tokens</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>lemma(s)</td>
<td>Filippo Argenti</td>
<td>Filippo Argenti</td>
</tr>
<tr>
<td>tag(s)</td>
<td>n</td>
<td>PROPN</td>
</tr>
</tbody>
</table>

Table 2
Example of the proper noun Filippo Argenti

Further, we also want to adjust the lemmatization of articles. In ds, there are separate lemmas la/una and il/uno for the definite/indefinite feminine and masculine articles respectively, whereas, following the convention of most ud Italian treebanks, we lemmatize both under the respective masculine forms.

3.2. Syntactic annotation

We perform the syntactic annotation of the Inferno manually using ConlluEditor [22] and with the support of a few critical commentaries on the work, namely those by Chiavacci Leonardi [23] and Inglese [24]. Following the ud guidelines, annotation is made at sentence level; we base sentence splitting on full stops and question or exclamation marks followed by an uppercase letter, according to Petrocchi’s edition of the Comedy recorded in ds [17]. A sentence corresponds to a syntactic tree, i.e. an acyclic, oriented, rooted graph [25], whose nodes correspond to tokens in the text [12]. Nodes are related to each other through dependencies, i.e. hierarchical binary relations, which are labeled with a syntactic function, such as

dante/divine-comedy/.

12The ud tag clst stands for “onomastics” and the ud tag PROPN stands for “proper noun”.

13The syntactic annotation is performed by a single annotator with expertise in Italian studies. Annotating pre-parsed data has been ruled out after evaluating the accuracy of the UDPipe model [21] trained on the largest ud treebank of Italian (isrr) and tested on the first three canti of Inferno: its LAS score is 63,52% (see Section 4).

14In ud, a distinction between “token” and “syntactic word” is made: while “token” refers to an orthographic unit of segmentation, “syntactic word” refers to the actual level of analysis in the syntactic tree. These two levels often, but not always, coincide, e.g. the token nel ‘in’ the ‘would be analyzed into the syntactic words in ‘in’ and if ‘the’, each bearing its own annotation. Refer to https://universaldependencies.org/u/overview/tokenization.html. In this paper, the term “token” will be used throughout as an equivalent to ud’s “syntactic word”.

15The English translations of the examples from the Comedy are by Allen Mandelbaum, available at: https://digitaldante.columbia.edu/
nsubj for "nominal subject". Dependency-based annotation schemes are predicate-centered, with the sentence’s main predicate serving as the tree’s root. In ud’s formalism, function words depend on the content words they modify. \footnote{This is not the case for all dependency-based schemes, like for instance for the analytical layer of annotation of the Prague Dependency Treebank for Czech \cite{pdt}, where e. g. conjunctions govern conjuncts and adpositions are the heads of adpositional phrases. Refer to \url{https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/a-layer/}.}

While annotating the Inferno according to the ud formalism, we encounter several issues that require taking specific decisions. In the following, we discuss the annotation of ellipses and comparative clauses.

The total number of sentences in the Inferno is 1228, for a total of 41367 tokens.

3.2.1. Ellipsis

"Ellipsis" refers to the omission of words or phrases that can be inferred from the context of a sentence or utterance.\footnote{See \cite{26} for an introduction to the topic.} While annotating the Inferno, we encounter several cases of ellipses, including nominal ellipses, i. e. \cite[p. 526]{27}:

> different types of anaphoric phenomena involving a gap within the internal structure of the nominal phrase.

and predicate ellipsis [\cite[p. 504]{28}]:

> a type of ellipsis that leaves the main predicate of the clause unpronounced, most often together with one or more of its internal arguments or (low) adjuncts.

In the matter of nominal ellipsis, we follow the solution of promotion, as outlined in the ud guidelines.\footnote{Promotion involves selecting an element to take the place of the omitted element in the syntactic tree, following a specific hierarchy. Promotion is used without explicitly signaling the ellipsis. See ud guidelines: \url{https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis}.} We present here an example of nominal ellipsis (Figure 1):

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{Figure1}
\caption{Nominal ellipsis (Inf., ix, vv. 28–29)}
\end{figure}

\textit{Inferno}, ix, vv. 28–29:

Quell’è ’l più basso loco e ’l più oscuro / e ’l più lontan dal ciel che tutto gira

‘That is the deepest place and the darkest place, / the farthest from the heaven that girds all’

where oscuro ‘dark’ and lontan ‘far’ depend on the omitted noun (NOUN) loco ‘place’, as shown by the repetition of the definite article (DET) ’l ‘the’, which modifies the noun. In this case, we promote the adjectives (ADJ) oscuro and lontan to heads of their respective coordinate clauses using the dependency relation conj “conjunct”.

Following to the ud guidelines, we handled predicate ellipsis by using the dependency relation orphan (orphan relation), like in the following example:

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{Figure2}
\caption{Predicate ellipsis (Inf., III, v. 76)}
\end{figure}

\textit{Inferno}, III, v. 76:

Ed elli a me:

[And he (said) to me:]

where the predicate of the sentence, namely the \textit{verbum dicendi}, is omitted. This structure is extremely common to introduce a reported speech. As shown in Figure 2, the omission of the predicate requires promoting the subject of the sentence, elli “he”, to the root of the tree (root) and annotating the underlying oblique relation (obl) of the phrase a lui “to him” with an orphan relation (orphan).

Currently, the syntactic annotation in UD handles these cases of ellipsis with the promotion mechanism, which involves promoting an element to function as the omitted element in the sentence and replacing it in its dependency relation without explicitly signaling this omission, and the use of the orphan dependency relation, whose function is to indicate that the element subject to
the orphan relation does not have an overt dependent element in the syntactic structure.

3.2.2. Comparative clauses

In the *Inferno*, we find a diverse usage of comparative clauses, ranging from sentences where the comparative clause is longer than the main clause it depends on, to others where comparatives consist of just a few tokens. In light of the long-lasting discussion on the treatment of comparative clauses in *ud*\(^1\)\(^8\), we annotate such clauses by labeling their head tokens with the dependency relation `advcl` "adverbial clause modifier" specified for the subtype `cmp` for comparative clauses.\(^9\)

A number of issues concerns cases of clauses where our annotation, following the *ud* framework, parts from the interpretation provided by *ds*, like in the following example (Figure 3):

Inferno, vi, v. 19:

Urlar li fa la pioggia come cani

‘That downpour makes the sinners howl like dogs’

In the annotation of *ds*, the portion *come cani* ‘like dogs’ is considered a phrase that is part of a declarative clause. Instead, we consider *come cani* as a comparative clause with an elliptical predicate, namely *Urlar li fa la pioggia* *come [fa urlare] i cani* ‘That downpour makes the sinners howl like [it makes] dogs [howl]’.

We observe a few cases where a *come*-clause can be considered either a comparative clause or a secondary predication. In such cases, we rely on the interpretation provided by commentaries, like in the following sentence (Figure 4):

Inferno, iii, v. 13:

Ed elli a me, *come persona accorta*:

‘And he to me, as one who comprehends’

In this sentence, the *come*-clause can be interpreted either as a secondary predication (therefore, annotated using the subtyped relation `advcl:pred`\(^20\)), ‘He, being a comprehensive person, answered to me’, or as a comparative clause (with subtyped relation `advcl:cmp`), ‘He answered to me like a comprehensive person’. In this case, we follow the interpretation of Chiavacci Leonardi [23] in considering the *come*-clause as a comparative construction.

4. Evaluation

We use the manually annotated *Inferno* to train models with UDPipe 1\(^21\)\([29]\) and to assess their performances in view of employing them for parsing *Purgatorio* and *Paradiso*, so as to facilitate their subsequent manual annotation.\(^22\) In our evaluation framework, we employ a cross-validation based on 10%/90% splits of the data: each test set will then consist of approximately 4 137 out of 41 367 tokens and 123 out of 1 228 sentences, while train sets of approximately 37 230 tokens and 1 105 sentences. The evaluation of the models’ accuracies is performed by measuring Labeled (las) and Unlabeled Attachment Score (uas) [30].

The training and evaluation process is based on one eleven- and one tenfold partition of the data, for a total of 11+10 iterations: the first partition patterns upon the original division into *canti*, with batches of 5 consecutive

\(^20\)Cf. documentation at https://universaldependencies.org/la/dep/advcl-pred.html (for Latin).

\(^21\)https://github.com/ufal/udpipe.

\(^22\)We acknowledge that doing tests within a single *cantica* may not guarantee the same performances when compared to other *cantiche*.
canti23 assigned to the test set and the remaining 3124 forming the training set; the second partition is obtained by fully random selection of sentences.25 Moreover, evaluation is carried out according to two scenarios: one (+Morph) in which lemmas, parts of speech and morphological features are given, and one (-Morph) in which every annotation level has to be tagged from scratch.26

The accuracy of each model is calculated using eval1.py,27 an evaluation script provided by the UD project. As shown in Table 3, evaluations conducted on the random partition result into slightly higher average accuracy scores than those based on triplets28 of consecutive canti: in the +Morph scenario, a difference of 0.16% is observed for UAS, whereas in the opposite -Morph scenario the improvement is more marked, but still minor, at 0.42% for UAS and 0.26% for LAS. The only exception regards LAS in the +Morph scenario, though the difference of 0.02% encountered there is negligible.

Consistently with our expectations, we also observe that parsing performed with prior assignment of the other annotation levels produces better results compared to the case where the parser has to handle all annotation levels simultaneously. Specifically, in the +Morph scenario the average of models trained on the random partition exhibits an improvement of 6.63% for UAS and 9.10% for LAS, and similarly models trained on consecutive canti show an improvement of 6.89% for UAS and 9.38% for LAS.

We can conclude that, on the one hand, sampling the dataset randomly or by selecting consecutive parts of the text does not seem to significantly affect performances, and this could point to the fact that, at least in this cantiche, morphosyntactic phenomena are uniformly distributed across the text, as also standard deviation is very low. On the other hand, LAS and UAS metrics improve significantly when the text is already enriched with linguistic annotation. This allows us to have positive expectations with regard to the parsing of Purgatorio and Paradiso, cantiche for which lematization and morphosyntactic taggings are inherited from the conversion from ns.

<table>
<thead>
<tr>
<th>Partition</th>
<th>Scenario</th>
<th>Avg. UAS</th>
<th>Avg. LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>+Morph</td>
<td>81.95±0.94%</td>
<td>77.07±1%</td>
</tr>
<tr>
<td>consecutive</td>
<td>+Morph</td>
<td>81.79±1.38%</td>
<td>77.09±1.34%</td>
</tr>
<tr>
<td>random</td>
<td>-Morph</td>
<td>75.32±0.91%</td>
<td>67.97±0.80%</td>
</tr>
<tr>
<td>consecutive</td>
<td>-Morph</td>
<td>74.90±1.37%</td>
<td>67.71±1.17%</td>
</tr>
</tbody>
</table>

Table 3
Averages and standard deviations of accuracy metrics

5. Conclusions and future perspectives

Building a ud treebank for Dante’s Comedy is the first step towards incorporating Old Italian among the languages of ud. This paper describes the development of the first part of this treebank, which consists of the first canta of the Comedy, the Inferno.

We also present the results of an experiment of supervised automated dependency parsing using both as training and test sets data from the Inferno. We run this experiment to understand to what extent the process of syntactic annotation of the Comedy, which has been performed so far fully manually, can benefit from the results of the application of an nlp tool. Although the accuracy rates reported in the paper are fairly good (≈77% LAS), in the near future we will have to evaluate how and to what extent they will drop once a model trained and evaluated on the Inferno is applied to a different canta. Should the accuracy rates drop heavily, even such a negative result might prove helpful in pointing out syntactic differences between the three cantiche. Moreover, the use of other parsers, based on different algorithms and resources (like embeddings), might lead to better and, most importantly, diverging results and errors.

As for annotation issues, we will suggest to introduce a specific subtype, e. g. e11p, in ud’s documentation, so as to properly identify cases of ellipses, as they are not explicitly captured by the current annotation strategies mentioned in the paper, namely promotion and the use of the relation orphan: the former does not signal the presence of ellipsis, while the latter obscures the real dependency relations which are replaced by it. While adopting a subtype like e11p would make it possible to collect cases of ellipses, their resolution is up to the annotation of so-called enhanced dependencies, which are a kind of advanced annotation that augments dependency

23We actually note that, since the number of canti, 34, is not divisible by 3, one canto would be left out, and is instead aggregated to the last batch, which then consists of 4 consecutive canti (31, 32, 33, 34).

24Or 30; see fn. 23.

25Please refer to the GitHub page https://github.com/CLAudiaCorbe/Inferno_treebank for the data and detailed statistics on the partitions.

26Corresponding respectively to -parse and -tag -parse options for UDPipe; see https://ufal.mff.cuni.cz/udpipe/1/users-manual, §3.6.

27https://github.com/UniversalDependencies/tools/blob/master/eval.py.

28Or a quadruplet; see fn. 23.
labels to facilitate disambiguation.29

We plan to engage additional annotators with expertise in Old Italian to expedite the process of annotation of 	extit{Purgatorio} and 	extit{Paradiso}. Additionally, we intend to apply error detection processes (like, for instance, those described in \cite{31}) to retrieve possible mistakes or inconsistencies in syntactic annotation.

Another task we intend to address is the extension of the \texttt{ud} documentation for Italian in order to make the validator31 correctly deal with some peculiarities of Old Italian, like for instance enclitic adpositions (e.g., \textit{meco} ‘with me’), which require the introduction of the feature \texttt{Clitic=Yes} combined with the PoS tag ADP, currently permitted only with the PoS tag \texttt{PRON}.

Finally, we plan to include enhanced dependencies31 in the \texttt{ud} treebank of Dante’s \textit{Comedy}, once the basic syntactic annotation of the entire work will be completed.

\section*{References}

\begin{itemize}
 \item \cite{2} D. Zeman, et alii, Universal dependencies 2.12, 2023. URL: http://hdl.handle.net/11234/1-5150, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathematics and Physics, Charles University. Available at http://hdl.handle.net/11234/1-5150.
 \item \cite{4} M. Passarotti, F. M. Cecchini, R. Sprugnoli, G. Moretti, \textit{UDante}, Studi Danteschi lxxxvi (2022) 309–338.
 \item \cite{6} L. Tomasin, Il caos e l’ordine, Piccola Biblioteca Einaudi, Giulio Einaudi, Turin, Italy, 2019.
 \item \cite{7} M. Dardano (Ed.), Sintassi dell’italiano antico, Lingue e Letterature Carocci, Carocci, Rome, Italy, 2013. URL: https://www.carocci.it/prodotto/sintassi-dellitaliano-antico.
 \item \cite{8} M. Dardano, G. Frenguelli (Eds.), SintAnt, Aracne, Rome, Italy, 2004.
 \item \cite{9} R. Tesi, Parametri sintattici per la definizione di “Italiano antico”, in: M. Dardano, G. Frenguelli (Eds.), SintAnt. La sintassi dell’italiano antico, Aracne, Rome, Italy, 2004, pp. 425–444.
 \item \cite{10} G. Salvi, L. Renzi (Eds.), Grammatica dell’italiano antico, il Mulino, Bologna, Italy, 2010. URL: https://direct.mit.edu/coli/article/2280318. doi:10.1162/coli_a_00402.
 \item \cite{11} P. Manni, La lingua di Dante, Le vie della civiltà, il Mulino, Bologna, Italy, 2013.
 \item \cite{14} P. D’Achille, M. Grossmann (Eds.), Per la storia della formazione delle parole in italiano, Quaderni della Rassegna, eighth ed., Franco Cesati, Florence, Italy, 2017. URL: https://www.francescolazzini.com/catalogo/028371. doi:10.1400/28371.
 \item \cite{15} M. S. Micheli, contr. A new resource for the study of Italian from a diachronic perspective: Design and applications in the morphological field, Corpus 23 (2022). URL: https://journals.openedition.org/corpus/7306. doi:10.4000/corpus.7306.
 \item \cite{16} M. Favaro, E. Guadagnini, E. Sassolini, M. Biffi, S. Montemagni, Towards the Creation of a Diachronic Corpus for Italian: A Case Study on the GD1 Quotations, in: R. Sprugnoli, M. Passarotti (Eds.), Proceedings of the Second Workshop on Language Technologies for Historical and Ancient Languages (lt4HALA), European Language Resources

